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Initiating Ullmann‑like coupling 
of Br2Py by a semimetal surface
Jinping Hu1,2, Jinbang Hu1,3, Hongbing Wang1,2, Kongchao Shen1,6, Huan Zhang1,2, 
Chaoqin Huang1,2, Lei Xie4, Qiwei Tian5, Han Huang5, Zheng Jiang1,2,4 & Fei Song1,2,4*

Intensive efforts have been devoted to surface Ullmann-like coupling in recent years, due to its 
appealing success towards on-surface synthesis of tailor-made nanostructures. While attentions 
were mostly drawn on metallic substrates, however, Ullmann dehalogenation and coupling reaction 
on semimetal surfaces has been seldom addressed. Herein, we demonstrate the self-assembly of 2, 
7-dibromopyrene (Br2Py) and the well controllable dehalogenation reaction of Br2Py on the Bi(111)–
Ag substrate with a combination of scanning tunnelling microscopy (STM) and density functional 
theory calculations (DFT). By elaborately investigating the reaction path and formed organic 
nanostructures, it is revealed that the pristinely inert bismuth layer supported on the silver substrate 
can initiate Ullmann-like coupling in a desired manner by getting alloyed with Ag atoms underneath, 
while side products have not been discovered. By clarifying the pristine nature of Bi–Ag(111) and 
Ullmann-like reaction mechanisms, our report proposes an ideal template for thoroughly exploring 
dehalogenative coupling reaction mechanisms with atomic insights and on-surface synthesis of 
carbon-based architectures.

Bottom-up building of covalently bound organic architectures with well-defined arrangements is key to surface 
physics and surface chemistry towards molecular electronics and nanodevices1–5. By predesigning chemical 
structures of precursors, the on-surface synthesis strategy harvests appealing successes at fabricating tailor-
made nanostructures, for example, artificial graphene nanoribbons, graphene ring, polyacenes and so on6–12. 
Particularly, Ullmann-like coupling or namely, the dehalogenative reaction of reactants on surface has been 
recognized as an extremely efficient and robust approach towards constructing stable covalent molecular archi-
tectures on demand13–21. Despite of these encouraging progresses, on-surface Ullmann-like coupling has been 
achieved mostly on metallic substrates which act as the heterogeneous catalyst for the coupling reactions, while 
investigations on relatively inert surfaces or insulators are minor. On the other hand, electrically insulating sub-
strates are crucial to sufficiently decouple the molecular structures from substrate towards future applications 
in nanoelectronics. Consequently, the rational synthesis of covalent nanostructures directly on less reactive or 
inert surfaces is essentially meaningful.

In this context, attention has thus been paid to the surface Ullmann-like coupling supported on non-metal-
lic substrates, for instance, on top of the graphene and boron nitride thin layer decoupled from the nickel 
substrate22–24, on a bulk insulator25,26 and metal oxide surfaces27–30. However, due to the shortage of catalytic 
activity during the dehydrogenation reaction, these attempts seem to be not so satisfactory as expected with the 
sacrifice of reaction selectivity after the high-temperature annealing, for instance. Thus, on-surface Ullmann-like 
coupling reaction based on non-metallic surfaces requires further dedicated explorations for the fabrication of 
tailored nanoarchitectures, and the substrate catalytic activity also needs to be properly considered. Bismuth, 
known as a typical semimetal with the reduced surface activity, was introduced recently in the form of Bi-metal 
complex into both the molecular self-assembly and on-surface reaction31–33, whereas the catalytic performance 
of bismuth was still under debate, to some extent. For instance, it was demonstrated that the DBBA precursor 
got completely desorbed on the bismuth decorated Au(111) surface and therefore no Ullmann-like coupling was 
observed31. On the other hand, the Bi(111)–Au substrate was revealed to successfully initiate the metalation of 
phthalocyanine33. As demonstrated in literature, the growth mode of Bi on Au(111) differs significantly from that 
on Ag(111). Au(111) solely supports the atomic-layer growth of Bi atop with the honeycomb structure, while 
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bismuth prefers to form surface alloy by incorporating with Ag atoms after adsorption on Ag(111)34,35, which 
introduces rich electronic states around the Fermi level36 and might thus effectively promote dehalogenation 
and homocoupling reactions. In this regard, a bismuth covered silver surface, namely, Bi/Ag(111), is chosen in 
this report to investigate whether the surface Ullmann-like coupling can be initiated by thermal annealing. A 
symmetrically halogenated precursor, 2,7-dibromopyrene, Br2Py37 (C16H8Br2, as shown in Fig. 1) is chosen as 
the precursor. By revealing the structural evolution of organic nanostructures at the atomic level via Scanning 
tunnelling microscopy (STM), we demonstrate herein that the thin bismuth layer atop silver presents the prom-
ising catalytic activity towards on-surface dehalogenation, and the stepwise Ullmann-like coupling reaction is 
clearly revealed and comprehensively elucidated thanks to the controllable dehalogenation reaction on the Bi/
Ag(111) substrate.

Results and discussion
Thin bismuth layer with the (111) facet was prepared on top of a clean Ag(111) substrate prior the deposition 
of Br2Py, and detailed information regarding on the preparation procedure can be found in the experimen-
tal section and Fig. S1 in the Electronic Supplementary Material (ESM). Initial deposition of Br2Py onto the 
Bi–Ag(111) surface held at room temperature (RT) results in the formation of well-ordered domains on ter-
races of the Bi–Ag(111) surface, as indicated by the STM topology in Fig. 1a. Apparently, the Br2Py precursors 
are kept intact after adsorption on Bi–Ag(111), while molecules assembled into closed packed structures that 
display three azimuthal domains on surface in relation to the substrate’s three-fold symmetry (as indicated by 
black dashed lines in Fig. 1(a)). Further inspection reveals that the molecular axis is in principle aligned at 30° 
rotation with respect to the high symmetry directions from the Bi(111) substrate (marked with white arrows), 
suggesting symmetry inheriting from substrate to the assembled Br2Py array and the delicate mediating between 
the molecule–substrate and intermolecular interactions. The zoom-in STM image in Fig. 1b indicates that Br2Py 
precursors are arranged parallel forming a rhombic unit cell with lattice parameters of a = b = 11.0 ± 0.2 Å and 
α = 60 ± 1°, which is in general consistent with previous reports of Br2Py adsorbed on the metal substrate41,42, 
whereas the self-assembly arrangement is stabilized by both the halogen bonding (–C–Br…Br–C–) and hydro-
gen bonding (–C–Br…H–C–) motifs between neighbouring molecules. Herein, the weak molecule–substrate 
interaction is responsible for the rotational alignment of the molecules with respect to the principal directions of 
substrate38–40, while the intermolecular halogen bonding and hydrogen bonding motifs between Br2Py monomers 
are responsible for the formation of the stable self-assembly phase41,42. Nevertheless, dark holes are also visible 
on surface in Fig. 1a, which are assigned to defects embedded in the Bi(111)–Ag substrate and are also visible 
in the following STM images.

Subsequent annealing to 380 K results in considerable changes of surface topography. First, disappearance 
of self-assembly phase is obvious with the significant desorption of precursors, as seen in Fig. 2a. Undoubtedly, 
the desorption of Br2Py shall be assigned to the weak molecule–substrate interaction mentioned before. On the 
other hand, interestingly, extended oligomers (for example, dimer, trimer and tetramer) with limited length are 
discovered after annealing regardless of the pristine inertness of bismuth atoms, and are revealed to be aligned 
at 30° with respect to the three-fold symmetry directions of Bi(111). In addition, the oligomer can also be found 
along the principal symmetry direction, as seen at the bottom of Fig. 2a highlighted with the yellow dashed line. 
Meanwhile, dim dots are also visible on surface which are assigned to Br atoms detached from parent molecules 
after the scission of the Br–C bond19,20. A close investigation at molecular chains is shown in Fig. 2b, and it can be 

Figure 1.   (a) A typical large-scale STM topology recorded after the deposition of Br2Py onto the Bi–Ag(111) 
substrate at RT. (b) A close-up STM view of (a) with the unit cell of self-assembly superimposed. Scanning 
parameters for (a) and (b): Ubias = − 1.8 V, It = 0.2 nA. Colour code: C, grey; H, white; Br, brown.
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Figure 2.   STM images recorded with step-wise annealing. (a) Surface topology after annealed to 380 K with 
the zoom-in image presented in (b). (c) Optimized adsorption configurations for dimers and trimers observed 
in (b). (d,e) Nonlinear dimer and tetramer formed after annealing to 380 K. (f) STM simulation (bias: − 1.5 V) 
of the zig-shaped dimer with Bi bound in middle from (d). (g) The extended oligomer found after 410 K 
annealing. (h) Formation of polymer chain with annealing to 440 K and the large-scale image shown inset. (i) 
DFT optimized model for the polymer chain in (h). Scanning parameters: Ubias = − 1.5 V, It = 0.3 nA.
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resolved that dimer and trimer are formed and aligned in a manner of parallel packing with one end aligned on 
the Bi–Ag(111) surface. With line profiles depicted, it is discovered that the length of dimer and trimer is around 
3.0 nm and 2.1 nm, respectively, which fits reasonably with the configuration of two and three covalently linked 
pyrene residues. Thus, no Bi atoms are expected to be bound in between pyrene residues, and the linear trimer 
and dimer are in fact constructed with direct C–C coupling. Based on these discussions, schematic molecular 
models for the dimer and trimer are depicted in Fig. 2c (with the adsorption energy of 1.4 eV as predicted by DFT 
calculations), whereas oligomers are arranged commensurately with substrate and the Br substitutes are placed 
around the hollow site, while the trimer aligned along the principal three-fold symmetric direction is also com-
mensurately packed on the Bi(111)–Ag substrate. Besides, nonlinear oligomers (the angle between two pyrene 
residues is approximately 120°) are also revealed, as seen in the left bottom in Fig. 2a and other areas on surface, 
and are clearly presented in Fig. 2d and e, respectively. Based on previous reports for Ullmann-like coupling 
on coinage metal substrates, such nanostructures might be assigned to the formation of organometallic (OM) 
species with the semimetal adatom bound in between pyrene residues, while DFT simulation of the Bi-bound 
dimer delineated in Fig. 2f shows reasonable agreement with the STM observation in Fig. 2d. Nevertheless, it is 
also possible to form OM dimer with the Ag adatom bound in the middle which cannot be excluded unambigu-
ously solely from STM measurements at this stage. In order to clarify this debate, comparison between Bi-bound 
dimer and Ag-bound dimer has also been performed, as presented in Fig S2 in ESM, whereas STM simulation 
of the OM dimer with Ag atom coordinated shows apparent inconsistence with the experimental observation in 
Fig. 2d. In addition, the adsorption energy of Ag-dimer is relatively higher that of Bi-dimer, making Ag-dimer the 
unfavourable configuration. Thus, one can conclude that these OM species are most probably coordinated by Bi 
adatoms. Thus, it is interesting to reveal the Bi-C bonding motifs in OM phases herein, which has been seldom 
reported before. Consequently, it can be drawn that the bismuth-silver interface indeed initiates the surface 
dehalogenation reaction with the inevitable desorption of Br2Py molecules after mild annealing, manifesting 
the unique characteristics of Ullmann dehalogenation on Bi(111)–Ag.

Further annealing to 410 K and 440 K, respectively, promotes sequential Ullmann-like coupling reactions 
and brings the formation of considerably extended oligomers and polymers, as observed in Fig. 2g,h. First, 410 K 
annealing greatly assists the Ullmann-like coupling and results in elongated organic oligomers without any OM 
species left, manifesting the relative stability of OM intermediates below 410 K annealing. More interestingly, 
linear chains are discovered along the step edge with significant length at annealing to 440 K as shown in Fig. 2h, 
which might be initially formed at other areas, diffuse over the terrace during thermal annealing, and get sta-
bilized at the step edge. Again, the desorption of organics is apparent manifesting the weak molecule–substrate 
interaction. Meanwhile, it is revealed that the molecular chain is aligned 30° with respect to the high symmetry 
direction of Bi(111), which is similar to the situation of dimer and trimer formed after annealing to 380 K in 
Fig. 2a. In addition, the linear chain is uniformly organized with the peanut shape, while no metal atom can 
be recognized inside the chain, indicating that OM intermediates might have already been transformed into 
the covalently coupled nanostructures. Nevertheless, these chains are still terminated with Br atoms with the 
typical bright protrusion ends as generally reported in literature43. Notably, dissociated Br atoms from parent 
molecules also desorb from surface during thermal annealing, as discovered in Fig. 2g,h whereas Br atoms are 
only resolved in the large-scale image23,44. Further investigation of the adsorption/desorption behaviour of Br 
atoms is summarized in Fig. S3 in ESM, and it is revealed that Br atoms are robustly adsorbed on Bi(111)–Ag 
until 630 K annealing when desorption of all organics and Br atoms is realized and the pristine Bi–Ag surface 
gets recovered. Meanwhile, DFT optimized adsorption configuration for the organic chain in Fig. 2h is illustrated 
in Fig. 2i with the adsorption energy of 0.7 eV, which shows reasonable agreement with the STM observation in 
periodicity and further confirms that OM species no longer exist at this stage. Indeed, the STM topology of the 
organic chain is close related to the covalent linking of pyrene residues after debromination, in accordance to 
the typical π-conjugated aromatic systems.

It has been demonstrated above that the Bi(111) layer atop silver shows appealing ability in promoting the 
surface Ullmann-like coupling. However, due to the weak interaction between molecules and the Bi(111) surface, 
the amount of polymers gets less and less after the step-by-step annealing, and even vanish after annealing to a 
certain temperature, which makes further exploration of coupling reactions difficult. In order to elaborately inves-
tigate the catalytic activity of the thin Bi(111) layer atop Ag towards surface Ullmann-like coupling, an alternative 
measures has also been utilized by depositing the Br2Py precursor onto the preheated Bi–Ag(111) substrate. In 
practice, deposition of precursors on the preheated substrate has been explored at varying temperatures in this 
work, say, 440 K (high enough to initiate the aryl-aryl coupling as revealed in Fig. 2) and 530 K, respectively. 
While the preheated surface at 440 K indeed promotes the homocoupling of Br2Py (presented in Fig. S4 in ESM), 
however, the number of reacting products is not as high at that on the 530 K preheated substrate, as preheating 
at a higher temperature greatly enhances the dehalogenative reactivity towards coupling reactions. Thus, STM 
images obtained from the preheated surface at 530 K are focally discussed as illustrated in Fig. 3. It is seen from 
Fig. 3a that, ordered array of one-dimension (1D) chains is formed immediately upon deposition, while certain 
amounts of clusters are randomly distributed on bare areas of Bi(111). Apparently, these 1D chains are close 
packed in order by roughly following the high symmetry directions of Bi(111) at first glance. More interestingly, 
oligomers get incredibly extended with the length of up to 50 nm, which is much longer than those formed before 
via sequential annealing. Detailed inspection in Fig. 3b shows that 1D molecular chains are constructed in a well 
aligned manner that pyrene residues in neighbouring chains are directly facing to each other, while the pyrene 
frame is imaged as two non-identical bright protrusions. Besides, elongated dots are clearly resolved with the 
regular confinement between molecular chains, which can be assigned to liberated Br atoms from parent pre-
cursors after Ullmann-like coupling, as generally recognized in literature18,37,45. Meanwhile, the elongate shape 
of Br atoms might be related to the adsorption position (hollow site) with confinement in between linear chains 
on Bi(111)–Ag, causing the steric effect during STM imaging. Notably, dissociated bromine atoms are not only 
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localized in between polymer chains on Bi(111), but they can also be stably adsorbed just on the side of linear 
chains, as marked by the black ellipse in Fig. 3b, which is an interesting behaviour suggesting the remarkable 
mediating effect on the adsorption of Br atoms from polymer chains. In addition, further investigation of the 
randomly distributed clusters in Fig. 3a is elaborated in Fig. 3c. While bismuth atoms from substrate are clearly 
resolved, it is discovered that the I-shape clusters are built on top of Bi(111), as marked by the dashed line in 
Fig. 3c. Detailed structure information is revealed by the zoom-in STM image in Fig. 3d. One may tentatively 
infer that these clusters are formed by dissociated Br atoms after C–Br bond scission, which is evidently supported 
by further DFT calculations illustrated in Fig. 3e where the I-shape protrusion consists of 5 Br atoms with the 
central one relatively dim due to the lower adsorption height. In contrast to previous reports of the accumula-
tion of detached Br atoms into the close packed array on other metal surfaces45–47, herein, different observations 
point out the uniqueness of adsorption of Br atoms on Bi–Ag(111) and the delicate interaction between bromine 
and bismuth atoms. Not surprisingly, further annealing afterwards to higher temperature (for instance, 630 K) 
induces the desorption of polymer chains and the substrate is recovered to the pristine Bi(111)–Ag surface, as 
discussed before in Fig. S3 in ESI.

Dehalogenation of Br2Py on the Bi(111)–Ag surface has been clearly identified under different annealing 
conditions, manifesting the promising catalytic ability of the bismuth-silver interface towards the on-surface 
aryl-aryl homocoupling reaction, which in principle clarifies the ambiguous issue of bismuth’s activity supported 
on the silver substrate. Importantly, in order to get an unambiguous understanding of the catalytic mechanism 
of Bi(111)–Ag, deposition of Br2Py precursors on the bismuth-covered Au(111) has also been employed and 
is summarized in Fig. 4. Apparently, self-assembly of Br2Py is arranged on Bi–Au(111) as expected in Fig. 4a, 
analogous to that on Bi–Ag(111), with the intermolecular interaction mediated by both halogen bonding and 
hydrogen bonding motifs as highlighted in Fig. 4b. Interestingly, thermal annealing to 350 K induces consider-
able changes of surface morphology from ordered self-assembly to disorderedly parked monomers, as observed 
in Fig. 4c. Meanwhile, no dehalogenation coupling of Br2Py is discovered with the intact molecular structure 

Figure 3.   (a) Overview STM image taken after the deposition of Br2Py on the hot Bi–Ag(111) substrate kept at 
530 K. (b) Zoom-in STM image of the polymer chains in panel (a). (c) Overview STM image recorded on the 
bare Bi–Ag(111) substrate after dehalogenation and (d) zoom-in view of the white framed region in panel (c). 
Ubias = − 1.8 V, It = 0.3 nA. (e) DFT simulation of Br clusters on Bi(111)–Ag at the bias of − 1.8 V.
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well preserved, although precursors are in muddle after mild annealing at 350 K. Notably, partial desorption 
of organic molecules is resolved in Fig. 4c, since parts of Bi–Au(111) surface get exposed. Surprisingly, step-
wise annealing to 380 K induces the complete desorption of all Br2Py precursors, and thus brings the pristine 
Bi–Au(111) surface back with the root 37 * root 37 reconstruction34, as exhibited in Fig. 4d. Based on this direct 
comparison, it can be concluded that the bismuth layer attached on Au(111) is indeed unable to initiate the 
Ullmann-like coupling reaction, while the promotion of dehalogenation on Bi(111)–Ag should then be correlated 
with the unique growth behaviour of Bi on Ag(111): by incorporating with Ag atoms on surface, bismuth atoms 
get alloyed with silver and thus, the Bi layer atop Ag becomes active via electron transfer from Ag48, inducing 
considerable catalytic ability towards dehalogenation coupling reactions. On the other hand, in the case of Br2Py 
atop Bi–Au(111), since the bismuth layer prefers the atomic layer growth on Au(111) without surface alloying, the 
pristine inert property of bismuth atom due to its tightly bound 6S2 electrons completely blocks the reactivity of 
the gold substrate underneath. Moreover, the difference in the growth mode of Bi on Ag(111) and Au(111) can 
be assigned to the relativistic effect (Ag(5s14d10), Au(6s14f145d10), Bi(5d106s26p3)) and the fact that, the relative 
atomic radius difference between Bi and Au is bigger than 15%, which makes it unfavourable for the substitutional 
solid solution according to the Hume-Rothery rule35.

In addition, a comprehensive comparison of the dehalogenative coupling of Br2Py on the bare Ag(111), Bi/
Ag(111) and B/Au(111) will shed more valuable insights onto the understanding of dehalogenation reaction 

Figure 4.   Investigation of the adsorption of Br2Py precursors on Bi–Au(111). (a) STM recording of self-
assembled Br2Py molecules on Bi–Au(111) at RT. (b) Zoom-in STM view of the self-assembly from panel (a). 
(c) Br2Py monomers are disorderly aligned on Bi–Au(111) after annealing to 350 K, while partial desorption of 
molecules can also be resolved. (d) Further annealing to 380 K inducing the complete desorption of organics, 
with the bare Bi–Au(111) revealed with the root 37*root 37 periodic structure. Scanning parameters: Ubias = − 
1.8 V, It = 0.3 nA.
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mechanism on Bi(111)–Ag, which is summarized and illustrated in Fig. S5 in ESI. As observed in Fig. 2 and 
Fig. 3, reaction steps of Br2Py on Bi(111)–Ag involve: (1) dissymmetrical debromination of Br2Py; (2) for-
mation of organometallic intermediates with the adsorption of released Br atoms from parent molecules; (3) 
aryl–aryl coupling towards extended organic chains with C–C bonding after further annealing; (4) desorption 
of bromine atoms and organic chains in the end. In contrast, dehalogenation is straightforward after adsorp-
tion of Br2Py on a bare Ag(111) surface at room temperature, with the coexistence of intact monomers and OM 
dimers. Stepwise annealing first promotes the formation of extended organometallic chains, and then results 
in the aryl-aryl coupling towards the ordered domain of covalent organic chains. Obviously, there are distinct 
differences between the Ullmann-like coupling on Bi(111)–Ag and Ag(111). First, no extensive OM chains are 
discovered on Bi(111)–Ag except OM dimers and OM tetramers, while long-range ordered OM chains are clearly 
observed on Ag(111), indicating that the pristine inert property of bismuth makes it hard to get many enough 
Bi-C bonds for the formation of long OM chains. Second, the desorption of reaction products (organic chains) 
is straightforward after stepwise annealing, and the recovery of the pristine Bi(111)–Ag surface is realized at a 
certain temperature annealing (630 K), while on silver or other metal surfaces, covalent organic chains usually 
gets destroyed before desorption and the accumulation of side produces becomes more and more visible as a 
function of stepwise annealing18–21.

Based on these observations and discussions, it has been demonstrated that Bi layer atop Ag(111) shows 
promising reactivity towards the Ullmann-like coupling of the halogenated molecule. However, the apparent 
desorption of organic nanostructures during step-wise annealing procedure points out the relatively weak inter-
action between the covalently coupled polymer chains and the Bi(111)–Ag substrate, as well as that between 
detached Br atoms and the Bi substrate. Consequently, thin bismuth layer atop Ag(111) functions as a buffer layer 
between organic molecules and Ag(111), and is embedded with certain activity via surface alloying, which thus 
will have appealing advantages to be the catalytic platform for the investigation of the Ullmann-like coupling 
by initiating the controllable coupling reactions and avoiding the accumulation of other side products49,50. With 
these merits, it can be inferred that bismuth layer grown on certain active metal substrates is an appealing tem-
plate to elaborately investigate the mechanism of on-surface Ullmann-like coupling reactions towards rational 
synthesis of tailor-made organic nanostructures.

Conclusions
In summary, we have comprehensively investigate the self-assembly and Ullman-like coupling reaction of Br2Py 
on thin bismuth layers supported on the silver substrate, and demonstrated that the Bi(111)–Ag surface could 
indeed initiate the dehalogenation reaction with mild annealing. By sequential heating of the self-assembled 
Br2Py molecules or depositing the Br2Py precursor on a hot substrate, dehalogenation and aryl-aryl homocou-
pling reactions are unambiguously witnessed on Bi(111)–Ag. With OM intermediates formed during reactions, 
covalently linked organic chains are ultimately fabricated with the considerable length. In comparison to the 
adsorption of Br2Py on Bi–Au(111), it is demonstrated that the reactivity of Bi(111)–Ag towards dehalogena-
tion reactions is correlated with surface alloying of Bi–Ag, while atomic bismuth layer atop Au(111) cannot get 
alloyed due to the relativistic effect, resulting in the desorption of precursors without further dehalogenation by 
blocking the activity of Au(111). In addition, the weak organic-substrate interaction on Bi(111)–Ag, contributed 
by the pristine property of bismuth atoms, is also notable and affords the opportunity to clearly elucidate the 
on-surface Ullman coupling reactions. Ultimately, our report proposes an appealing platform to deeply under-
stand reaction mechanisms of on-surface Ullman-like coupling with atomic insights towards rational synthesis 
of tailor-made organic nanostructures.

Methods
STM measurements were performed in a FERMI SPM system (ScientaOmicron) with the base pressure better 
than 2 × 10–10 mbar. The sample stage in STM chamber was cooled at liquid nitrogen temperature (around 78 K) 
as well as the tip during scanning, while the tip was prepared by cutting Pt/Ir alloy wires. During STM scanning 
at the constant current mode, the bias voltage was applied to the tip and sample was grounded. STM images were 
processed afterward using the WSXM software (4.0 Beta, http://www.wsxm.es/downl​oad.html)51.

In order to get an atomically smooth Bi(111) layer on top of silver and gold substrates, respectively, a clean 
Ag(111)/Au(111) substrate (Mateck) was obtained first by cycles of Ar + sputtering followed with thermal anneal-
ing (650 K for Ag(111), 750 K for Au(111)), and the surface quality of Ag(111)/Au(111) was checked by STM 
and low energy electron diffraction (LEED). Bismuth powder (Mateck) was thoroughly degassed in an UHV 
evaporator (OmniVac) prior sublimation while the deposition rate was monitored by a quartz microbalance. 
Upon deposition on Ag(111), the Bi(110) phase was first formed at low coverage, while the Bi(111) layer was 
ultimately induced after a full coverage of one monolayer (ML). Evidence of the Bi(111) phase on silver can 
be found from the STM image in Fig. S1a, where close packed Bi atoms are clearly resolved with a hexagonal 
pattern, and Fast Fourier transform (FFT) in Fig. S1b of STM image. Furthermore, LEED pattern recorded on 
the Bi/Ag(111) surface clearly indicates the appearance of Bi(111) structure on top of Ag(111) (root 3*root 3 
reconstruction)48 while the LEED pattern from the pristine Ag(111) is shown inset for comparison. It is thus 
can be concluded that Bi–Ag(111) interface has been obtained. To get the Bi- Au(111) substrate, roughly 1 ML 
bismuth was deposited onto Au(111), with the initial structure of 5*5 reconstruction at low coverage, and the 
root 37 by root 37 R25.3° periodic structures at monolayer coverage, which is usually referred as the stable phase 
of Bi–Au(111)34,52.

DFT calculations were performed using the Vienna ab initio simulation Package (VASP) under the framework 
of DFT53. The PBE functional54 was used in combination with the third-generation van der Waals dispersion 
correction due to Grimme (DFT-D3)55 and the projector-augmented wave (PAW) ansatz for atomic cores. A 

http://www.wsxm.es/download.html
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plane-wave cut-off energy of 450 eV was employed, while the k-point sampling was chosen to be 3 × 3 × 3 in order 
to obtain a realistic and accurate picture of the energetics. For simulation of the OM intermediate with the Bi-C 
bonding, a three-layer slab of the Ag(111) supercell (9 × 9) was utilized with lateral dimension of 25.96 × 25.96 
Å2, while the vacuum layer of 10 Å was introduced to isolate the interactions of slabs from each other. The lattice 
parameter of the Ag(111) surface after optimization was found to be 2.88 Å, in good agreement with literature 
reports56. Afterwards, a bismuth layer was adsorbed on top of Ag(111) surface with the root 3*root 3 recon-
struction, forming a Bi(111) layer with a slightly large lattice constant compared to the pristine bulk Bi(111). 
The bismuth layer was free together with the adsorbed OM structures during geometry optimization, while the 
bottom three Ag(111) layers were kept fixed. Geometries were optimized until the forces on the active atoms 
dropped below 0.05 eV/Å. The convergence criterion is 10‑4 eV in total energy difference. Simulated STM images 
were obtained in the framework of Tersoff-Hamann approximation with the gnuplot software (5.2, https​://sourc​
eforg​e.net/proje​cts/gnupl​ot/files​/gnupl​ot/5.2.8/) by plotting partial charge densities which were acquired by a 
static self-consistent calculation based on the DFT optimized configurations.
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