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Forecasting standardized 
precipitation index using data 
intelligence models: regional 
investigation of Bangladesh
Zaher Mundher Yaseen1*, Mumtaz Ali2, Ahmad Sharafati3, Nadhir Al‑Ansari4 & 
Shamsuddin Shahid5

A noticeable increase in drought frequency and severity has been observed across the globe due 
to climate change, which attracted scientists in development of drought prediction models for 
mitigation of impacts. Droughts are usually monitored using drought indices (DIs), most of which are 
probabilistic and therefore, highly stochastic and non‑linear. The current research investigated the 
capability of different versions of relatively well‑explored machine learning (ML) models including 
random forest (RF), minimum probability machine regression (MPMR), M5 Tree (M5tree), extreme 
learning machine (ELM) and online sequential‑ELM (OSELM) in predicting the most widely used DI 
known as standardized precipitation index (SPI) at multiple month horizons (i.e., 1, 3, 6 and 12). 
Models were developed using monthly rainfall data for the period of 1949–2013 at four meteorological 
stations namely, Barisal, Bogra, Faridpur and Mymensingh, each representing a geographical region 
of Bangladesh which frequently experiences droughts. The model inputs were decided based on 
correlation statistics and the prediction capability was evaluated using several statistical metrics 
including mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), 
correlation coefficient (R), Willmott’s Index of agreement (WI), Nash Sutcliffe efficiency (NSE), and 
Legates and McCabe Index (LM). The results revealed that the proposed models are reliable and 
robust in predicting droughts in the region. Comparison of the models revealed ELM as the best model 
in forecasting droughts with minimal RMSE in the range of 0.07–0.85, 0.08–0.76, 0.062–0.80 and 
0.042–0.605 for Barisal, Bogra, Faridpur and Mymensingh, respectively for all the SPI scales except 
one‑month SPI for which the RF showed the best performance with minimal RMSE of 0.57, 0.45, 0.59 
and 0.42, respectively.

Drought is a natural disaster that affects society and the environment  frequently1,2. It significantly influences water 
resources availability, agricultural production, environmental health and thus, socio-economy of a  region3,4. There 
is no definite way of defining drought because it is not possible to determine the exact duration of a drought event. 
Drought slowly builds over time and leaves a prolonged influence over a large geographical space without any 
significant infrastructural  damage5,6. The complexity of a drought event is characterized by its duration, intensity, 
and severity. In a simple term, drought is defined as the period of a temporary shortage of water resources due 
to persistently low precipitation.

Drought can have different forms, such as meteorological drought, hydrological drought, agricultural drought, 
and socioeconomic  drought7–9. Meteorological droughts occur due to deficiency of precipitation from the aver-
age. It is the initiator of all other kinds of droughts and therefore, most widely studies for monitoring  droughts10. 
Meteorological drought frequency does not depend on the average precipitation of an area, rather the variability 
of precipitation. The large variability of precipitation on the deficit side indicates droughts. Therefore, it can occur 

OPEN

1Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam. 2Deakin-SWU Joint 
Research Centre on Big Data, School of Information Technology, Deakin University, Burwood, VIC 3125, 
Australia. 3Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, 
Iran. 4Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Luleå, 
Sweden. 5Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of 
Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia. *email: zahermundheryaseen@
duytan.edu.vn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-82977-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3435  | https://doi.org/10.1038/s41598-021-82977-9

www.nature.com/scientificreports/

in any climatic regions including tropical region like  Bangladesh11,12 or humid climate zone like  Malaysia13,14. 
Even it can happen in northeast India, the highest rainfall region of the  world15. A recent study suggests that 
the wetter parts of the earth would experience more devastating droughts in  future16. It urges more attention 
to be given for monitoring and forecasting droughts in tropical regions. Droughts are often more devastating 
when it occurs in tropical regions as the ecosystem of such region is habituated with high year-around  rainfall17.

Bangladesh, located in tropical South Asia experienced several devastating droughts due to shortfalls in 
 precipitation18. The droughts caused prolonged water shortages and consequently affected agriculture, environ-
ment, and  health19. Factors that intensify the impact of drought include population growth, agricultural expan-
sions, land use changes, and industrial development due to associated increase in water  demand20. There is a 
need to have a proper understanding and modeling of drought to ensure sustainable planning and management 
of water resources. However, the slowly emerging characteristics of droughts causes a challenge in determining 
and modeling of drought duration, intensity, severity, spatial extent and inter-arrival  period21,22.

Drought is a common natural disaster in Bangladesh which generally occurs twice in a  decade23. Agricultural 
damages from drought are more frequent in the country compared to any other natural  disasters24. Therefore, a 
large number of studies have been conducted to characterize meteorological droughts in Bangladesh in recent 
 years25–28. Besides studies have been conducted to assess drought  risk18 and impacts on droughts in  agriculture24, 
economy, water  resources29 and  society30. However, no studies have been conducted so far to forecast droughts 
in Bangladesh, though it is highly important for the country from a socio-economic point of view, particularly 
in the context of climate change.

The rainfall of Bangladesh is changing due to the changes in global  climate18,31. This has caused a rise in 
weather  extremes32 and hydrological  disasters23 in the country. Mohsenipour et al.23 reported an increase in 
the return period of droughts in highly drought-prone regions of Bangladesh due to rises in temperature and 
changes in rainfall pattern. More economic damages due to frequent droughts can be anticipated in future due to 
climate change. The persistent negative impact of drought on water resources and associated water scarcity and 
economic damages demands the development of models for the effective prediction and monitoring of drought 
to ensure a proper establishment of strategies for the management of drought-related  risks33–35. Improper drought 
prediction always results in poor drought management, hence, there is a need to build fast, reliable and accurate 
models for drought prediction which can provide quantitative data on impending drought-related risks. With 
such models, drought episodes can be accurately predicted by anticipating future changes in drought indices 
based on information derived from current and historical hydro-meteorological  data36–38.

A large number of DIs has been developed for monitoring  droughts10,26. Among all, the standardized precipi-
tation index (SPI) is the most simple, statistically robust, comprehensible, and independent of climatic  factors19. 
Despite the recent introduction of  SPI39, it has been widely accepted in the drought prediction community as a 
useful DI and has been used in numerous studies to investigate drought variability when assessing the impact 
of drought in agricultural and hydrological  sectors11,26,40.

Several forecasting models have been introduced for forecasting droughts such as autoregression integrated 
moving average (ARIMA), multiple linear regression (MLR) and Markov  Chain41. SPI is a probabilistic index 
derived from a tailed distribution of rainfall deficit. Therefore, the scale of SPI is not linear. This has made the 
forecasting of droughts using conventional statistical methods more challenging. Most recently, the applica-
tions of machine learning (ML) models have exhibited outstanding progress on modeling drought indices and 
 climatology42,43. Several versions of ML models have been developed for SPI forecasting including artificial neu-
ral network (ANN), support vector regression (SVR), extreme learning machine (ELM), adaptive neuro-fuzzy 
inference system (ANFIS), M5 Tree (M5T), random forest (RF), linear genetic programming (LGP), least-square 
support vector regression (LSSVR), extremely randomized tree (ERT), multivariate adaptive regression spline 
(MARS), wavelet preprocessing integrated ML models and bio-inspired hybrid ML  models38,44–51. Although there 
have been diverse models introduced for modeling DIs, it is difficult for scientists and scholars to determine 
a generalized or a perfect model that can suit all types of climates. Besides, there is a chance of misleading in 
model development if the non-appropriate variables of models’ structure are set-up. Furthermore, every region 
behaves differently following the weather stochastics and historical characteristics.

The current research is devoted to the development of machine learning models for SPI forecasting for 
Bangladesh. Five different versions of machine learning models were developed (RF, MPMR, M5tree, ELM and 
OSELM) for forecasting SPI at multiple time-scales (1, 3, 6 and 12 months). One-month SPI indicates a short-
period deficit of rainfall which affect ecology, air temperature and public health of the  country52. Three- and 
six-month SPIs are used to assess agricultural drought in  Bangladesh53, while nine- and twelve-month SPIs are 
responsible for declination of river flow and groundwater level or hydrological droughts. Therefore, models were 
developed for forecasting SPI of those five time-scales. The models were developed only for four stations (i.e., 
Barisal, Bogra, Faridpur and Mymensingh), each representing individual climate zone where droughts usually 
occur in Bangladesh. Among the six major geographical regions of  Bangladesh54, droughts mostly occur in the 
north, central, central-north and southwest regions. Therefore, models were developed for forecasting droughts 
at Barisal, Bogra, Faridpur and Mymensingh representing southeast, north, central and central-north regions of 
Bangladesh. Historical data of 64 years (1949–2013) was used to develop and validate the model.

Materials and methods
Case study. Bangladesh is located in the deltas of large rivers flowing from the Himalayas covers an area of 
144,000  km2 (Fig. 1, https ://www.diva-gis.org/gdata ). A tropical humid climate dominates in most of the coun-
try. The minimum temperature of the country goes below 12.8 °C in January while the maximum temperature 
goes above 31.1 °C in May. Due to an extremely flat topography of the country, the spatial variability of tempera-
ture is very low. The orientations of temperature gradient are different for different seasons. Therefore, overall 
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there is very less variability in annual mean temperature among different geographical regions. The rainfall in 
Bangladesh ranges between 1600 and 4400 mm in the northwest and northeast respectively. Seasonal and annual 
variability of rainfall is very high. About 75% to annual rainfall occurs in monsoon months of May to Septem-
ber and only 3% rainfall occurs during December–February. The coefficient of annual variability of monsoon 
rainfall in more than 30% in a major portion of the country. The high variability of rainfall often causes droughts 
in the country. The country experienced major droughts in the years, 1963, 1966, 1968, 1973, 1977, 1979, 1982, 
1989, 1992 and 1994–1995.

Theoretical overview and SPI calculation. The review of ML models used in this study, RF, MPMR, 
M5tree, ELM and OSELM are provided in this section.

Random Forest (RF). The RF is created based on the concept of ensemble and bagging learning  approach55. It 
uses the decision tree methodology which performs the bagging procedure for solving the regression  problem55,56. 
Each node in RF is separated randomly by selecting the most important input predictors to enhance the learning 
process that leads to better prediction accuracy as well as maintaining the robustness to avoid  overfitting57. The 
steps are followed to construct an RF model:

 i. Select random k data points from training data.
 ii. Construct the decision tree associated with the data in (i).
 iii. Choose the n-decision tree (ntrees) that needs to build.
 iv. Repeat i and ii.
 v. Cumulate the aggregative predictions of ntrees to forecast multi-scaler SPI.

Figure 1.  The locations of the studied meteorological stations in Bangladesh.
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Figure 2.  (a) Schematic view of RF model, (b) Basic structure of ELM model, (c) Representation of M5tree 
model, (d) The schematic view of MPMR model.
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The capacity of the RF has been approved in modeling different phenomena in atmospheric, hydrological 
and geosciences  engineering58, environmental  management59, drought  forecasting60, rainfall  forecasting61, solar 
index  estimation62 and most recently forecasting soil  moisture63.

For more comprehensive studies on RF model, readers are referred  to57,64–66. The flowchart of the random 
forest model is provided in Fig. 2a.

Figure 2.  (continued)
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The extreme learning machine (ELM). ELM designed by Huang et al. is an advanced data intelligent model that 
uses Single Layer Feed forward Neural Network (SLFN)67. ELM is very fast and more efficient than the existing 
data-driven  models68. Mathematically the ELM can be formulated  as69:

where ρi = [ρ1, ρ2, . . . , ρM ]T is the output weight vector between the hidden layer of M nodes to the m ≥ 1 
output nodes, and hi(xi) = [h1(x), h2(x), . . . , hM(x)]T is ELM nonlinear feature mapping and fM(x) is the final 
ouptput/prediction. For example, the output (row) vector of the hidden layer with respect to the input x. hi(x) 
is the output of the ith hidden node output. The output functions of hidden nodes may not be unique. Different 
output functions may be used in different hidden neurons. In real life problems hi(xi) can be written as:

where G(a, b, x) (with hidden node parameters (a, b)) is a nonlinear piecewise continuous function satisfying 
ELM universal approximation capability theorems and R is the set of real numbers whereas Rd is the d-dimen-
sional set of real numbers and xi is the input data. The commonly used mapping function/activation function 
in ELM are Sigmoid function, Hyperbolic tangent function, Gaussian function, Hard limit function, Cosine 
function and Fourier basis functions. ELM trains an SLFN in random feature mapping and linear parameters 
solving phases. First ELM randomly adjusts the hidden layer to map the input predictor into a feature space with 
the help of some nonlinear functions. The random feature phase differentiates ELM from SVM and deep neural 
networks. The nonlinear activation functions are basically nonlinear piecewise continuous functions. The hidden 
node parameters (a, b) in ELM are randomly created which are independent of the training data.

In the second phase of ELM learning, the weights connecting the hidden layer and the output layer, repre-
sented by ρ , are solved by reducing the approximation error in the squared error sense:

where H is the hidden layer output matrix which can be simplified as  follows69.

and T is the training data matrix, which can be written as:

The ∥ · ∥ denotes the Frobenius norm. The optimum solution to (3) is given by:

Here H+ is the Moore–Penrose generalized inverse of matrix of H. The principle which differentiates ELM 
from the conventional neural network model is that every parameter of the feed-forward networks (input weights 
and hidden layer biases) is not necessary to be fine-tuned. The SLFNs with randomly selected input weights effec-
tively learn different training patterns with minimum error. Following randomly selecting input weights and the 
hidden layer biases, SLFNs can be deemed as a linear system. The output weights which connect the hidden layer 
to the output layer of this linear system can now be systematically solved by generalized inverse operation of the 
hidden layer output matrices. This makes ELM model many times faster than that of conventional feedforward 
learning algorithms. The flowchart of ELM model is shown in Fig. 2b.

The online sequential extreme learning machine (OSELM). A standalone ELM which uses all N-samples data 
for the training. However, the data chunk-by-chunk may be used in solving real-world complexity because the 
process of learning is a very time consuming and requires new data for training ELM each time the model is 
 run70. The OSELM performs in two learning stages as the variant of a standalone ELM model, i.e., a sequential 
learning stage and initialization stage. In the initialization stage, for a given training dataset ℵk−1:

where xj is the input data point and tj is the jth parameter. The initial output weight is given by:

where ρk−1 is the initial output weight, θk−1 =
(

Ht
k−1Hk−1

)−1 is the Moore–Penrose generalized inverse of 
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t
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t is the training 
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The biases and random weights are assigned to the small chunk in the initialization stage to compute the 
hidden layer output matrix in the initial SPI (W) training data. The sequential learning phase is then initiated 
where RLS algorithm is employed to update the output weights in a recursive  way70. The output weights in 
OSELM are recursively updated based on the intermediate results in the last iteration and the newly arrived 
data, which is discarded instantly once they have been learnt, and therefore, the calculation overhead and the 
memory requirement of the algorithm are significantly decreased. The readers can consult literature for further 
details on OS-ELM71–73.

The M5 tree (M5tree) model. The M5tree model works on the binary decision tree structure, is an ordered and 
hierarchical  model74. The connection is initiated between inputs and output at the terminal nodes using linear 
 regression75. Tree-based models are made according to a divide-and-conquer method for establishing a relation-
ship between the inputs and  output76. Two steps are involved to build the M5tree model i.e. In the first step, the 
data is partitioned into subsets to create model tree which is based on standard deviation that reaches a node 
as a measure of error and determining the expected decrease in the error as a result of testing each  attribute77. 
The method is recursive in which the data points are divided into subsets similar to a test that depends on the 
standard deviation and the error depletion �R as  given77,78:

where � is set of examples that reach the nodes and Ŵj is a subset of examples that have the jth output of the 
potential set outputs while �R is the standard deviation. Due to branching procedure, data in child nodes have 
fewer �R than parent nodes. A structure is selected that has the maximum expected error reduction by analyzing 
all possible structures. This dividing and conquering rule frequently produces a great tree-like structure that 
leads to overfit and to prevent overfitting, the overgrown tree is pruned, and pruned subtrees are substituted 
with linear regression functions in the second step. General form of the model  is77:

where a0, a1, a2 are the linear regression constants. Figure 2c represents the basic structure of M5tree model.

The minimax probability machine regression (MPMR) model. The MPMR is a probabilistic, nonlinear regres-
sor model which increase the least probability in the correct regression interval of the objective function. The 
MPMR is using convex optimizations and linear  discriminant79, which make MPMR a good and improved ver-
sion of Support Vector  Machine79. The data is calculated among +δ and −δ with the axis of a dependent variable 
by shifting all of the regression data. The boundary between the two is a regression surface, where the upper and 
lower bounds of probability are identified for misclassifying a point without making distributional  assumption80. 
The learning (D-dimensional) inputs are generated from undefined regression as follows:

where a ∈ RD is an input vector according to a bounded distribution � whereas Y ∈ R is an output vector, and 
variance ρ = σ 2 ∈ R . MPMR sets an approximation function f̂  , where for xi generated from �:

The bounds are determined by model based on minimum probability ( ω ), that f̂ (a) is within ε of Y79:

By minimax probability presented in Eq. (13), the prediction power of a true regression is calculated by a 
bound-on minimax probability. Hence, deducing ω within ε of the true  function80. The MPMR model is built 
based on kernel function,

where Ki,j = �
(

ai , aj
)

 is the kernel function based on Mercer condition, ai is from the learning data, χi and ϕ 
are the output parameters. The schematic view of MPMR model is shown in Fig. 2d.

Multi‑scale standardized precipitation index (SPI). The SPI quantifies the wet and dry scenarios based on statis-
tical probability theory. Before developing the forecasting models, the multi-scale SPI index was calculated from 
rainfall (RnF) time-series39 using a gamma distribution function ( g(RnF)):

where α and β are the parameters determined by maximum likelihood estimator, and Ŵ(α) is the mathematical 
gamma function. The cumulative probability ( G(RnF) ) is defined as:
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By substituting t = RnF/β, Eq. (16), G(RnF) becomes:

The cumulative probability reduces to the following form when RnF = 0:

with p represents the probability of zero which determines the SPI index as:

where ε0, ε1, ε2, ε3 , ω1,ω2 and ω3 are arbitrary constants with magnitudes: ε0 = 2.515517 , ε1 = 0.802853 , 
ε3 = 0.010328 , ω1 = 1.432788 , ω2 = 0.189269 and ω3 = 0.00130839. Drought is categorized into three as mod-
erate = (− 1.5 < SPI ≤ 1.0), severe = (− 2.0 < SPI ≤  − 1.5), and extreme = (SPI ≤  − 2.0). The time series of the generated 
SPI for different scales at all the four meteorological stations are presented in Fig. 3.

Models development and evaluation metrics. The forecasting models were developed in MATLAB 
R2016b programming environment (The Math Works Inc. USA). By operating Pentium 4, 2.93 GHz dual-core 
Central Processing Unit, all the simulations were obtained. Historical rainfall data was used to compute the SPI 
for 64 years. The training phase was built using 75% of the data (1949–1997) while the testing was conducted 
with the remaining 25% data (1998–2013). These forecasting ML models were developed using the steps as fol-
low:

Step 1:  Computing Partial autocorrelation functions (PACFs) of  SPI1,  SPI3,  SPI6 and  SPI12 to estimate the 
significant lags. The PACF was estimated for  SPI1,  SPI3,  SPI6 and  SPI12 using following  equation81:

(16)G(RnF) =

∫ ∞

0

g(RnF)dRnF =
1

βαŴ(α)

∫ Rnf

0

xα−1e−RnF/βdRnF
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1
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∫ RnF

0

tα−1e−tdt

(18)H(RnF) = p+
(

1− p
)

G(RnF)

(19)SPI =







+
�
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�
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−
�
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�

, 0 < H(RnF) ≤ 0.5

Figure 3.  The time series of the generated SPI for the four meteorological stations.
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where SPIt is the observed series; l = 0, 1, 2, . . . for t = 1, 2, 3, . . . , n ; and SPI  denotes mean SPI. The 
PACF is defined as:

where Ŵ22 indicates that the order 2 PACF is expected to yield. A greater positive value of PACF 
indicates a good input for drought forecasting model development. Figure 4a–d present the statistical 
correlations estimated for the investigated stations.

Step 2:  Normalization process

  The normalization process is essential for data scaling to solve the problem of high variation in data. 
In this study, data were scaled between [0, 1] using Eq. (17):

  In Eq. (17), SPI represents the input/output, SPImin is the minimum SPI value, SPImax is the maximum 
SPI value and SPInorm is the value corresponding normalized numeric.

Step 3:  Applying data intelligent methods.

  The data were divided into 70–30% for the training and testing the models. The number of trees (1000) 
was defined before developing the RF model. Different activation functions (hardlim, radial basis, 
sine, sigmoid) were evaluated to determine the best activation function for various numbers of unseen 
neurons in the range from 1 to  50 before development of OSELM and ELM models. The size of the 
block was set to 100 for OSELM. The significant lags at (t-1) were used in M5tree and MPMR models 
to forecast  SPI1,  SPI3,  SPI6 and  SPI12. For the development of MPMR model, the linear, polynomial 
and Gaussian kernels were used.

Several performance metrics were computed for the evaluation of model performance including mean square 
error (MSE), correlation coefficient (R), Willmott’s Index of agreement (WI), Nash Sutcliffe efficiency (NSE), root 
mean square (RMSE), mean absolute error (MAE) and Legates and McCabe Index (LM)82–85. The mathematical 
expression of the metrics are as follows:
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Figure 4.  The correlation statistics of the lags for all the inspected meteorological time series data (a) Barisal 
station, (b) Bogra station, (c) Faridpur station and (d) Mymensingh station.
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Figure 4.  (continued)
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where SPIo and SPIf  are observed and predicted SPI values. SPIo and SPIf  are the mean of the observed and 
predicted SPI values. n is the number of sample in the dataset. RMSE provides more weight to higher different 
between observed and modelled SPIs in estimating model error and therefore, it provides a better estimation of 
model performance and most widely used by modellers to derive the conclusion.

Results and discussion
Drought prediction for Bangladesh was conducted in this study using the SPIs for different time-scales (1, 3, 
6, 9 and 12 months) at four meteorological stations distributed over the country (e.g. Barisal, Bogra, Faridpur 
and Mymensingh). The prediction process was conducted using relatively new ML models such as RF, MPMR, 
M5tree, ELM and OSELM. To build the predictive models, the correlated antecedent SPI values were used as 
inputs.

The employed predictive models were trained using 50-year monthly data (1949–1997) while the testing was 
conducted using 16-year data (1998–2013) at all the four stations. To enhance the accuracy in prediction of SPI, 
all predictive variables were standardized in a range of 0 to 1. Adequacy of each predictive model was quantified 
using performance indices such as MSE, R, WI, NSE, RMSE, MAE and LM (Eqs. (18–24)). The predictive models 
were compared based on their performance during the testing phase.

The performance of the models in terms of statistical metrics is shown in Tables 1, 2, 3, 4. The results revealed 
that RF is the best predictive model for SPI-1 ( RMSE = 0.43−0.54 ) at all stations while for the other scales of 
SPI such as SPI-3 ( RMSE = 0.2−0.72 ), SPI-6 ( RMSE = 0.09−0.22 ) and SPI-12 ( RMSE = 0.03−0.08 ) both ELM 
and OSELM showed superiority compared to others. However, the obtained results using ELM ( RMSE = 0.37 ) 
showed a bit higher accuracy compared to OSELM ( RMSE = 0.72 ) at Faridpur station for SPI-3. The M5tree 
( RMSE = 0.4−0.94 ) and MPMR ( RMSE = 0.37−0.84 ) showed the lowest performance in predicting SPI for 
all the scales. Hence, it can be concluded that ELM is the best performing model while M5tree has the lowest 
accuracy in prediction of SPI. All predictive models showed better accuracy in predicting SPI for higher scales. 
This evidenced the potential of non-tuned extreme learning machine model in forecasting droughts in Bangla-
desh. Recently, the feasibility of the ELM model is successfully implemented for drought indices simulation in 
many other  studies44,86,87.   

The graphical evaluation and assessment among the predictive models in term of standardized performance 
indices are depicted in a form of Heatmap diagram in Fig. 5. The dark blue color in the figure represents the best 
statistical performance while dark red color represents the worst performance. It can be seen from the figure that 
ELM and OSELM showed the best performance in term of all metrics for all SPIs except SPI-1. Furthermore, 
ELM showed the highest performance compared to other models at all stations. Besides, the maximum number 
of dark red cells (worst predictive model) was shown by M5tree model.

Table 1.  The statistical performance of the prediction models for different SPI scales at Barisal station. 
Boldface results are the best prediction accuracy.

Predictive models MSE R WI NSE RMSE MAE LM

SPI_1

RF 0.327 0.845 0.732 0.661 0.57 0.46 0.414

MPMR 0.986 0.031 − 0.132 − 0.021 0.99 0.79 − 0.018

M5tree 1.057 0.011 − 0.081 − 0.095 1.03 0.81 − 0.042

ELM 0.633 0.625 0.128 0.344 0.80 0.66 0.150

OSELM 0.720 0.963 0.165 0.254 0.85 0.66 0.152

SPI_3

RF 0.224 0.894 0.832 0.769 0.47 0.37 0.506

MPMR 0.673 0.566 0.419 0.306 0.82 0.61 0.174

M5tree 0.882 0.448 0.317 0.090 0.94 0.68 0.082

ELM 0.111 0.990 0.906 0.886 0.33 0.26 0.655

OSELM 0.121 0.985 0.893 0.875 0.35 0.27 0.634

SPI_6

RF 0.145 0.923 0.891 0.842 0.38 0.30 0.603

MPMR 0.489 0.699 0.629 0.468 0.70 0.52 0.300

M5tree 0.575 0.663 0.613 0.374 0.76 0.57 0.230

ELM 0.024 0.997 0.983 0.974 0.15 0.11 0.856

OSELM 0.024 0.998 0.983 0.974 0.15 0.12 0.845

SPI_12

RF 0.058 0.967 0.960 0.934 0.24 0.17 0.773

MPMR 0.205 0.876 0.857 0.763 0.45 0.29 0.613

M5tree 0.209 0.872 0.853 0.760 0.46 0.31 0.594

ELM 0.004 0.99998 0.997 0.996 0.06 0.05 0.935

OSELM 0.004 0.99988 0.997 0.995 0.07 0.06 0.924
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Table 2.  The statistical performance of the prediction models for different SPI scales at Bogra station. Boldface 
results are the best prediction accuracy.

Predictive models MSE R WI NSE RMSE MAE LM

SPI_1

RF 0.294 0.815 0.671 0.590 0.54 0.45 0.35

MPMR 0.714 0.098 − 0.051 0.006 0.84 0.68 0.007

M5tree 0.856 − 0.006 − 0.124 − 0.192 0.93 0.73 − 0.065

ELM 0.572 0.800 0.182 0.204 0.76 0.60 0.128

OSELM 0.571 0.815 0.202 0.205 0.76 0.61 0.118

SPI_3

RF 0.169 0.907 0.877 0.809 0.41 0.33 0.560

MPMR 0.551 0.616 0.516 0.377 0.74 0.60 0.217

M5tree 0.619 0.565 0.497 0.300 0.79 0.62 0.183

ELM 0.121 0.996 0.897 0.864 0.35 0.28 0.630

OSELM 0.113 0.994 0.905 0.872 0.34 0.29 0.616

SPI_6

RF 0.132 0.930 0.915 0.859 0.36 0.28 0.646

MPMR 0.410 0.750 0.716 0.561 0.64 0.48 0.384

M5tree 0.456 0.725 0.698 0.512 0.68 0.51 0.346

ELM 0.043 0.998 0.971 0.954 0.21 0.17 0.784

OSELM 0.049 0.995 0.966 0.947 0.22 0.19 0.753

SPI_12

RF 0.048 0.975 0.975 0.950 0.22 0.16 0.807

MPMR 0.156 0.914 0.913 0.836 0.39 0.26 0.678

M5tree 0.170 0.908 0.906 0.821 0.41 0.27 0.663

ELM 0.006 1.000 0.997 0.993 0.08 0.06 0.924

OSELM 0.006 1.000 0.997 0.994 0.08 0.06 0.923

Table 3.  The statistical performance of the prediction models for different SPI scales at Faridpur station. 
Boldface results are the best prediction accuracy.

Predictive models MSE R WI NSE RMSE MAE LM

SPI_1

RF 0.355 0.809 0.678 0.577 0.596 0.469 0.347

MPMR 0.851 0.154 − 0.186 0.005 0.923 0.730 − 0.008

M5tree 0.981 0.078 − 0.158 − 0.146 0.990 0.793 − 0.095

ELM 0.692 0.977 0.005 0.191 0.832 0.658 0.091

OSELM 0.639 0.742 0.244 0.253 0.800 0.664 0.084

SPI_3

RF 0.241 0.878 0.838 0.750 0.491 0.395 0.487

MPMR 0.647 0.584 0.454 0.328 0.804 0.629 0.184

M5tree 0.740 0.516 0.440 0.230 0.860 0.672 0.128

ELM 0.135 1.000 0.893 0.859 0.368 0.291 0.622

OSELM 0.511 0.696 0.510 0.469 0.715 0.324 0.579

SPI_6

RF 0.116 0.926 0.913 0.850 0.341 0.261 0.617

MPMR 0.362 0.736 0.691 0.534 0.602 0.453 0.336

M5tree 0.358 0.739 0.695 0.540 0.598 0.453 0.335

ELM 0.041 0.998 0.966 0.948 0.201 0.136 0.800

OSELM 0.051 0.994 0.955 0.934 0.226 0.144 0.788

SPI_12

RF 0.049 0.963 0.957 0.925 0.222 0.155 0.765

MPMR 0.140 0.888 0.878 0.786 0.374 0.252 0.619

M5tree 0.162 0.872 0.858 0.752 0.403 0.281 0.575

ELM 0.003 0.999 0.997 0.995 0.058 0.040 0.940

OSELM 0.004 0.999 0.997 0.994 0.062 0.044 0.934
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Taylor diagram is another graphical presentation which was used to make a comparison among the employed 
predictive models (Fig. 6). The results of Taylor diagrams indicated good consistency with the obtained perfor-
mance indices. Figure 6 shows that the highest agreement exists between the RF prediction (blue rectangular) 
and observed SPI-1 at all the stations. For other SPI scales, ELM and OSELM showed relatively same results 
which indicate their superiority compared to other predictive models. These models provided the lowest normal-
ized RMSE (less than 0.4), the highest correlations (more than 0.95) and the lowest variation (within 0.6–0.9). 
However, ELM provided better results for SPI-3 in Faridpur station compared to OSELM while at other stations 
and SPI scales the results were found the same.

Scatter plots shows the linear correlation between observed and predicted SPI values at all stations (Fig. 7). 
The results revealed that the prediction of all the predictive models except M5tree and MPMR have a high cor-
relation with observation. Most of the predicted points are aligned to the perfect line (45° line) which shows a 
significant performance of prediction models. Based on the obtained values of correlation coefficients, it can be 
seen that OSELM ( R = 0.81−0.96 ) has better correlation for SPI-1 at all stations except Faridpur ( R = 0.74 ). 
However, it can be concluded that the best correlation for SPI-1 was attained using OSELM and the worst 
results by M5tree ( R = −0.006−0.011 ). For other SPI scales, it is clear that ELM provided a higher accuracy 
compared to other models. However, there was no significant difference between the results obtained using 
ELM ( R = 0.98−0.999 ) and OSELM ( R = 0.69−0.999 ) at all the considered stations. Therefore, both the ELM 
and OSELM models indicated a higher correlation between the observed and predicted SPI for different scales 
in comparison with RF, MPMR and M5tree models. The M5tree ( R = −0.006−0.011 ) provided the lowest cor-
relation coefficient. Overall, it can be remarked that both ELM and OSELM models have adequate capability in 
SPI prediction.

To assess the uncertainty in SPI prediction, 25%, 50% and 75% quantile values of the observed and predicted 
SPI are presented using boxplots in Fig. 8. The figure shows that the variability in SPI-1 values could not be 
simulated by any of the models adequately. Many predicted SPI-1 values were found fluctuating near to zero 
(narrow range) while the observed values have a wide range [− 2 to 2]. However, the RF model showed better 
accuracy to simulate variability and quartiles of SPI-1 compared to others. All predictive models were found to 
show better results in simulating SPI quantiles of other SPI scales, especially for their higher orders. Overall, the 
ELM and OSELM provided the highest accuracy to simulate the variability of SPI values while M5tree showed the 
worst. Hence, it can be remarked that M5tree is not suitable for prediction of SPI in any regions of Bangladesh.

Table 4.  The statistical performance of the prediction models for different SPI scales at Mymensingh station. 
Boldface results are the best prediction accuracy.

Predictive models MSE R WI NSE RMSE MAE LM

SPI_1

RF 0.184 0.854 0.796 0.692 0.429 0.340 0.438

MPMR 0.634 − 0.003 0.068 − 0.071 0.796 0.624 − 0.039

M5tree 0.631 0.063 0.031 − 0.066 0.795 0.626 − 0.043

ELM 0.292 1.000 0.570 0.507 0.541 0.422 0.297

OSELM 0.366 0.890 0.449 0.383 0.605 0.477 0.205

SPI_3

RF 0.131 0.890 0.851 0.771 0.362 0.294 0.525

MPMR 0.408 0.560 0.522 0.289 0.638 0.525 0.152

M5tree 0.481 0.508 0.501 0.161 0.693 0.579 0.064

ELM 0.041 0.998 0.953 0.928 0.203 0.155 0.749

OSELM 0.052 0.993 0.941 0.910 0.228 0.177 0.713

SPI_6

RF 0.075 0.926 0.902 0.847 0.274 0.211 0.631

MPMR 0.267 0.699 0.686 0.454 0.517 0.387 0.322

M5tree 0.255 0.704 0.674 0.478 0.505 0.379 0.335

ELM 0.008 0.999 0.991 0.983 0.090 0.065 0.886

OSELM 0.011 1.000 0.986 0.977 0.107 0.090 0.842

SPI_12

RF 0.020 0.975 0.975 0.950 0.140 0.100 0.809

MPMR 0.063 0.917 0.922 0.840 0.251 0.163 0.688

M5tree 0.063 0.917 0.923 0.839 0.251 0.163 0.688

ELM 0.001 1.000 0.999 0.997 0.033 0.029 0.945

OSELM 0.002 0.999 0.998 0.996 0.042 0.034 0.934
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Figure 5.  Heat map showing the performance of different predictive models in terms of different statistics 
metrics at the four investigated meteorological stations and multiple SPI scales.
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Figure 5.  (continued)
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Figure 6.  Taylor diagram presentation of the performance of the predictive models at four investigated 
meteorological stations and multiple SPI scales.



18

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3435  | https://doi.org/10.1038/s41598-021-82977-9

www.nature.com/scientificreports/

Figure 6.  (continued)
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Figure 7.  The scatter plot between the observed and predicted SPI obtained using the predictive models at the 
four investigated meteorological stations and multiple SPI scales.
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Figure 7.  (continued)
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Figure 8.  Box plot presentation of the performance of the predictive models at the four investigated 
meteorological stations and multiple SPI scales.
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Conclusions
The current research is attempted to investigate the feasibility of newly developed ML models to forecast multiple 
scales of SPI drought index over Bangladesh. The developed predictive models are inspected on the monthly 
scale of rainfall data for the period of 1949–2013 at four different meteorological stations. The predictors of the 
forecasting models were accomplished using the potential of the statistical auto-correlation method. The attained 
forecasting results demonstrate consistency in results obtained using ELM for the 3-, 6- and 12-month SPI. It 
showed the minimal RMSE (0.33, 0.15 and 0.06), (0.35, 0.21 and 0.08), (0.36, 0.20 and 0.05) and (0.020, 0.09 and 
0.02) at Barisal, Bogra, Faridpur and Mymensingh meteorological stations in predicting the SPI-3, SPI-6 and SPI-
12, respectively. Whereas, the RF showed the best performance for one-month SPI with minimal RMSE values of 
0.57, 0.45, 0.59 and 0.42 for those four stations. The results indicate the potential of the models to be employed 
for drought forecasting in Bangladesh for the mitigation of drought impacts. In future, other ML models can 
be employed to evaluate their performance in forecasting droughts in Bangladesh. Besides, different optimiza-
tion methods can be used for the optimization of ML model parameters to improve their prediction capability.

Figure 8.  (continued)
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