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Estimation of three‑dimensional 
chromatin morphology for nuclear 
classification and characterisation
Priyanka Rana1, Arcot Sowmya1, Erik Meijering1,2 & Yang Song1*

Classification and characterisation of cellular morphological states are vital for understanding cell 
differentiation, development, proliferation and diverse pathological conditions. As the onset of 
morphological changes transpires following genetic alterations in the chromatin configuration 
inside the nucleus, the nuclear texture as one of the low‑level properties if detected and quantified 
accurately has the potential to provide insights on nuclear organisation and enable early diagnosis 
and prognosis. This study presents a three dimensional (3D) nuclear texture description method 
for cell nucleus classification and variation measurement in chromatin patterns on the transition to 
another phenotypic state. The proposed approach includes third plane information using hyperplanes 
into the design of the Sorted Random Projections (SRP) texture feature and is evaluated on publicly 
available 3D image datasets of human fibroblast and human prostate cancer cell lines obtained from 
the Statistics Online Computational Resource. Results show that 3D SRP and 3D Local Binary Pattern 
provide better classification results than other feature descriptors. In addition, the proposed metrics 
based on 3D SRP validate the change in intensity and aggregation of heterochromatin on transition to 
another state and characterise the intermediate and ultimate phenotypic states.

Intercellular interactions within a tissue microenvironment take place through diverse mechanical and biochemi-
cal signals that control cellular development, differentiation and  homeostasis1–4. Various studies have revealed 
that a derangement in signals disrupts chromatin dynamics and commences differential regulation of gene 
expression and genomic imbalance that subsequently triggers oncogenic  transitions2,5,6. Chromatin domains on 
mutation undergo disarrangement of heterochromatin (HC) (condensed chromatin) organisation and observe 
coarsening or opening of HC, resulting in an increase or loss of HC aggregates all around the nuclear matrix 
region,  respectively6–8. This transformation is closely associated with metastatic potential and holds diagnostic 
and prognostic significance. At the molecular level, alterations appear as a change in nuclear texture formed by 
wrinkles, folds and trenches manifested through entwined strands of nuclear proteins, lamins and chromatin. 
Changes in nuclear texture occur in conjunction with other morphological variations such as nuclear and nucleo-
lar size, shape and count at the tissue level and the organisation of protein content, based on which cancerous 
cells are differentiated from normal  ones2,7. Although these alterations have been a gold standard for late-stage 
diagnosis of tumours, the description of their origin, interdependency and progression is not clear; therefore 
early diagnosis of cancer, drug discovery and prognosis care remains a  challenge2,7,9.

The nucleus, being a prominent organelle of eukaryotic cells, houses cellular DNA (chromatin), hosts chro-
mosome formation and offers a dynamic research domain to measure and study nuclear morphological changes 
from normal to malignant cells correlated with genetic alterations. In cross disciplines such as mechanobiology, 
nuclear morphological quantification has emerged as a promising approach to study the effect of external signals 
on nuclear morphology and their further impact on enclosed protein organisation. Quantitative analysis of vari-
ations in nuclear morphology and protein configuration helps to explain the mechanisms underlying cellular 
alterations and has opened new avenues for curative models in cancer  care2,10,11.

Quantitative models are usually evaluated on classification problems to comprehend and measure nuclear 
morphological alterations. Machine learning techniques that extract handcrafted features are often chosen over 
deep learning as the latter does not provide interpretable  features2. Research on novel handcrafted feature descrip-
tors thus remains active despite the success of deep  learning12–15, as they perform competently for well-defined 
problems and do not require massive amounts of data for training. Cellular changes at the molecular level 
can be understood through an adequate feature description capable of capturing low-level details of cells in 
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multi-dimensions. Nuclear texture, being one of the low-level feature when described and quantified accurately 
in 3D, has the potential to provide insights that enable early diagnosis and prognosis. Recent developments in 
confocal microscopy have enabled more effective in-vivo intraoperative studies through 3D fluorescence images, 
to analyse the heterogeneity of cellular  patterns16.

Various studies have established the discriminative performance of 3D texture analysis more than  2D17–19. In 
the early years of 3D texture description, Gray-Level Co-Occurrence Matrix (GLCM) descriptors were widely 
used for fluorescence microscopy  images19. Local Binary Pattern-Three Orthogonal Planes (LBP-TOP)20 has 
been considered as the leading approach for 3D biomedical  images21. It has outperformed commonly used, 
diverse variants of 3D texture descriptors such as Moments, Haralick, Tamura, Gabor and other variants of LBP 
for cell  classification13,21,22. LBP-TOP computes standard LBP features from three orthogonal planes separately 
and concatenate them to represent 3D LBP feature descriptors. Apart from LBP-TOP, the recently proposed 
3D  RSurf13 uses spherical coordinates with diverse combinations of azimuthal and polar angle to analyse 3D 
images. The latest scale and rotational invariant 3D Scale-Invariant Feature Transform (SIFT)23 extracts texture 
features from a spherical image window, and is employed to target high intensity points of DAPI (4’,6-diamidino-
2-phenylindole) images that represent HC.

In this study, we propose a novel approach to compute third plane information for texture description using 
cubic patches and hyperplanes within the patch. The proposed approach is adapted to the existing SRP feature 
 descriptor14 which describes the distribution of intensities in diverse patterns, originally defined for texture 
description of 2D images. SRP is based on the dimensionality-reduction technique known as Random Projec-
tions (RP), which compresses high dimensional data, captures salient information without information loss and 
preserves inter-distance of data values while projecting to a lower dimensional space. It is a rotationally invariant 
texture feature descriptor and has achieved competitive results and efficiency. The proposed 3D approach extends 
SRP by extracting features from the third plane using hyperplanes built in the cubic patches of the volumetric 
image (explained in “Methods”). Bag of Visual Words (BOVW)15 is then applied to generate the final 3D feature 
descriptor.

The proposed 3D SRP is used to measure changes in the chromatin patterns and perform cell nucleus clas-
sification, and evaluated on two publicly available 3D image datasets of DAPI stained nuclei of human fibroblast 
and human prostate cancer  cells10,11 (Fig. 1). Images are preprocessed following quality protocols and segmented 
to obtain individual cells with minimal background. Cellular features are extracted and further represented 
using BOVW to reduce redundant features and obtain a global feature vector to represent each class features. 
Subsequently, a linear Support Vector Machine (SVM) model is trained to classify the phenotypes. Following 
classification, 3D SRP features are computed to quantify changes in HC on transition from one phenotype to 
another. The changes in the intensity and aggregation of HC illustrate epigenetic mechanisms.

Along with the earlier mentioned handcrafted features (SIFT, LBP and RSurf), Convolutional Neural Net-
works (CNNs)24 are also used to generate deep learning features for comparison. The significance of including 
third plane information for low-resolution volumetric images is also investigated by comparing the performance 
of 3D texture descriptor with its respective pseudo 3D form that ignores the interslice intensity correlations. The 
results demonstrate 3D SRP is one of the most effective texture feature description methods for this data set, and 
has potential to measure variations in chromatin patterns.

Figure 1.  Pipeline to classify cellular phenotypic states and measure chromatin patterns. Cells are segmented 
and cropped, followed by extraction of cellular texture features using proposed 3D SRP. Image-based 
classification is performed using the linear model trained on extracted features. Following classification, 
heterochromatin intensity and aggregation is measured using the proposed 3D SRP. The presented model is 
evaluated on publicly available 3D image datasets of human fibroblast and human prostate cancer cells.
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Results and discussions
3D SRP texture description classifies phenotypic states with best results. Proposed 3D SRP is 
evaluated for the classification of 3D images of DAPI stained nuclei of two different cell collections, each com-
prised of different states with distinct morphological features for binary classification. The first cell collection 
has 3D volumetric images of primary human fibroblast cells in two phenotypic states/classes: (1) proliferating 
fibroblasts (PROLIF), and (2) cell cycle synchronised by the serum-starvation protocol (SS) (see Supplementary 
Table S1 and Fig. S1). The second cell line has 3D volumetric images of human prostate cancer cells (PC3) in 
two states/classes: (1) epithelial (EPI) state, and (2) mesenchymal transition (EMT) state (see Supplementary 
Table S1 and Fig. S1). PC3 phenotypic states exhibit different and quantifiable nuclear morphological features 
that are useful in studying prostate cancer progression.

Cellular alterations at the molecular level may happen inconsistently in a small group of defective cells in a 
tissue microenvironment. Therefore, image classification based on cellular feature descriptors is recommended 
to comprehend the variations. Performance of 3D SRP is compared with deep learning features (Fisher vector 
based CNN features (FV-CNN), details in the “Methods” section) and other handcrafted feature descriptors, 
which employ distinct approaches for third plane inclusion and are comparatively recent, such as RSurf, and the 
widely utilised LBP and SIFT texture descriptors. The choice of LBP and SIFT is also motivated from a recent 
review of texture descriptors that mentions SIFT and LBP as milestone texture feature  descriptors15.

The results shown in Table 1 are obtained via 10-fold cross-validation (explained in “Methods”). Classification 
performance is evaluated using AUC (Area-Under-the-Curve) of the ROC (Receiver-Operating-Characteristic) 
curve and the F1 score. Figure 2 demonstrates performance of classification models for all the folds through the 
ROC plots. Classification models are also compared statistically for their metric values. As shown in Table 1, 

Table 1.  Classification results for Fibroblasts and PC3 Cell Collection. Metric values of pseudo 3D feature 
descriptors and features obtained from the penultimate fully-connected layer (C-FC) of the CNN model are 
also included for comparison.

Features

Fibroblast cell line PC3 cell line

AUC F1 score Precision Recall AUC F1 score Precision Recall

3D SRP 0.997 ± 0.003 0.99± 0.02 0.98± 0.03 0.998± 0.002 0.999± 0.002 0.98± 0.02 0.97 ± 0.003 0.98± 0.03

Pseudo 3D 
SRP 0.94± 0.04 0.94± 0.04 0.97± 0.04 0.91± 0.06 0.98± 0.01 0.85± 0.20 0.75± 0.32 0.94± 0.08

3D LBP 0.997 ± 0.003 0.99± 0.02 0.98± 0.03 0.996± 0.001 0.994± 0.004 0.97± 0.03 0.97± 0.04 0.97± 0.04

Pseudo 3D 
LBP 0.88± 0.13 0.79± 0.15 0.77± 0.18 0.82± 0.10 0.97± 0.02 0.90± 0.06 0.84± 0.11 0.97± 0.04

3D SIFT 0.96± 0.02 0.90± 0.05 0.90± 0.06 0.91± 0.13 0.98± 0.03 0.96± 0.06 0.97± 0.04 0.94± 0.07

Pseudo 3D 
SIFT 0.85± 0.04 0.74± 0.08 0.69± 0.10 0.79± 0.08 0.93± 0.02 0.80± 0.13 0.84± 0.21 0.80± 0.05

3D RSurf 0.98± 0.02 0.92± 0.03 0.93± 0.04 0.92± 0.02 0.97± 0.03 0.88± 0.09 0.85± 0.12 0.93± 0.09

Pseudo 3D 
RSurf 0.94± 0.02 0.86± 0.02 0.87± 0.05 0.85± 0.05 0.97± 0.03 0.89± 0.05 0.89± 0.01 0.91± 0.08

FV-CNN 0.996± 0.004 0.93± 0.16 0.90± 0.25 0.989± 0.01 0.995± 0.01 0.96± 0.06 0.95± 0.03 0.96± 0.08

C-FC 0.72± 0.08 0.62± 0.08 0.61± 0.11 0.65± 0.08 0.76± 0.05 0.72± 0.04 0.70± 0.06 0.76± 0.08

Figure 2.  ROC curves for all feature descriptors. (a) Fibroblast dataset. (b) PC3 dataset. Note that 3D SRP, 3D 
LBP and FV-CNN curves are overlapping in (a). 3D LBP and FV-CNN curves are overlapping in (b).
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the mean AUC and F1 score from the 10-fold cross-validation scheme have different standard deviation values 
for feature descriptors. Therefore, the Kruskal–Wallis  test25 is employed, which is a non-parametric method also 
called one-way ANOVA based on ranks, to compare the means of more than two sample groups. The hypothesis 
for the Kruskal–Wallis test is:

At 1% significance level and very small p-value (< 0.01), the Kruskal-Wallis test indicates the difference 
between mean ranks of five groups (SRP, LBP, SIFT, RSurf, FV-CNN). In Fig. 3, different colours of the lines 
indicate different mean ranks and population. The length of the line represents the comparison interval, and the 
extent of overlap of lines implies the range of similarity of corresponding groups.

As demonstrated in Fig. 3a,b, 3D LBP, 3D SRP and FV-CNN are at similar ranks and from a separate popula-
tion than 3D RSurf and 3D SIFT. Although the mean F1 score for FV-CNN is lower than 3D SRP and 3D LBP 
for fibroblast cell images, statistical results demonstrate their performance to be similar (Fig. 3b). This is because 
the F1 score of two subsamples deteriorated the mean FV-CNN. However, all other subsamples performed as 
well as 3D SRP and 3D LBP. F1 scores for most of the feature descriptors are good for the PC3 data set with a 
high number of slices (Fig. 3b). Overall performance evaluation implies that 3D SRP and 3D LBP performed 
better than all other considered handcrafted feature descriptors, while 3D SRP achieved better results than 3D 
LBP for the PC3 data set. In addition, SRP features offer more robust feature description as these are obtained by 
encoding intensity distributions of an image patch in square, circular and inter ring structure, while LBP utilises 
only pixel differences in circular pattern. In comparison, FV-CNN features show an overlapping ROC curve with 
3D SRP and 3D LBP and demonstrate distinctly higher performance than C-FC.

3D SRP measures changes in chromatin pattern and characterises phenotypic states. Chro-
matin patterns vary according to cell cycle phase, developmental state and chromatin  positioning26. The changes 
in the chromatin density are owing to DNA methylation and histone acetylation, which are major epigenetic 
mechanisms and highly relevant to human development and  diseases27. Both processes share a reciprocal rela-
tionship, where DNA methylation is enriched in transcriptionally inactive heterochromatin, while histone 
acetylation is associated with transcriptionally active (or potentially active)  euchromatin27. Epigenetic factors 

(1)Null hypothesis H0 = All classification models have the same mean rank.

Figure 3.  Mean ranks of 3D handcrafted descriptors and FV-CNN from Kruskal–Wallis test results for 
fibroblast and PC3 cell collections (a) AUC. (b) F1 Score.
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influencing gene expressions at the molecular level dictate cellular morphology and behaviours. When down-
regulation of gene expressions occurs, some of the euchromatin changes to heterochromatin that makes the seg-
ments of DNA more compact (DNA methylation)28. This is a reversible process; hence when active transcription 
is required, heterochromatin is converted to euchromatin which is lightly packed (histone acetylation)28. Thus, 
these conversions lead to the remodelling of chromatin structure inside the nucleus.

HC is characterised by the constriction in centromere, defined by a variant of histone H3, centromere protein-
A (CENP-A) which is an established  biomarker29. Being a profoundly condensed and compact chromatin frac-
tion, it is easily detectable by DAPI  staining30,31. Corresponding to the high luminance contrast regions in DAPI 
images, in previous studies HC is identified by applying a threshold equal to the sum of the minimum intensity 
and sixty per cent of the difference between the maximum and minimum  intensities9. Following the proposed 
3D SRP, this study takes two approaches based on pixel values (Eq. 11) and adjacent pixel differences (Eq. 12), 
to determine the chromatin pattern alterations in 3D. Heterochromatin to euchromatin ratio (HC/EC) of both 
cell states is computed as explained in Methods and statistically compared to inspect the nature of changes in 
chromatin pattern on transition to another phenotypic state. The two-sided Wilcoxon rank-sum test at the sig-
nificance level of 1% is utilised to measure the difference in HC/ECPixelValues and HC/ECPixelDifferences between 
two classes for both cell lines. The corresponding null hypothesis is:

As shown in Table  2, the results from the test verify the statistical significance of the difference in 
HC/ECPixelValues and HC/ECPixelDifferences between two classes and indicate both ratios are higher for SS cells 
than for PROLIF (normal state) cells, while they are lower for EMT cells than for EPI (normal state) cells. Notably, 
low p-values obtained for statistical analysis of HC/EC ratios indicate the significant increase in intensity and 
HC aggregation, signifying HC condensation on the transition to SS state (see Supplementary Figs. S2 and S6). 
For the PC3 data set, on the other hand, there is a decrease in the intensity and HC aggregation, which signifies 
a decondensation or “open chromatin” state on the transition to the EMT state (see Supplementary Figs. S2 and 
S6). Changes in the chromatin pattern as implied by results in Table 2 are in accordance with other relevant 
 studies2,7,9,17.

Note that the utilised data set has multiple subsets of images for each class where each subset represents 
one ‘run’ of the microscope of different cell samples. The test was conducted for all individual subsets, and the 
observations remained the same for all subsets except in one instance when the test was performed excluding 
one image subset (coded as 179 ( EMT179 )) comprising 25 volumetric images with 134 cells in the EMT class. 
EMT∗ refers to the image set without EMT179 . It consists of 117 cells and on evaluation, we observed high 
p-values at the significance level of 1% which indicates insufficient evidence to reject the null hypothesis for 
both ratios. However, the z-value (value of the z-statistic) of 0.6341 indicates a negative shift in the median of 
HC/ECPixelDifferences from EPI to EMT at 1% significance level.

Since EMT is a reversible transition from epithelial to mesenchymal state in which cells do not necessar-
ily exist in ‘pure’ epithelial or mesenchymal state and comprise of multiple intermediate cell states (ICS) with 
hybrid features of pure  states32. Therefore, based on obtained results (Table 2), it is suspected that available EMT 
images consists of cells in two cellular states. While many cells in EMT∗ subset are in the ICS, cells in EMT179 
are in pure mesenchymal state or in ICS close to pure mesenchymal state. Corresponding p-values and z-values 
characterise cells in EMT∗ as being of similar intensity but with slightly decondensed HC than in EPI state and 
cells in EMT179 as being of lower intensity and highly decondensed HC than in EPI and EMT∗ cells (see Sup-
plementary Figs. S2 and S6).

Previously, the existence of two such EMT ICS has been found in mammary epithelium  cells33. EMT cells 
with their ICS are of high importance in studies related to comprehension of cancer progression and drug resist-
ance. Recently Sha et al.32 highlighted the characterisation and classification of ICS as a significant challenge 
and opportunity in the EMT field, as they are believed to play a vital role in disease progression and should be 
considered crucial biological entities. At present single-cell surface marker/RNA sequencing (scRNA-Seq) is 
the accepted method to identify the intermediate states that occur during EMT in metastasis. According to the 
obtained results, the proposed metrics based on SRP can be utilised to identify and characterise the ICS in EMT 
state of human prostate cancer cells. Even though images in EMT class consist of cells with diverse characteris-
tics, good classification results are still achieved because of feature representation techniques (BOVW and FV), 
which derive new image features corresponding to the most dominant original features of the whole data set.

(2)H0_Fibroblast =Normal cell state has higher HC/EC than another phenotypic state

(3)H0_PC3 =Normal cell state has lower HC/EC than another phenotypic state.

Table 2.  Results from the two-sided Wilcoxon rank-sum test evaluating HC/EC and indicating the change in 
chromatin patterns on transition from normal (PROLIF, EPI) to another phenotypic states.

Cell groups H0 HC/ECPixelValues HC/ECPixelDifference Conclusion

PROLIF-SS (2) 1.1 e−07 3.4 e−08 Rejects H0

EPI-EMT (3) 7.3 e−11 1.1 e−20 Rejects H0

EPI-EMT179 (3) 2.1 e−23 8.2 e−43 Rejects H0

EPI-EMT* (3) 0.50 0.26 Accepts H0
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The HC/EC ratio was also computed following the same method with the original pixel values without ran-
dom projections, and it was observed that the obtained p-value was higher. However, the inference remains the 
same for the pixel differences approach and no statistical significance in ratio difference is found for the pixel 
value method. This is because RP achieves compact representation of high dimensional data and preserves its 
inter-distances when projecting values to a lower dimensional space. This intensifies the salient information of 
the data, providing global features, and therefore, statistical analysis demonstrates the distinction of ratios more 
significantly. HC/EC ratios were also computed following the pseudo 3D approach. Similar to the proposed 3D 
method, the obtained results demonstrate a positive shift in HC/EC ratios from PROLIF to SS class and negative 
shift from EPI to EMT class. However, resultant p-values are higher than the values obtained from the proposed 
3D approach, suggesting the latter is more credible.

3D texture description performs better with third plane inclusion. To study the impact of com-
puting third plane information for low resolution, 3D versions of SIFT, LBP, RSurf and SRP was compared with 
their corresponding pseudo forms that ignores the interslice intensity correlations. The two-sample t-test at 5% 
significance level was used to compare AUC and F1 scores of pseudo and non-pseudo descriptors based on the 
null hypothesis:

In addition, variability in performance differences between pseudo and non-pseudo versions of the feature 
descriptor was evaluated for all the folds through the ROC plots provided in Fig. 4 and Supplementary Figs. S4 
and S5.

Although the 3D image data has low resolution along the Z plane, results demonstrate the advantage of uti-
lising 3D feature descriptors for classification over their corresponding pseudo versions (Table 1). As shown in 
Table 3, at 5% significance level the test results verify the statistical significance of the advantage of non-pseudo 
versions of descriptors over the pseudo versions successfully except pseudo RSurf which is as good as non-pseudo 
3D RSurf for the PC3 data set.

On comparing the performance of a feature descriptor on two data sets (fibroblast and PC3 cell collections), 
it is observed that the approach to include third plane information and the corresponding input parameters are 
significantly correlated with the number of slices in the volumetric image and must be carefully considered to 
obtain the best classification performance. For example, 3D SIFT based on spherical image window exhibited 
better performance for PC3 data set images with a higher number of slices, as the slices were adequate to build 
an appropriate sphere. In contrast, 3D RSurf ’s performance deteriorated, as the considered number of polar 
angles were not sufficient to extract all the pixel information. Similarly, 3D SRP outperformed 3D LBP on the 

(4)Null hypothesis H0 = Pseudo 3D outperforms 3D.

Figure 4.  ROC curves: 3D SRP vs Pseudo 3D SRP (a) Fibroblast dataset. (b) PC3 dataset.

Table 3.  Two sample t-test results comparing 3D and pseudo 3D texture descriptors.

Features

Fibroblast cell line PC3 cell line

AUC F1 score AUC F1 score

p-value Conclusion p-value Conclusion p-value Conclusion p-value Conclusion

SRP 0.01 Rejects H0 0.002 Rejects H0 0.02 Rejects H0 0.02 Rejects H0

LBP 0.007 Rejects H0 0.002 Rejects H0 0.004 Rejects H0 0.004 Rejects H0

SIFT 0.0004 Rejects H0 0.001 Rejects H0 0.02 Rejects H0 0.005 Rejects H0

RSurf 0.008 Rejects H0 0.004 Rejects H0 0.48 Accepts H0 0.69 Accepts H0
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PC3 data set, as its capability to extract extensive information through hyperplanes was fully utilised for the 
images with a higher number of slices.

Comparison with the state‑of‑the‑art studies and correlation of nuclear texture and 
shape‑based features. In the current study, obtained metric values based on texture description are 
higher than the state-of-the-art (SOTA) works obtained by classification using shape-based features on the same 
dataset. In Table 4, the best achieved results are shown in comparison to the  SOTA10,11. High performance in 
the current study is credited to factors such as quality protocols in the preprocessing step, the segmentation 
approach and feature representation. Features are extracted from the segmented cell objects instead of whole 
image to avoid dilution of texture description by the image background and noise. Application of feature encod-
ing techniques such as BOVW and Fisher Vectors reduced redundant features.

While the current work evaluates texture descriptors using 10-fold cross-validation, the compared SOTA 
works performed 20 split Leave-2-Opposite-Groups-Out (L2OGO) cross-validation. Due to the different 
approach adopted in this work for segmentation and quality protocols, the number of cell objects obtained is 
different from SOTA (see Supplementary Table S2). The SOTA works also merged features from all the channels 
by quantifying nucleoli-level features for each nucleus using statistical values such as average, median, maximum 
and higher moments, while the current study is focussed only on the DAPI channel, as the number of pixels from 
other channels is too small to be considered for texture description

As evident from earlier  studies10,11 on the same dataset, G0/G1 Serum Starvation Protocol imposes significant 
changes in cell size and shape, which refer to changes in lamins, the protein primarily responsible for nuclear size 
and shape. The presented experiments demonstrate changes in intrinsic texture mainly formed by chromatin. 
Previous studies have demonstrated the variations in chromatin pattern with nuclear size  changes34. Accord-
ingly, our work also indicates the molecular linkage of lamins and chromatin proteins and the correlation of the 
textural changes with shape and size alterations.

Methods
Data description. In this study 3D Cell Nuclear Morphology Microscopy Imaging Dataset is used; the 
largest available public 3D image set obtained from Statistics Online Computational Resource (SOCR)10,11. All 
cell images have three channels showing different fluorophores: DAPI stain for nuclei, fibrillarin antibody (anti-
fibrillarin) and ethidium bromide (EtBr) for staining nucleoli. Since the nucleolus contains very few pixels, we 
study only the DAPI images. Each volumetric image of both cell lines is in 3D TIFF format and has dimensions 
1024× 1024× Z voxels, where Z ranges from 30 to 40 slices in the fibroblast cell collection and 65–80 slices 
in the PC3 cell collection. The voxel size of all volumetric images from both sets is 0.1318× 0.1318× 1 µm 3 . 
The dataset also includes meta-data extracted from the original data. It comprises class labels that include base 
filename with channel codes, information about fluorophores, stain protocol, dimensions of subvolume and 
references of work where data is previously published.

Data preprocessing and segmentation. As a first step, segmentation of individual cell nuclei from 
potentially noisy microscopic images is performed before classification. At times, uneven staining may cause 
inaccurate segmentation, therefore as a quality control protocol, nuclei at the border of the image or without 
nucleoli are excluded. Slices from the volumetric image are extracted using  ImageJ35 and fed into  CellProfiler36. 
The CellProfiler modules (see Supplementary Fig. S3a) identify the nuclei and nucleoli and relate them, followed 
by filtering out of unwanted nuclei. Considering uneven illumination in the images, adaptive thresholding with 
Otsu’s  method37 is employed. The approach classifies image pixels into three classes, namely background, fore-
ground and middle intensity, where the middle intensity has the option to be merged into the foreground or 
background in the final segmentation result. The CellProfiler output window shows corresponding results that 
are promising for closely positioned objects (see Supplementary Fig. S3b). In addition, instances of connected 
nuclei are resolved by applying the watershed  algorithm38 wherever required (see Supplementary Fig. S3c).

Following segmentation, cell objects are cropped from the image slices and stacked to form a 3D cell object 
for classification. The average dimension of cropped cell objects across all samples is 64× 64 pixels. Due to 
parameter setting for the Otsu algorithm, objects with very low intensity could not be identified in a few top-most 
and bottom-most slices, resulting in final object thickness up to 15 slices for fibroblast cells and 60 for PC3 cells.

A comparison of the achieved segmentation results with the SOTA  works10,11 on the same dataset is provided 
in Supplementary Table S1. In the current results, 22 more SS cell objects, 25 fewer PROLIF cell objects, 103 and 
141 more EMT and EPI cell objects are detected, respectively. According to Kalinin et al.10, their segmentation 

Table 4.  Comparison of classification results with existing studies.

Reference Cross-validation scheme

Fibroblast cell line PC3 cell line

AUC F1 score AUC F1 score

Kalinin et al.10 20 split-L2OGO 0.81± 0.25 0.71± 0.19 0.77± 0.017 0.82± 0.018

Kalinin et al.11 L2OGO 0.899± 0.123
Precision : 0.92± 0.115 Sensitivity: 
0.87± 0.224

0.76± 0.224
Precision : 0.81± 0.334 Sensitivity: 
0.62± 0.447

Current study (3D SRP) 10-fold 0.997± 0.003 0.99± 0.02 0.999± 0.002 0.98± 0.02
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results do not represent ground truth, as they are not hand labelled by an expert. Their study discarded con-
nected cell objects; however, this study employed a semi-automated approach where results from CellProfiler are 
visually inspected, and the watershed algorithm is applied to segment connected cell objects, leading to a higher 
number of SS, EMT and EPI cell objects. CellProfiler, being a highly sensitive tool, has discarded comparatively 
more PROLIF cell objects, based on applied quality protocols.

SRP and 3D SRP. SRP is a rotationally invariant texture feature descriptor, which describes the distribution 
of intensities in diverse patterns. It is defined by five functions computed by accessing image pixels in a global, 
circular and square pattern, and pixel differences in an angular and radial pattern. Values from each ring are 
sorted, concatenated and projected to a lower dimensional space while preserving the original distances between 
data  points14. Dimensionality reduction is performed via RP which projects points from a high-dimensional 
space to a randomly created lower dimensional space using the RP matrix and a linear operation.

RP is designed based on the theory of compressed sensing, which states that any non-adaptive linear measure-
ment in the form of random projections is capable of preserving intrinsic and salient information of the original 
compressible signal in lower dimensional  space14. RP matrices can be constructed in various ways. In this work, 
the method employed follows Medeiros et al.39 where the RP matrix elements (rp)ij are obtained randomly as

Accordingly, the high dimensional data vector D of dimension b is transformed to lower dimensional space L 
utilising the RP matrix with dimensions a× b and simple linear operation:

where the resultant dimension of L is a. The value of a in the dimension of RP is correlated with the patch size 
of the image. As SRP features are extracted in concentric circles and squares (Fig. 5b), options for patch size 
dimensions are odd numbers as [(2n+ 1)× (2n+ 1)] where n = 2,3,...N and depend on the original dimensions 
of the input image and the level of the desired description. The value of a equals 10 for n=2 and for every incre-
ment in n, a increases by 10. These are the optimal RP dimensions for corresponding patch sizes and have been 
empirically confirmed and presented by Liu et al.40 under different normalisation techniques.

As illustrated in Fig. 5a, xSi,j is the pixel in the ith square ring (S) in jth position, xSqr is the final vector built 
by concatenating sorted pixels of m concentric squares and pi is the number of pixels in the ith square. This is 
represented as

Similarly, xCirc , �Ang and �Rad are computed for pixels in circular pattern, angular pixel difference, and radial 
pixel difference, respectively. xGlob is obtained by sorting all the pixels of the patch. Accordingly, the feature vector 
of a square pattern fS is computed through a linear operation:

Similarly, fG , fC , fA and fR are computed for global, circular, angular and radial patterns, respectively. The angular 
and radial differences between pixels preserve the inter-distance of neighbouring pixels, making SRP feature 
description invariant to rotations.

Unlike other texture descriptors utilised in this study, there is currently no 3D version of SRP. To extract 3D 
SRP features, the existing 2D SRP is thus extended and the third plane information is proposed to be accessed 
using cubic patches and building multiple hyperplanes within the patch. For 3D SRP, as shown in Fig. 5c, a cubic 
patch is extracted from a 3D volumetric image with dimensions 5× 5× z , where z in this implementation is 
5, the same value as the dimensions in X and Y planes. For images with slices fewer than [2(2n+ 1)] , z can be 
the same as the number of slices. As demonstrated in Fig. 5c, multiple hyperplanes are generated between each 
column of the bottom-most slice and columns of the top-most slice in a cubic patch. Pixel coordinates between 
the top and bottom slices are identified using 3D Bresenham’s line algorithm. Five SRP functions for each hyper-
plane ( fGh

 , fCh
 , fSh , fAh

 , fRh ) are computed and concatenated across all hyperplanes built along the YZ plane of 
the cubic patch.

The resultant vectors [fG]CPyz , [fC]CPyz , [fS]CPyz , [fA]CPyz , [fR]CPyz (CP stands for cubic patch) are each normal-
ised into 16 bin histograms and combined to represent the SRP descriptor of the YZ plane of a cubic patch with 
dimension 80 (16 bins × 5 functions):

This process is repeated for the XZ plane as well. Features from the XY plane are extracted from the slices fol-
lowing the same computational sequence. Subsequently, descriptors from the three planes are concatenated to 
obtain the final 3D SRP feature descriptor for a cubic patch with dimension 240 (80 bins × 3 planes):

The patch-based feature description results in a large set of local feature descriptors of cubic patches which are 
often redundant and could deteriorate the classification performance. Since SRP features are generated from 

(5)rpij =

{

+1, with probability 1/2,
−1, with probability 1/2.

(6)L = RP × D

(7)xSqr = [x0,0; sort([x
S
1,0; x

S
1,1; . . . ; x

S
1,p1−1]); . . . ; sort([x

S
m,0; x

S
m,1; . . . ; x

S
m,pm−1])]

(8)fS = RP × xSqr

(9)SRPCPyz = [norm([fG]CPyz ), norm([fC]CPyz ), norm([fS]CPyz ), norm([fA]CPyz ), norm([fR]CPyz )]

(10)SRPCP = [SRPCPyz , SRPCPxz , SRPCPxy ]
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the RP matrix, they are random and already globalised. However, their coupling with non-local statistical fea-
ture descriptors such as BOVW can make them robust and improve their classification performance. Hence 
following BOVW, feature vectors of cubic patches from all volumetric images are clustered to generate a visual 
vocabulary of the most informative and dominant features by utilising k-means and sum pooling (details in the 
“Feature representation” section). Subsequently, each 3D image is represented by the visual vocabulary word 
that is identified based on the closest distance between the image feature and visual words in the codebook. In 
this way, the volumetric image represented by a set of cubic patches is embedded into a compact vector space.

Other texture descriptors. Implementation details of other handcrafted feature descriptors is provided in 
“Supplementary Information S1”.

Deep learning. In this study, deep learning features are also evaluated by applying the transfer learning 
technique. Transfer learning reduces the complexity of obtaining deep learning features and has shown success 
in various biomedical studies either by fine-tuning the network on available data or as a feature extractor. With 
VGG-16 (a CNN model trained on ImageNet), the input image goes through a series of convolutional layers 
before it finally produces a dense set of local feature descriptors of 512 dimensions at the last fully convolutional 
layer. The typical usage of a pre-trained CNN model for classification is to derive 4096-dimensional CNN fea-

Figure 5.  SRP. (a) Represents pixel value in 1st Square ring (S) at j th position. (b) Pixel values and differences 
are extracted in five different patterns from image patch size of 5× 5 pixels followed by computation of local 
sorted descriptors ( xGlob , xSqr , xCirc , �Ang and �Rad ) using Eq. (7). Feature functions ( fS , fG , fC , fA and fR ) are 
obtained and horizontally concatenated to build SRP feature descriptor. (c) Proposed 3D SRP approach.
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tures from the penultimate fully-connected layer, namely C-FC. In the current study, the local features of the last 
convolutional layer from all slices of the 3D image are generated with the pretrained VGG-16 model. Obtained 
features are further encoded into a Fisher Vector (FV)41,42 which produces the resultant CNN based FV descrip-
tor (FV-CNN) with dimension 65536 (details in the “Feature representation” section).

The ImageNet pretrained VGG-16 model has established itself as a reliable choice in biomedical  studies43. 
Using it directly for feature extraction does not demand any changes to the architecture by the user and provides 
robust deep learning  features44,45. This study utilises FV-CNN features only to estimate the performance of the 
proposed approach with respect to the deep learning features. While the usual practice to obtain CNN features 
in biomedical studies is by training a new CNN model, the available number of images poses a limitation on 
training an optimal CNN. Since this study is not focussed on CNN design, experiments with a pre-trained CNN 
model are conducted instead.

Feature representation. To overcome high intraclass and low interclass variations, robust texture descrip-
tion is required, alongside compact and efficient representation to make it useful in real life applications. There-
fore feature representation techniques such as  BOVW15 and  FV41,42 encoding are employed which group local 
feature descriptors into elements of a codebook that encodes many redundant local features into high-level 
features.

The current implementation of BOVW utilises k-means clustering for codebook generation, an unsupervised 
learning algorithm to generate the visual vocabulary as clusters, and sum pooling to quantise the image in the 
form of a histogram vector. Before codebook generation, an appropriate value of k is obtained following the elbow 
method. In this method, k-means clustering is performed and the Sum of Squared Error (SSE) is obtained for 
different values of k (32, 64, 96, 128, 160). A graph of SSE for each value of k is plotted, which usually takes the 
shape of an arm, and the value of k corresponding to the elbow of the arm is chosen as an optimal value which 
represents the least value of k after which SSE scarcely varies. BOVW encoding is applied to the pseudo and 
non-pseudo versions of SRP, LBP, SIFT and RSurf and the resultant feature dimension is 64.

The FV descriptor encoding employs Gaussian Mixture Models (GMM)45, a probability density function for 
codebook generation. Unlike BOVW where the image is represented by the number of occurrences of the visual 
word, FV encodes the gradient of the log likelihood of features with respect to the GMM parameters (mean 
vector, standard deviation vector and mixing weights). The current implementation generates G = 64 Gaussian 
components from patch-level features. The final FV descriptor of each image is the concatenation of the deriva-
tives with respect to GMM parameters, resulting in the dimension of the FV encoding of each image as 2GD, 
where D is the dimension of the local feature vector. This FV encoding is applied to the deep learning (CNN) 
features, and the resultant dimension of FV-CNN is 65536 ( 2× 64× 512 ). Considering the high dimension of 
the FV encoding, we used BOVW for handcrafted features. FV for deep learning features is employed following 
the work of Song et al.45.

Classification. SVM classification model is trained on the implemented texture feature descriptors, utilising 
the Radial Basis Function (RBF) as the kernel function for automatic cell nucleus classification. SS and EMT are 
labelled as the positive group; PROLIF and EPI represent the negative group.

Cross‑validation. In order to evaluate the performance of cellular textural feature descriptors for volumet-
ric image-based classification, 10-fold cross-validation is used. Each dataset is split at the 3D image level into ten 
subsets, ensuring that all cells from the same 3D image are in the same subset. There are 45–50 fibroblast cells 
and 25–45 PC3 cells per subset and performance evaluation of the proposed model is carried out in ten itera-
tions. Following a standard cross-validation  setup46, in each iteration, one subset is held out for model testing 
(an independent test set), and the remaining nine subsets are used to train the model (outer training set). To 
train the SVM classifier using the outer training set, 100 random samples within the outer training set are used 
to tune the RBF kernel parameter (gamma) following a heuristic search  method47. The outer training set is then 
used to train the SVM classifier with the optimised gamma parameter and default regularisation parameter c. 
The trained model is tested on the holdout test set. This process is repeated ten times by rotating the sampling of 
the holdout set, so that the entire dataset are tested with the 10-fold cross-validation.

Measurement of changes in chromatin pattern. The maximum value of the SRP feature descriptor 
functions computed from each 5× 5× 5 cubic patch is employed to estimate the threshold to identify HC. It 
is followed by computing the ratio of HC to EC corresponding to the respective pixel values and pixel differ-
ences obtained from SRP functions. The patch size can be determined according to the respective classification 
performance.

• HC intensity measure HC/EC ratio based on pixel values estimates the fraction of the HC intensity in the 
nucleus. Following Eq. (8), for an image with n cubic patches, the global SRP descriptor for the i th patch 
is computed as [ fG]CPi , and the corresponding maximum value is obtained as mi . The threshold to identify 
intensity corresponding to HC is taken as the least mi of all the respective values of the cubic patches of the 
volumetric image. There are cells oriented at a certain angle which makes mi for corner patches equal to zero, 
hence the threshold is set as the minimum non-zero value. The global feature descriptor vectors obtained 
from n cubic patches of the nuclear image [ fG]Nucleus are traversed, and the values above the threshold are 
identified corresponding to HC ([ fG]HC ). Subsequently, the fraction of the HC intensity in the nucleus is 
estimated using the following equation: 
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• HC aggregation measure HC/EC ratio based on pixel differences estimates the fraction of the HC aggregates 
in the nucleus. The increase or decrease in image gradient leads to the corresponding rise or drop in the 
slope of the curve of HC aggregate, which in turn indicates condensation or decondensation of chromatin, 
respectively. As described in the SRP section, the radial and angular descriptor function for the i th patch of 
an image with n cubic patches is computed as [ fR]CPi and [ fA]CPi , respectively. Following this, the maximum 
value of the concatenated vector ([ fR,A]CPi ), is obtained as mi . Similar to the intensity measure, the threshold 
to identify image gradient corresponding to HC is taken as the least mi of all the respective values of the cubic 
patches of the volumetric image. The radial and angular feature descriptor vectors obtained from n cubic 
patches of the nuclear image ([ fR,A]Nucleus ) are traversed, and the values above the threshold are identified 
corresponding to HC ([ fR,A]HC ). Subsequently, the fraction of the HC aggregates in the nucleus is estimated 
using the following equation: 

We note that the proposed method to compute HC/EC can also be applied to 2D images. Standard SRP func-
tions can be computed from the 2D images following Eqs. (7) and (8). Similar to the 3D approach, the threshold 
to identify HC in 2D images is also the maximum value of the SRP function vector, and thus the ratios can be 
computed using Eqs. (11) and (12).

Conclusions
This work proposes a new approach to extract 3D texture, where multiple hyperplanes are built within the cubic 
patch to extract 3D SRP features. The proposed method is utilised to classify nuclear morphology and measure 
variations in heterochromatin intensity and aggregation (coarsening or opening of heterochromatin) in DAPI 
images. The method evaluates changes in intensity values and differences between the two phenotypes of human 
fibroblast and human prostate cancer cell lines obtained from SOCR. Performance improvement is achieved over 
state-of-the-art classification, demonstrating the significance of texture features compared to shape features in 
the nuclear morphological study. The results also suggest that heterochromatin undergoes considerable change in 
intensity and aggregation on the transition from normal to another phenotypic state in fibroblast and PC3 cells. 
Furthermore, two different cellular states in EMT class are identified and characterised, which are considered to 
hold critical biological significance when studying cancer progression and drug resistance. As further application 
of our method, it will be interesting to see the results of the proposed HC/EC computation on the 2D fluorescence 
microscopy images of cells such as white blood cells obtained from a liquid biopsy.

Data availibility
Available online on the project webpage SOCR 3D Cell Morphometry Project (2018), http://socr.umich .edu/
proje cts/3d-cell-morph ometr y.
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