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Probing the structure–function 
relationship with neural networks 
constructed by solving a system 
of linear equations
Camilo J. Mininni1,2* & B. Silvano Zanutto1,2

Neural network models are an invaluable tool to understand brain function since they allow us to 
connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge 
number of parameters, which must be chosen carefully such that networks reproduce anatomical, 
behavioural, and neurophysiological data. These parameters are usually fitted with off-the-shelf 
optimization algorithms that iteratively change network parameters and simulate the network 
to evaluate its performance and improve fitting. Here we propose to invert the fitting process by 
proceeding from the network dynamics towards network parameters. Firing state transitions are 
chosen according to the transition graph associated with the solution of a task. Then, a system of 
linear equations is constructed from the network firing states and membrane potentials, in a way that 
guarantees the consistency of the system. This allows us to uncouple the dynamical features of the 
model, like its neurons firing rate and correlation, from the structural features, and the task-solving 
algorithm implemented by the network. We employed our method to probe the structure–function 
relationship in a sequence memory task. The networks obtained showed connectivity and firing 
statistics that recapitulated experimental observations. We argue that the proposed method is a 
complementary and needed alternative to the way neural networks are constructed to model brain 
function.

Understanding brain function requires the construction of models that explain experimental data, which encom-
pass behavioural outcome, anatomical features, neurons biophysics, and coding properties, among others1,2. 
Many kinds of models have been proposed along history. Among them, neural network models are well poised 
to connect all levels of analysis, from the behavioural to the molecular level, being a natural choice as neurons 
are the functional units of the brain. Yet, constructing suitable neural network models is not an easy task. Their 
parameters can be defined according to experimental data, or randomly chosen when the data is not available. 
However, this approach may fall short given the complexity of the nervous systems. To tackle this issue, theo-
rists have employed optimization algorithms that adjust network parameters in a direction that minimizes a 
loss function. Conversely, the loss function is constructed in such a way that it is minimized when the network 
satisfies the desired experimental observations that we are seeking to explain, like an animal’s performance in 
one or several tasks3, connectivity constraints such as Dale’s principle4, or connectivity with a certain degree of 
sparseness5. Optimization methods are widely used in artificial intelligence (AI), and the ongoing deep learn-
ing revolution has prompted an explosion of fitting algorithms, and the eagerness to take advantage of them 
to build models of brain function6,7. However, AI needs are different from the theoretical neuroscience needs. 
Artificial intelligence deals with the construction of systems capable of solving difficult tasks, employing very 
general optimization algorithms for parameter fitting8. On the other hand, models in neuroscience are expected 
to explain how animals behave in simple tasks, yet with biologically plausible neural networks. Simple tasks are 
desired because behavioural outcomes are easier to interpret, and mechanistic explanations easier to envisage. 
Thus, in AI the difficulty resides in the task, while in theoretical neuroscience it lies in the restrictions in network 
design that are imposed by biology. Therefore, methods for parameter fitting in theoretical neuroscience can 
take advantage of this point – the simplicity of the task – to solve problems that could be too hard to solve with 
generic optimization algorithms.
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One approach that has been overlooked consists in finding the synaptic weights of a network as the solution 
of a system of equations. For many commonly employed neural network models, neurons perform a weighted 
sum of their inputs, followed by a non-linear transformation. For this kind of model, the synaptic weights can 
readily be found by solving a linear system of equations in which the neurons’ firings constitute the coefficient 
matrix, and the added postsynaptic potentials are the dependent variables. Thus, the problem of finding the 
network parameters translates into finding a suitable dynamic that the network should follow when solving a 
behavioural task of interest. Although this problem might seem as hard as the former, we show in this work 
that viable network dynamics can easily be found from the graph of transitions associated with the solution of 
the task. By doing so, we were able to construct networks with millions of parameters extremely fast, without 
inefficient searches in parameter space. Moreover, optimization algorithms may have biases for a subset of all 
possible solutions9. These biases depend on the algorithms employed, the hyperparameters, and the regulariza-
tions, and the relation between biases and their causes might be difficult to understand or control10. In contrast, 
our method takes samples from a distribution of networks with a desired dynamic, while structural constraints 
can be imposed in a subsequent step. Since the algorithm proceeds from the network firing states to the network 
parameters, we call it the Firing to Parameter (FTP) algorithm.

The results are organized as follows: first, we describe the key aspects of the FTP algorithm. Second, we 
employ FTP to construct networks of binary neurons that solve a sequence memory task. We then show how 
to use the algorithm to obtain networks of desired firing rate and pairwise correlation, and how to incorporate 
structural constraints, such as Dale’s principle and sparse connectivity. We finally demonstrate how the FTP can 
be exploited to construct specific null models to test hypotheses regarding the relationship between network 
structure and function. The networks obtained displayed firing and connectivity features that resemble those 
observed in neurophysiological experiments.

Results
Constructing neural networks with predefined dynamics.  We will consider a network of Nrec recur-
rently connected binary neurons (the integration neurons), which receive information about the environment 
from a set of Nin input neurons (Fig. 1a). The temporal evolution of the network is dictated by the standard equa-
tions of the linear-threshold neuron model:

where Win and Wrec are synaptic weights matrices of input and integration neurons, vector y contains firing states 
of input neurons, which codify the stimuli presented, θ is a vector of neuron thresholds, and H stands for the 
Heaviside function. Vector u is a real-valued vector of length Nrec that collects the network activation states, akin 
to membrane potentials, and z is a vector of zeros and ones that collects the network firing states. At any given 
time t the recurrent network can adopt one out of M network firing states m, defined by vector zm.

Equation (1) shows how firing states and activation states are linearly related through the synaptic weights. 
Thus, the weight matrices can be computed exactly by solving a linear system of equations, provided that firing 
states and the resulting activations are known. To specify, we define cs,m = [ys zm] , the concatenation of the 
input firing state during presentation of stimulus s, and the network firing state when the network is at state m. 
Next, we construct a matrix C whose rows are vectors cs,m for all the combinations of stimuli and network states 
we want to include in the proposed dynamic. Then, the following system of linear equations follows:

where matrix W = [Win Wrec] is the concatenation of the input and recurrent synaptic weights. Here the ith row 
in U is the activation state u(t) when the ith row of C is [y(t) z(t − 1)] . Then, W can be computed as:

where C+ stands for the pseudoinverse of C. We employed the pseudoinverse because it gives the solution that 
minimizes the Frobenius norm11. In this manner, synaptic weights are going to be small in absolute value, which 
is desirable since biological synapses are constrained in the number of receptors and vesicles.

Matrices C and U should be picked in such a way that they instantiate the state transitions exhibited by a 
network while solving a target task, e.g., transitions to different network states after presentation of different 
stimuli in a discrimination task. Simple tasks like the ones employed in behavioural neuroscience exhibit simple 
state transitions, hence the transition graph is known. Therefore, it only remains to find the actual vectors u and 
c. A naïve approximation to this problem would be to pick vectors u at random, apply the thresholds to obtain 
the associated vectors z , and construct matrices C and U by following the desired transition graph. However, by 
doing so we likely end up having an inconsistent system of equations, meaning that no network of neurons can 
follow those state transitions. To understand this important point, we may consider the case of two stimuli s1 and 
s2, codified by input neurons with firing states y1 and y2 respectively. Then, each vector [y1 zm] can be expressed 
as a linear combination of [y2 zm] and vectors [y1 zP] and [y2 zP] , where vector zP can be any vector taken from 
the set of all firing states the network can adopt:

Thus, rank(C) = M + 1 . Following the Rouché-Capelli theorem12, Eq. (3) has a solution if and only if 
rank(C) = rank([C U]) , being [C U] the augmented matrix. Yet, if we choose the rows of U randomly, when 

(1)u(t) = y(t)Win + z(t − 1)Wrec

(2)z(t) = H(u(t)− θ)

(3)CW = U

(4)W = C+U

(5)[y2 zm] = [y1 zm] − [y1 zP] + [y2 zP]
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adjoined to matrix C the linear dependencies expressed in Eq. (5) will be broken, and the resulting augmented 
matrix will have rank above M + 1. However, if the rows of U are linearly combined following the linear combina-
tions present in C, the resulting system of equations will be consistent, and its solution will retrieve matrix W. 
This is the key aspect of the FTP algorithm, which can be succinctly stated as:

1.	 Find the transition graph between network states that solve the target task.
2.	 Choose activation states u from a desired distribution.
3.	 Use vectors u and associated vectors c to construct matrices U and C following the transition graph.
4.	 Linearly combine rows in U to preserve the linear combinations among rows of C (Eq. 5)

Testing the FTP algorithm in a sequence memory task.  In the following we exemplify the utility of 
the FTP algorithm by constructing networks that solve a sequence memory task (s-task). In this task two stimuli 
s1 and s2, codified by input neurons firing states y1 and y2, are sequentially presented at each time step, chosen 
randomly with equal probability. To obtain reward at time step t the network has to recall the stimulus presented 
at time step t −�t . By recall we mean that the stimulus at time t −�t is univocally codified by the network fir-
ing state at time t. Consequently, successful behaviour requires to have a memory of stimuli sequences of length 
τ = �t + 1 . We chose this task because its complexity grows exponentially with τ , making it a good benchmark 
to test the computational efficiency of the algorithm. It has also been shown that neural populations are sensi-
tive to stimulus presentation ordering, and the coding of such sequences is incompletely understood13. Thus, 
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Figure 1.   Constructing recurrent networks that follow a predefined transition graph. (a) Networks are 
composed of binary neurons. Input neurons codify stimuli and project to the integration neurons through 
synaptic weights Win . Integration neurons are recurrently connected through synaptic weights Wrec . (b) 
Transition graph showing transitions between network states during execution of the s-task, for τ = 3 . Each 
node in the graph is a network state, and the directed edges depict transitions between states after stimuli 
presentation (blue for s1 , red for s2 ). Each possible sequence of 3 stimuli is codified by exactly one network 
state. Nodes are numbered such that transitions can be represented in a simple transition matrix. (c) Transition 
matrix associated with the transition graph in panel (b). It shows the activation states u that are reached when 
integration neurons are in a population firing state z, and s1 (blue) or s2 (red) are presented. (d) Same transitions 
depicted in panels (b) and (c), but explicitly showing vectors ui and vectors ci , which are the concatenation of 
one y and one z. The index i is such that zi and ui are the firing state and activation vectors corresponding to 
network state mi.
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we decided to exploit the FTP capabilities to study the neural dynamics and connectivity in networks of binary 
neurons that are capable of solving the s-task. Figure 1b shows the network states and state transitions gated by 
the stimuli when solving the s-task with τ = 3 . Despite its complexity, the state transitions required to solve the 
task have a stereotyped structure, which is evident when network states are numbered properly (Fig. 1b–d). The 
transition graph in Fig. 1b shows the state transitions any network that solves the s-task should follow. With the 
transition matrix structure at hand, we can construct matrices C and U (see details in the “Methods” section).

We assessed the performance of the algorithm by measuring the time it takes to find networks that solve the 
s-task ( Nrec = 1024 , τ = 1 to τ = 10 ) and comparing those times with the time taken by a stochastic gradient 
descent (SGD) algorithm (Adam optimizer14, adapted to fit threshold units15). The FTP algorithm outperformed 
SGD by at least two orders of magnitude (Fig. 2a). This is not surprising when considering that a linear system of 
equations can be solved in polynomial time, while SGD (and any other fitting algorithm) requires huge numbers 
of network evaluations to obtain a single set of parameters updates. An example network constructed with FTP 
is shown in Fig. 2b,c, of Nrec = 8 neurons and capable of solving an s-task with τ = 3 . The resulting synaptic 
weight distribution had zero mean and resembled a normal distribution, at least for the Wrec values (Fig. 2d). In 
fact, the synaptic weight distributions became progressively closer to a normal distribution as more neurons were 
employed in network construction (Fig. 2e). We also noted that the absolute weight value decreased, especially 
for Wrec values (Fig. 2f), which can be explained by thinking that more neurons imply more parameters and 
hence more degrees of freedom to reach a lower Frobenius norm. This observation will become important later 
when imposing structural constraints to the network.
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Figure 2.   Solving the s-task with the FTP algorithm. (a) Efficiency of FTP and SGD, measured as the time 
expended in finding a solution network for s-tasks of different τ . The time expended by the FTP algorithm is 
orders of magnitude lower than the time expended by the SGD algorithm (n = 5 networks for each τ value). 
(b) Raster plot showing the neurons firing states in a network constructed to solve the s-task for τ = 3 . The 
network is composed of 8 integration neurons and 2 input neurons. Each possible sequence of 3 stimuli has 
a unique network firing state that codifies the sequence. Therefore, the network has 8 possible firing states. 
(c) Input and recurrent synaptic weights of the network. (d) Distribution of synaptic weights for input (upper 
panel) and recurrent (lower panel) synaptic weights, for the same network as in (b,c). (e) Kolmogorov–Smirnov 
statistic between the distribution of synaptic weights and a normal distribution of the same mean and variance. 
As the network size increases, the distribution of synaptic weights gets closer to a normal. Integration neurons 
weights are closer to a normal distribution than sensory neurons weights. Mean ± SD are shown for n = 100 
networks that solve the s-task, with τ = 3 . (f) Absolute synaptic weight values as a function of network size. 
Absolute values are higher and of larger variability when the neuron count is close to the number of coded 
stimuli sequences. As the network size increases the absolute mean value and dispersion decrease. Input neurons 
weights quickly reach a minimum, while integration neurons weights decrease in the entire range of network 
sizes. Mean ± SD are shown for n = 100 networks that solve the s-task, with τ = 3.
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Specifying the firing rate and pairwise correlation of the network.  We want to construct neural 
network models that not only solve relevant tasks but do so under desired firing constraints, as measured in 
real brains. Some of these constraints are low firing rates (FR)16,17, or low correlation coefficients (CC)18. In 
regular optimization algorithms, these constraints can be imposed by introducing regularization terms in the 
loss function5. On the other hand, in the FTP algorithm the activation states of the network are the result of 
linearly combining the rows of an initial matrix Ubase (see “Methods”). Hence, we can apply firing constraints by 
appropriately choosing this initial matrix. For example, to attain networks that solve the s-task with low/high 
firing, it suffices to choose an initial matrix Ubase such that, after thresholding, the resulting matrix C has few/
many ones. Following this procedure, we constructed networks with average FR within a wide range of target FR 
(Fig. 3a, blue line). Shuffling values within Win matrices, or within Wrec matrices, produced only small changes to 
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Figure 3.   Imposing activity constraints with FTP. (a) FR measured in networks constructed to solve the s-task, 
as a function of the target FR. The FR of networks constructed with the FTP algorithm is close to the target FR 
(blue line). There is a tendency to obtain lower firing rates for target FR values above 0.5 spikes/time step, and 
higher firing rates for target FR values below 0.5 spikes/time step (the gray line is the identity function). The 
same networks with their synaptic weights shuffled (red line) show a similar relationship between target FR 
and measured FR, albeit with a lower slope. A total of 30 networks were generated for each target FR. Weights 
in Win and Wrec were shuffled separately. Mean ± SD are shown. (b) Correlation between pairs of integration 
neurons as a function of the scaling factor fcc. Pairwise correlation, computed over all time steps, increases with 
fcc until it saturates at CC = 0.48 for fcc ≥ 5 (blue line). Networks with their afferent synaptic weights shuffled 
(red line) show low correlation, invariant to fcc. A total of 30 networks were constructed for each fcc value, with 
target FR set to 0.1 spikes/time step. Mean ± SD are shown. (c) Pairwise correlation computed separately for s1 
and s2 (noise correlation). The correlation coefficient increases with fcc, similarly for both stimuli and closely 
following correlation values in (b). Mean ± SD are shown, n = 30. (d) Measured FR as a function of pairwise 
correlation. Each blue dot shows the FR and CC of one network constructed to solve the s-task with desired FR 
and CC imposed through Ubase initialization. Values for 2700 networks are shown. Points form stripes pointing 
towards FR = 0.5 spikes/time step, each stripe corresponding to networks with the same target FR. As correlation 
increases, the measured FR tends to 0.5 spikes/time step. Black dots show FR and CC of 4 networks for which 
desired FR and CC were imposed by evolution of a population of Ubase matrices.
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the average FRs (Fig. 3a, red line). This suggests that it is the distribution of synaptic weights the critical statistic 
that defines the networks average FR, and not the detailed arrangement of these weights in the synaptic weight 
matrix.

On the other hand, we can construct networks with desired signal correlation, by multiplying � (the difference 
in effects produced by s1 and s2) by a factor fcc (Fig. 3b). For networks shown in Fig. 3 ( τ = 4, fr = 3 ), correla-
tions could be modulated in a range between 0.1 and 0.5. Scaling � was expected to induce signal correlation. 
However, it also induced noise correlation as a by-product (Fig. 3c). Correlations in networks solving the s-task 
were significantly higher than correlations in their synaptic weight-shuffled counterparts (Fig. 3b, blue vs. red), 
which suggests that signal correlations depend on the precise arrangement of values in the weight matrix, and 
not only on the weight distribution, as was the case with FR. It also suggests that the set of networks that solve 
the s-task necessarily exhibit correlations above a minimum. On the other hand, correlations did not exceed a 
certain value: higher correlations may imply a reduced number of network states, incompatible with the number 
of sequences required to be codified.

Hand-based manipulation of Ubase allows us to generate solution networks in a wide range of FR and CC 
(Fig. 3d, blue dots). An even better control of firing and correlation can be achieved by fitting Ubase thought an 
optimization algorithm. We employed a genetic algorithm (GA) in which the fitness of Ubase is a function of the 
FR and CC computed from the network firing states generated from that Ubase. Fitting Ubase gave access to more 
extreme values of FR and CC (Fig. 3d, black dots), and kept computational cost low by computing FR and CC 
from the set of network firing vectors c instead of computing the firings by simulating the network. Altogether, 
both methods (Ubase manipulation, or its evolution with a GA) generated networks with desired activity con-
straints that perfectly solved the task.

Applying structural constraints with projected gradient descend in isofunction weight 
space.  Networks generated so far share one structural constraint: their synaptic weight matrix is the one 
that minimizes the Frobenius norm. Other relevant structural constraints, such as the low probability of self-
connections19, Dale’s principle4, or sparse connectivity are not satisfied. Since these structural constraints are 
key experimentally observed features, we were interested in imposing such constraints onto the W obtained by 
the algorithm. To do this we followed a projected gradient descent (PGD) approach20, taking advantage of the 
fact that the loss function L , which encloses the structural constraints, is a linear function with respect to the 
synaptic weights, and that the matrix W can be changed without changing the stimulus–response mapping (see 
“Methods”). To exemplify the procedure, we constructed a network that solves the s-task for τ = 4 , with fr = 3 
(Fig. 4a), and then we employed PGD to remove self-connections, enforce Dale’s principle with a 4:1 Ex:In ratio, 
and set a sparsity sp = 40% (defined as the percentage of weights equal to zero). The PGD steadily reduced the 
loss L , reaching a negligible value, provided that the network had enough neurons (Fig. 4b). It is remarkable 
that so dissimilar synaptic weight matrices, like the ones depicted in Fig. 4a,c,d, gave rise to the same stimulus–
response mapping.

We noted that structural constraints could not be imposed on networks with low number of neurons, for 
example, networks with N = Nin + Nrec < 2M . This is not surprising, since it is expected that imposing more 
constraints require more parameters. To evaluate the efficiency of the PGD in relation with the number of neu-
rons, we imposed the above structural constraints for networks that solved the s-task with τ = 3 to τ = 6 , and 
Nrec between 32 and 256 neurons. Since matrix U and vector θ were randomly chosen, it was expected that some 
of them resulted in matrices W for which the structural constraints were impossible to apply. Consequently, 
we measured the efficiency of PGD by computing # attempts, the number of networks that were required until 
obtaining the first successfully constrained network. It can be seen that # attempts decreased as the number of 
neurons increased (Fig. 4e). Concordantly, the computing time required to obtain a successfully constrained 
network decreased as the number of neurons increased (Fig. 4f), probably due to the decrement in # attempts 
that were required. The fitting time was higher for networks with the highest neuron count, but always within 
the order of tens of seconds, even for Nrec = 256.

Exploiting the FTP algorithm for hypothesis testing.  A distinctive aspect of the FTP algorithm is 
that the desired dynamic of the network is defined first and in great detail. In fact, we can specify the network 

Figure 4.   Imposing structural constraints with FTP. (a) Synaptic weight matrices Win and Wrec of the network 
obtained through FTP before structural constraints were imposed. The network was constructed to solve the 
s-task for τ = 4 and fr = 3 , with a target FR of 0.1 spikes/time step. (b) Loss function L as a function of the 
number of iterations of the PGD algorithm. The loss function falls below the criterium e1 = 10−3 at iteration 
121. (c,d) Synaptic weight matrices Win and Wrec for a network with the same stimulus–response mapping 
but after applying structural constraints: (c) no self-connections, Dale’s principle, with 40 excitatory and 10 
inhibitory neurons, and sparsity sp = 40% ; (d) no self-connections, Dale’s principle, with 26 excitatory and 
24 inhibitory neurons, and sparsity sp = 23% . (e) Average number of attempts to obtain one network with 
successful structural fitting, as a function of the number of integration neurons, and for different τ . The number 
of attempts is high when the neuron number is low, but it decreases fast as the neuron number increases. From 
60 neurons onwards, less than five attempts are needed, on average, to obtain one network with the desired 
structural constraints. Mean ± SD are shown. (f), total running time to obtain one network with successful 
structural fitting, as a function of the number of integration neurons, and for different τ (color code as in (e)). 
Running time decreases and then increases for τ = 3 and τ = 4 . The case of τ = 6 is the one with more neurons 
and equations to solve and present some of the highest running times, even when the number of neurons is 
high. Nevertheless, all average running times are in the order of tens of seconds.

◂
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Figure 5.   Reciprocity as a function of τ , FR and the type of transition graph. (a) Transition graph for solving the 
s-task with τ = 7 . Blue and red lines represent transitions gated by s1 and s2 , respectively. (b) Random transition 
graph. Nodes (network states) may receive different number of incoming connections. There are 24 nodes 
that are gated by both stimuli. (c) Reciprocity for T + F networks, with fr = 1 , as a function of τ and target FR. 
Reciprocity changes from slightly negative to slightly positive as τ increases. For τ = 7 , reciprocity is maximized 
around target FR = 0.5 spikes/time step and decreases for lower and higher values of target FR. (d) F networks 
with fr = 1 shows increasing positive reciprocity as τ increases, maximized at target FR = 0.5 spikes/time step. 
(e) When the number of neurons is higher ( fr = 4 ), T + F networks show positive reciprocity that is minimal 
around target FR = 0.5, and increases towards higher and lower target FR, reaching the highest reciprocity values 
among all networks screened. (f) Reciprocity of F networks turns increasingly negative as τ increases, reaching 
the lowest reciprocity among all networks screened, around target FR = 0.5 spikes/time step. For all panels, 30 
networks were constructed for each τ and target FR combination. Normalized means (mean/SD) are shown. 
Positive and negative reciprocity values were mapped separately to colours red and blue, respectively. Red tones 
go from 0 reciprocity (white) to maximal positive reciprocity (pure red). Blue tones go from 0 reciprocity (white) 
to maximal (in absolute value) negative reciprocity (pure blue). All random graphs were constructed with 
fbc = 0.5 . Graphs were plotted with the Force-directed layout.
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dynamic up to the level of single state transitions, and the algorithm finds the set of synaptic weights that makes 
the desired dynamic possible. This approach is ideal for testing very specific hypotheses about the relationship 
between network function (neural dynamics and task performance) and the underlying structure (synaptic con-
nectivity).

We wanted to understand how the firing rate and firing dynamic constrained connectivity. To that end, we 
constructed networks that solved the s-task, over a range of network sizes and mean firing rate, and compared 
them with networks that had the same number of neurons and network states but for which the graphs of 
transitions between network states were generated at random (Fig. 5a,b). These “random transition” networks 
did not have sequence memory, but their dynamic was similar in complexity to that of networks that solved 
the s-task, turning them in perfect examples to study the connectivity features behind the capacity to codify 
sequences of stimuli. We focused on measuring the level of reciprocity in the network, which has been observed 
experimentally21 and its implications studied theoretically22. By screening networks with memory ranging from 
τ = 2 to τ = 7 , and FR from 0.1 spikes/time step to 0.9 spikes/time step, we found that reciprocity varied with 
τ , FR and neuron number. In particular, we observed that, when fr = 1 , reciprocity was positive and of lower 
mean for networks that were the minimum Frobenius norm solution to the s-task (T + F networks, Fig. 5c), in 
comparison with networks that were the minimum Frobenius norm solution to a random transition graph (F 
networks, Fig. 5d). However, for bigger fr the relationship was inverted, and T + F networks showed positive 
reciprocity (Fig. 5e) while F networks showed negative reciprocity (Fig. 5f).

To further describe these relationships, we selected networks constructed for τ = 7 and fr = 1 (Fig. 6a–c) and 
fr = 4 (Fig. 6d–f). Signal correlation varied with FR following an inverted U-shape relationship, with a maximum 
next to 0.5 spikes/time step (Fig. 6a,d). Note that, up to FR = 0.5 spikes/time step, CC increased with FR, as has 
been observed experimentally23,24. Interestingly, the way CC changed with FR was similar for both T + F and F 
networks, with the distinction that F networks had overall higher correlations than T + F networks. Shuffling 
the inter-spike interval of each neuron destroyed the dependence between FR and CC. The CCs after shuffling 
were also much smaller than the CC values of the non-shuffled firings (CCshuffled = 0.0224 ± 1.10–4, mean ± SD, 
for n = 90 T + S networks pooled over all FR values). These results ruled out the possibility that correlations were 
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Figure 6.   Correlation and reciprocity differentiate networks with sequence memory from random transition 
networks. (a–c) Networks constructed to solve the s-task with τ = 7 and fr = 1 (T + F networks), their 
isofunction network (T network), and networks with the same number of neurons and network states that 
follow a random transition graph (F networks). (a) Correlation increases as FR approaches 0.5 spikes/time 
step. F networks show a positive offset in comparison with T + F and T networks. (b) The dependency between 
reciprocity and FR is similar to the dependency between CC and FR. Higher reciprocity values are found in F 
networks. (c) Reciprocity grows linearly with correlation, as expected from panels (a) and (b). (d–f) idem a–c, 
but with fr = 4 . (d) The CC/FR relationship is similar to the one observed with a lower neuron number (panel 
(a)). (e) The reciprocity/FR relationship inverted as the neuron number was increased. Reciprocity is minimized 
as FR approaches 0.5 spikes/time steps. F networks show pronounced negative reciprocity. (f) Reciprocity 
decreases linearly with correlation, as expected from panels (d) and (e). Mean ± SD are shown; n = 10 networks 
were constructed for each target FR and network type. All random graphs were constructed with fbc = 0.25.
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trivially increasing with FR because of the higher number of spikes. We also found an inverted U-shape relation-
ship between reciprocity and FR, and a linear relationship between reciprocity and CC. With fr = 1 reciprocity 
tended to be maximized as FR approached 0.5 spikes/time step, with F networks showing higher (and positive) 
reciprocity (Fig. 6b). With fr = 4 , reciprocity tended to increase as FR departed from 0.5 spikes/time step towards 
lower and higher values, i.e., networks with lower correlation (Fig. 6e). Specially, F networks showed negative 
reciprocity for all firing rates, except for the more extreme cases (0.1 and 0.9 spikes/time step). Just like the reci-
procity/FR relationship inverted with the number of neurons, so did the reciprocity/CC relationship. Networks 
with higher reciprocity had higher correlation when the number of neurons was low (Fig. 6c). However, and 
somewhat counterintuitive, when the number of neurons was higher, more reciprocity implied lower correla-
tion (Fig. 6f). Networks that solved the s-task but did not minimize the Frobenius norm (T networks) showed 
almost zero reciprocity, implying that reciprocity was not a property of all networks that solve the s-task. On 
the contrary, most networks that solved the s-task did not show significant reciprocity, unless other structural 
constraints, such as Frobenius norm minimization, was imposed. However, Frobenius norm minimization alone 
only produced negative reciprocity (in random graphs). For positive reciprocity to occur in networks with high 
number of neurons, both high sequence memory and Frobenius norm minimization were required.

We asked whether the results depicted in Fig. 6 could be replicated in networks that lacked self-connections 
and complied with Dale’s principle. To that end we imposed these structural constraints to networks constructed 
with τ = 7 and fr = 4 , and found a reciprocity/FR relationship that resembled the one observed in unconstrained 
networks, with F networks showing prominent negative reciprocity and T + F networks showing increasing reci-
procity as FR departed from 0.5 spikes/time step (Fig. 7a). Correlations increased as FR approached 0.5 spikes/
time step, with F networks showing more correlation than T + F networks (Fig. 7b,c). Correlation in T + F and F 
networks were higher for pairs of inhibitory neurons than for pairs of excitatory neurons, as has been observed 
experimentally25, while correlations between excitatory and inhibitory neurons lied in the middle.

We went further on by asking which features of network dynamics were responsible for the differences in 
reciprocity that we observed between T + F and F networks. The FTP algorithm finds the network connectivity 
from a detailed description of the network dynamics, specified in its transition graph. Therefore, we hypoth-
esized that specific changes in the transition graph could have a precise impact in network reciprocity. In T + F 
networks, any given network state could only be reached after the presentation of either s1 or s2, but not both. 
This is clearly visualized in the transition graph of Fig. 1b, in which each node has all blue or all red incoming 
edges, but never incoming edges of both colours. These network states codify stimuli in an absolute manner since 
it only suffices to know the network state at time step t to know the identity of the presented stimuli at that time 
step. We termed these nodes monocoloured nodes. On the other hand, in an F network each network state can 
be reached from either s1 or s2, or from both. Network states which can be reached from both stimuli (termed 
bicoloured nodes) codify stimuli in a relative manner, meaning that the identity of the stimulus presented at time 
step t can be decoded only if both the network states at t and t − 1 are known. Then, we specifically asked whether 
the proportion of bicolored and monocoloured nodes could explain the strong differences in correlation and 
reciprocity found between T + F and F networks. To that end, we constructed F networks with increasing frac-
tion of bicolored nodes (fbc), and computed reciprocity for fixed τ , FR and fr (Fig. 8). We found that reciprocity 
became increasingly more negative as we increased the fraction of bicolored nodes. When all network states were 
monocoloured ( fbc = 0 ), networks showed zero reciprocity, as observed in T + F networks with the same FR and 
fr. This result highlights the power of the FTP algorithm to relate neural dynamics with network connectivity.
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Figure 7.   Reciprocity and correlation of structurally constrained networks. (a) Reciprocity as a function 
of FR for networks without self-connections and Dale’s principle with 1:1 Ex:In ratio. Reciprocity shows a 
parabolic relationship with FR, decreasing as FR approaches 0.5 spikes/time step. F networks show strong 
negative reciprocity, while T networks reciprocity is close to zero. (b) Pairwise correlation for T + F networks 
as a function of firing rate. The correlation was computed over pairs of excitatory neurons (Ex-Ex), pairs of 
inhibitory neurons (In-In), and pairs of one excitatory and one inhibitory neuron (Ex-In). Correlation has a 
maximum close to 0.5 spikes/time step. The In-In pairs show the highest correlations, followed by the Ex-In 
pairs. The Ex-Ex pairs show the lowest correlation. (c) pairwise correlation for F networks as a function of firing 
rate. The CC/FR relationship is similar to the one observed for T + F networks, although F networks correlation 
is displaced towards higher values. Mean ± SD are shown; n = 20 networks were constructed for each target FR 
and network type. Firing rates of excitatory or inhibitory neurons are displayed for Ex-Ex and In-In curves, 
respectively. For Ex-In curves, the average FR over all neurons is shown.
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Discussion
We have presented a simple method to generate binary neural network models that accomplish the desired task. 
Networks composed of binary neurons are computationally inexpensive, and despite their simplicity many 
neurophysiological and neuroanatomical observations have been recapitulated employing these networks22,26. 
Our key contribution is to note that, for networks in which neuron inputs are linearly added, their synaptic 
weights can be found by solving a system of linear equations. In turn, this system can be constructed from the 
transition graph associated with the solution of the target task. System consistency is guaranteed if the dependent 
variables of the system (the neuron activations) are linearly combined following the linear dependences among 
the independent variables (the firing states). We have shown how the FTP algorithm works with the simplest of 
networks. Yet, we think that the same procedure could be implemented in networks composed of more complex 
neuron models, like the firing rate model or the leaky integrate-and-fire model, provided that a system of linear 
equations can be constructed.

Current automated methods of network model construction rely on off-the-shelf optimization algorithms 
typically employed in the artificial intelligence field, like stochastic gradient descent5, genetic algorithms27, or 
evolutionary strategies28. These optimization algorithms iteratively change network parameters in a direction 
that minimizes a loss function and have proved to be very effective in finding networks that solve very complex 
tasks29,30. However, they require a considerable amount of human intervention, and there is no certainty that they 
will arrive at a solution. Moreover, each optimization iteration requires the evaluation of the network, which is 
time consuming, especially for a recurrent network performing in a multi-trial task. In contrast, the FTP algo-
rithm reduces the problem of finding a suitable network to a series of linear combinations and the solution of a 
linear system, with both operations performed in polynomial time. Most importantly, it is guaranteed that the 
resulting network will solve the task perfectly.

Traditional optimization algorithms require the definition of a loss function that encompasses all the con-
straints the network should satisfy, whether these are task related, activity related, or structural. Then, the loss 
function is minimized and hence all constraints are enforced at once. In this scenario, the relationship between 
parameters and the loss function can be quite complex, and conflict between constraints may emerge. Conversely, 
one key advantage of our method is that it uncouples the dynamic and coding aspects of the network from the 
structural aspects, giving us the opportunity to adjust them independently. Moreover, since the method proceeds 
from the network firing states to its parameters, it allows us to find networks with desired activity profiles, and 
to study the resulting connectivity. Further structural constraints can be enforced in a second stage, by projected 
gradient descent, or any other optimization algorithm. The fact that projected gradient descent worked so well 
suggests that structural constraints are easy to implement once the connectivity required to solve the task is in 
place. This is probably because many connectivity features of a network, such as its sparseness or its clustering 
coefficient, are a simple function of its synaptic weights. On the contrary, the relationship between the synaptic 
weights and the network function, or coding capabilities, is far more complex. In this way, our method gives 
more control over each class of constraint, making the whole process simpler at the same time.

To show its applicability, we employed the FTP algorithm to construct networks that solve a stimuli sequence 
memory task (s-task) in which networks have to codify in their network firing states the sequence of the last τ 
stimuli that were presented. The s-task, akin to the n-back task commonly employed in cognitive neuroscience, 
is relevant within the scope of working memory function. Working memory is traditionally associated with 
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Figure 8.   Relative-coding network states cause negative reciprocity. Reciprocity as a function of fbc , the fraction 
of bicolored nodes, in networks that follow random transition graphs. Reciprocity decreases linearly with fbc , 
approaching zero as fbc approaches zero. Mean ± SD are shown, n = 30 networks for each fbc . Networks were 
constructed with target FR = 0.5 spikes/ time step, and with the same number of neurons and network firing 
states as T + F networks constructed with τ = 7 and fr = 4.
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maintaining information about a single stimulus in the persistent activity of recurrently connected neurons31,32, 
although mounting evidence suggests that neuron populations code information in the form of highly heter-
ogenous firing sequences33,34. Sustained activity can be a suitable strategy when there is one specific relevant 
stimulus to attend, whose identity has been already elucidated. However, more complex scenarios require keep-
ing track of sequences of stimuli. An example of this case is the processing of language, in which the succession 
of utterances must be integrated over time, from phonemes to words, to phrases, so that the meaning of speech 
depends on the whole sequence35. We explored the case of two stimuli presented with equal probability, but 
the analysis could be extended to more realistic cases in which the stimulus distribution is not uniform. It is 
expected that statistical regularities in the sequences of stimuli are going to be exploited by the network, result-
ing in more specialized connectivity. The relationship between sequence statistics and network structure should 
be further studied. For example, it would be of interest the case in which stimuli last more than one time-step, 
and they are interleaved by another set of stimuli that act as distractors. Then, the relationship between feedback 
and feedforward connections could be studied, in relation with the duration of each stimulus presentation, and 
with that of the distractors.

The structure–function relationship is central to neuroscience36–38. Connectivity at the macro, meso, and 
micro scale, neuron biophysics, plasticity mechanisms, among other structural traits, all act co-ordinately to give 
sophisticated adaptive behaviour. It is widely believed that the structural properties of networks have evolved to 
proficiently perform a function, many times in an optimal way39,40. However, brain structure could also be the 
result of other constraints, different from those imposed by adaptive behaviour. For example, neural network 
modularity might have emerged as an adaptative structural trait for solving tasks that have a modular or hier-
archical component41, but it could also have emerged as the result of previously acquired structural traits, such 
as constraints in the length of dendrites and axons, which preclude the possibility of a much wider connectivity. 
Thus, determining how much of the structure observed in the brain comes from task-related constraints and 
how much comes from other structural traits is central to understanding the structure/function relationship. 
A theoretical approximation to this issue consists on constructing neural network models that solve different 
kinds of tasks under a variety of structural constraints, and then study the patterns of connectivity that emerge 
and relate them to the observed connectivity in the brain. This approximation requires to sample as uniformly 
as possible from the set of networks that fit both the task and the structural constraints. However, optimization 
methods commonly employed in network parameter fitting may give a restricted set of solutions, thus biasing 
any conclusion about the structure/function relationship. Another issue is that some connectivity traits could 
emerge only in networks of certain size, and fitted to several tasks. In this case, fitting large networks with com-
plex cost functions could have a high computational cost. Consequently, generating a relatively large sample 
of networks suitable for statistical treatment of their connectivity could result unfeasible. On the other hand, 
the FTP algorithm is very well suited for answering structure/function questions, since exact solutions can be 
computed starting from an arbitrary set of population firing states, as long as they define a system of equations 
that has a solution.

Hypotheses that link structure and function can be tested with the help of the FTP algorithm, by construct-
ing networks that follow transition graphs that instantiate some null hypothesis. Following this approach, we 
constructed networks that had the same number of network states and neurons required to solve the s-task, 
but whose state transitions were chosen at random. With this tool at hand, we were able to show how network 
reciprocity depended on the memory demand and the size of the network. The same procedure can be followed 
to build any other set of networks under some relevant null hypothesis. Such networks can be easily constructed 
with the FTP algorithm, while they would be hard to construct with regular optimization algorithms.

Evidence for high reciprocity has been found experimentally, by measuring excitatory postsynaptic potentials 
of reciprocally connected neurons in vitro21. It has also been the centre of theoretical analysis. For example, it has 
been shown that high reciprocity is recapitulated in networks of binary neurons that have a maximum number 
of attractors22. Interestingly, the same work showed that reciprocity is lost when networks are optimized to store 
sequences of uncorrelated network states. However, we found that networks of high reciprocity are capable of 
displaying long firing state sequences when their dynamics codify the sequences of previously presented stimuli. 
Therefore, our work complements previous studies which have shown that reciprocity is one of the key con-
nectivity features that support the computation performed by the neocortex.

Reciprocity was absent in networks taken at random from the set of all connectivities that solve the s-task 
(the T networks in Fig. 6). This implies that the observed reciprocity is the result of solving the s-task with the 
additional constraint of weights minimizing the Frobenius norm, the latter being understood as the consequence 
of an upper bound on the number of receptors and vesicles in a synapse. Thus, to explain one structural feature 
(reciprocity), a functional feature (solving the s-task), and another structural feature (Frobenius norm minimi-
zation) were required. It would be interesting to study to what extent other structural features encountered in 
biological neural networks, like modularity or sparsity of connections, can be explained as the answer to some 
computational demand of adaptive behaviour, or as the byproduct of another structural feature, or as the interac-
tion of both factors, as is the case with the s-task.

In conclusion, we have provided an algorithm that inverts the usual process by which neural networks are 
constructed. It can be employed to probe the dependency between the firing statistics, connectivity, and function 
of a network in a way that is not matched by current optimization algorithms. Moreover, it is computationally 
inexpensive. For these reasons, we consider the FTP algorithm to be a powerful alternative method for construct-
ing neural network models of brain function.
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Methods
Nomenclature.  Vectors are represented with bold lowercase letters and are considered row vectors. Matri-
ces are represented with bold uppercase letters. In Table 1 we have summarized the principal symbols employed 
throughout the paper, together with their description.

Attaining system consistency in the s‑task.  We consider a network that solves an s-task, with 2 stimuli 
and sequences of length τ . Therefore, the network has to display at least a number of network states M = 2τ . If 
we number the network states and sort transitions as in Fig. 1b–d, we have that, if Eq. (3) has a solution, rows in 
[C U] (the augmented matrix) should satisfy:

where T values are odd numbers between 1 and 2M − 1 such that [y1, zT ] and [y2, zT+1] are the T and T + 1 rows 
of C, and uT , uT+1 are the T and T + 1 rows of U. The row index P is and odd number between 1 and 2M − 1 . 
Note that zT = zT+1 and zP = zP+1 , but uT  = uT+1 and uP  = uP+1 . Equation (6) shows us how row vectors in 
matrix U should be linearly combined such that Eq. (3) has a solution. We have that:

This means that the number of linear combinations in U is R = 2τ /2− 1 , and rank(U) = 2τ /2+ 1 . Note 
that rewriting Eq. (7) we have:

where um,s1,i and um,s2,i are the activations that neuron i adopts after the presentation of s1 and s2, and coming from 
a network state m. In other words, Eq. (8) tells that the difference in effects provoked by the stimuli is a constant 
for each neuron, regardless of which network state or transition we are dealing with. This fact is not surprising, 
since synaptic weights are held fixed, so each stimulus has the same effect at any time, which is specific for each 
neuron. Thus, making the system of equations in (3) consistent is equivalent to guarantee that activation values 
are chosen so that each stimulus has a constant effect on the synaptic activations.

To construct matrix U we first defined a vector of thresholds θ with elements θi ∈ {1/2, 3/2, 5/2} . Then, we 
constructed base matrix Ubase with Mbase = 2τ /2+ 1 row vectors such that:

where r(m, i) is an integer uniformly sampled from the [− 5,5] interval. We added the term 1/2 to avoid fitting 
errors when numerically solving the system, otherwise the activation values could be equal to the threshold 
values, which would result in erroneous firing states because of numeric precision issues. We chose a uniform 

(6)[y2 zT+1 uT+1] = [y1 zT uT ] − [y1 zP uP] + [y2 zP+1 uP+1]

(7)uT+1 = uT − uP + uP+1

(8)um,s2,i − um,s1,i = �i

Ubase(m, i) = θi + r(m, i)+
1

2

Table 1.   Symbols with descriptions.

Symbol Description

y Binary row vector of length Nin. Represents the firing state of input neurons. Codifies a stimulus

z Binary row vector of length Nrec. Represents the firing of the recurrent network

u Real-valued row vector of length Nrec. Represents the activation states of neurons in the recurrent network

Win Matrix of synaptic weights from sensory neurons to the recurrent network. Columns are incoming connections

Wrec Matrix of synaptic weights among neurons of the recurrent network. Columns are incoming connections

Nin Number of input neurons ( Nin = 2 throughout this work)

Nrec Number of neurons in the recurrent network

N Total number of neurons (input and integration)

M Total number of network firing states

θ Row vector of neuron’s thresholds

c Row vector, obtained after concatenating one y vector with one z vector

C Matrix whose rows are c vectors. Coefficient matrix in a system of linear equations

U Matrix composed of row vectors u. Contains activation states reached by the network from the firing states in matric C

W Matrix resulting from concatenating matrices Win and Wrec

Ubase Matrix of row vectors u picked at random

Ulc Matrix composed of the rows in Ubase and linear combinations thereof. There is one row for each network state

Z Binary matrix, obtained by applying threshold θ to matrix Ulc

�
Real-valued vector of length Nrec. Each component is the difference between activations after s1 and s2 presentation, when starting 
from the same network firing state

fr Redundancy factor: quotient between the number of neurons and the number of sequences codified in an s-task

fcc Multiplying factor to induce signal correlation

fbc Number of network states reachable after s1 or s2 presentation, divided by the total number of network states
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distribution over integers for simplicity, although any other distribution could be employed. The same goes for 
the threshold values.

This initial randomly generated matrix Ubase is required to be full rank. We computed the vector � of �i ele-
ments as the difference between the first two rows of Ubase. Next, we applied Eq. (8) to generate the remaining 
R rows as linear combinations of the third to the last row of Ubase, obtaining 2τ row vectors that constitute the 
matrix Ulc. Each row vector u in matrix Ulc had the neuron activations for one of the 2τ network states. Applying 
Eq. (8) creates a dependency between um,s1,i and um,s2,i . Hence, for each linear combination we chose at random 
which activation value (the one associated with s1 or s2) was defined in terms of the other. This was to ensure 
that u value distributions were equal for both stimuli. We constructed matrix Z by applying threshold θ to Ulc, 
and then we followed the ordering depicted in Fig. 1b–d to construct matrix U from Ulc, and matrix C from Z 
and vectors y1, y2. Finally, we employed Eq. (4) to obtain the synaptic weight matrix W. Since matrix W is the 
minimum Frobenius norm solution to Eq. (4) and defines a network that solves the s-task, we say that W defines 
a Task + Frobenius (T + F) network.

The algorithm described above works under the assumption that two conditions are met after thresholding: 
1) the resulting vectors z are all different, and 2) they are linearly independent. If thresholding Ulc gives vectors z 
that appear more than once, this would result in lower performance in the task, since not all sequences of length 
τ will be encoded. On the other hand, if linear independency fails after thresholding, then matrix C will have 
more linear combinations than the contemplated in Eq. (5), meaning that combining the rows of U following 
Eq. (8) will not be enough, and some linear dependencies in C will be lost in the augmented matrix, making the 
system inconsistent. In our implementation of the algorithm, if any of these two conditions were not verified, 
then the algorithm was restarted from the beginning. This occurred with low probability, for τ < 5 . For higher 
τ , both conditions were always fulfilled in one attempt.

In the previous explanation we assumed that Nrec = 2τ , such that there is one neuron per sequence of length 
τ . It was possible to fit networks with lower number of neurons, but undesired linear dependencies in C after 
thresholding, or a number of network states bellow 2τ occurred with higher probability, especially for τ > 3.

Network simulation and synaptic weights statistics.  Networks were evaluated in the s-task during 
at least Niter = 10.2τ time steps, to gather enough samples of each network state. To assess the similarity between 
the synaptic weight distribution and a normal distribution we computed the Kolmogorov–Smirnov two samples 
statistic, between the set of synaptic weights and a set of normally distributed values of the same mean, variance, 
and sample size than that of the synaptic weights.

Equation (4) gives the matrix W with lowest Frobenius norm12. Since we are considering networks with 
N = 2τ + 2 total neurons (including input and integration neurons), there are infinite solution weight matrices 
for the same system of equations defined by C and U. These solutions lay in a subspace of RN , of dimension 
N − rank(C) . The set of all solutions can be obtained by computing the sum between W and a matrix �W that 
satisfies:

where ker(C) is an orthonormal basis of the null space of C, of dimensions N x(N − rank(C)) , 0 is a matrix 
of zeros, and M is a linear mapping of dimensions (N − rank(C))xNrec . This set of solutions share the same 
stimulus–response mapping. We say they conform an isofunction space.

In several occasions, networks with Nrec > 2τ were desired. Hence, we defined Nrec = 2τ fr , where fr stands for 
‘redundancy factor’, as the network has fr-times more neurons than required to solve the s-task with that specific τ.

Computation of fitting times for FTP and SGD.  We assessed the efficiency of the FTP algorithm and 
an SGD algorithm by measuring the time required to find networks of Nrec = 1024 neurons that solve an s-task 
with τ = 1 to τ = 10 . Since in our neuron model the firing state is a non-differentiable function of the activation 
states, we relied on a surrogate derivative:

where υ = u− θ . We took this surrogate derivative from Bellec et al.15, although we obtained better results not 
dividing by the threshold, as originally proposed. One response neuron was added, whose output at a given time 
step t  was defined as ot = tanh(woutzt) , where wout contains the synaptic weights between integration and output 
neurons. The loss function to minimize was the quadratic error E = (otarget(s)− o)2/2 , with otarget(s1) = 1 and 
otarget(s2) = −1 . We implemented back propagation thought time (BPTT), unfolding the network in sequences of 
30 timesteps and taking minibatches of 30 sequences. We achieved best performance by initializing Win and wout 
with zeros, while matrix Wrec was initialized with samples from a standard normal distribution and then dividing 
it by its eigenvalue of higher absolute value. Adaptive learning rates were implemented thought Adam14, with 
parameters β1 = 0.9 , β2 = 0.999 , ε = 10−8 and α = 10−4 . Normalizing gradients to unit length also proved to 
be helpful in accelerating convergence. Networks were trained until the mean error over the last 10 minibatches 
was below 0.01. After training, networks were tested with 10,000 stimuli presentations. The maximum testing 
error across all τ values was 0.03.

(9)C�W = 0

(10)�W = ker(C)M

∂z

∂u
:= max{0, 1− |υ|}
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Imposing activity constraints.  To construct networks with desired FR we generated Ubase as previously 
described, but adjusted the sign of r(m, i) such that, after thresholding, matrix C had a fraction of ones that 
equalled the target FR. To induce signal correlation, we scaled vector � by a factor fcc. This manipulation causes 
neurons to have very different firing rates for s1 and s2, leading to an increased signal correlation. By following 
this procedure, we constructed networks in Fig. 3. The target FR values were taken from the range between 0.1 
to 0.9 spikes/time step, in steps of 0.1 spikes/time step. The fcc values were taken from the range between 1 and 10 
in unitary steps. A total of 30 networks were constructed for each combination of FR and fcc values within those 
ranges. For each network, the average FR was computed over the FR of all neurons in the network. Similarly, the 
average correlation coefficient (CC) was computed from the Spearman correlation coefficient computed for all 
neuron pairs.

We also employed a genetic algorithm (GA) to evolve a population of matrices Ubase to adjust their mean FR 
and absolute CC. We employed a population of Npob = 200 individuals, each one composed of one matrix Ubase 
and one vector θ . For each individual we constructed matrices U and C, and computed an approximate value of 
FR and correlation, under the assumption that each network firing state occurred with equal probability. The 
fitness F of an individual was computed as:

where FR and CC are the firing rate and correlation computed over the network firing states, and FRtarget and 
CCtarget are the firing rate and correlation we want the network to have. If an individual produced an inconsist-
ent system, or a system with not enough network states, its fitness was set to zero. We picked the T = 0.1Npob 
individuals with the highest fitness as parents. Then, we picked parents at random and mutated Ubase by adding 
gaussian noise to each matrix element, of zero mean and standard deviation σ = 0.1 . One of the individuals of 
each generation was an unmutated copy of the best individual of the previous generation (elitism). Threshold 
vectors θ were not mutated. The GA was run until the average fitness surpassed Ftarget = 0.95 . Firing rates and 
correlations shown as black dots in Fig. 3d were computed by running the network constructed from the elite 
Ubase during 30.2τ time steps.

Imposing structural constraints.  Solving Eq. (4) gives networks with minimum Frobenius norm. These 
networks do not comply with basic structural features observed experimentally, such as the low probability of 
self-connections, or Dale’s principle. To impose such structural features, we constructed a matrix �Wd such that 
Wd = W +�Wd . Matrix Wd is a matrix which fulfils the desired structural constraints. Most probably �Wd is 
not within the null space of C, and thus Wd will not be a solution to the system defined by C and U. Hence, we 
defined a matrix:

where Msc = ker(C)+�Wd , and ker(C)+ is the Moore–Penrose pseudoinverse of ker(C) . Matrix Msc is a linear 
mapping that incorporates the desired structural constraints, making �W the change in matrix W within the 
null space of C that is closest to �Wd , in the least squares sense.

We imposed three structural constraints: no self-connections, Dale’s principle, and a certain degree of spar-
sity. Thus:

The (i, j) element in matrix �Wself  (which deletes self-connections in the integration neurons) was defined as:

where W(i, j) is the (i, j) element of matrix W.
Matrix �WDale was defined as:

where Wc1 = W +�Wself  and Tj ∈ {Ex, In} indicates if neuron j was chosen to be excitatory (Ex) or inhibitory 
(Inh). Matrix �WDale sets to zero the synaptic weights that violate Dale’s principle. Neuron j was chosen to be 
excitatory if ηj =

∑

j
Wc1(i, j) > 0 . Otherwise, it was chosen to be inhibitory. If more excitatory/inhibitory neu-

rons were required, neurons with negative/positive η closest to 0 were set as excitatory/inhibitory as needed.
Matrix �Wsp to enforce sparsity was defined as:

where Wc2 = Wc1 +�WDale . The value α(sp) is the sp-percentile of the absolute values in Wc2 . In this manner 
�Wsp will set to zero the weights with the lowest absolute value, such that a sparsity sp is enforced.

The loss function L at iteration k was defined as the average of the absolute �Wd(i, j) values:

F = 1−

∣

∣FR − FRtarget
∣

∣+
∣

∣|CC| −
∣

∣CCtarget

∣

∣

∣

∣

2

(11)�W = ker(C)Msc

�Wd = �Wself +�WDale +�Wsp

�Wself (i, j) =

{

−W(i, j) i = j + 2

0 i �= j + 2

�WDale(i, j) =

{

0 (Tj = Ex ∧ w(i, j) > 0) ∨ (Tj = Inh ∧ w(i, j) < 0)

−Wc1(i, j) (Tj = Ex ∧ w(i, j) < 0) ∨ (Tj = Inh ∧ w(i, j) > 0)

�Wsp(i, j) =

{

−Wc2(i, j)
∣

∣Wc2(i, j)
∣

∣ < α(sp)
0 otherwise
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where 〈〉i,j stands for the average across indexes (i, j) . The structural constraints were imposed through an iterative 
process, in which neurons were classified as excitatory or inhibitory at each iteration according to their η , a matrix 
�W was computed using Eq. (11), and a new W was obtained. The process was stopped when the loss fell below 
a desired value e1 , in which case the fitting process was considered successful. The process was also stopped if 
(L(k)− L(k − 1))/L(k) < e2 . When this latter condition was met, the fitting process was considered unsuccess-
ful, since the error was not decreasing fast enough and would probably converge to an unacceptable value above 
zero. We used e1 = 10−3 and e2 = 10−4 . If the process was successful, values that violated any of the constraints 
were set to zero. These values were expected to be small enough since the error was small. We computed:

where Usc = CWsc , with Wsc being the resulting synaptic weight matrix after the constraining process, to verify 
that the deviation from the original U was negligible. If the process was unsuccessful, or the clipping error 
eclip > 10−3 , then the original W was considered not to be suitable for the structural fitting.

We measured the efficiency of the process by computing the number of networks generated (# attempts) and 
the running time t expended until reaching the first successfully constrained network. We varied τ from τ = 3 to 
τ = 6 . For each τ we varied the number of integration neurons in steps of 16 neurons, from a minimum number 
of 4.2τ to the maximum value 26 . For each combination of τ and neuron number we generated networks with 
the FTP algorithm, and subjected them to structural constraining (no self-connections, 4:1 Ex:In ratio, and a 
minimum sparsity sp = 40% ). We obtained 10 measurements of # attempts and t, from which we computed the 
mean and SD depicted in Fig. 4e,f.

Network construction from random transition graphs.  To construct random transition graphs that 
have an associated consistent system, we first defined a row vector � and a matrix Ulc composed of M = 2τ row 
vectors u such that ui+1 − ui = � , where ui is the ith row. Here, indexes i are odd numbers between 1 and M − 1 . 
Next, we constructed matrix U in a way that ensures that each node in the graph was reachable, meaning that 
every node had to receive at least one edge. This is equivalent to say that every row in Ulc is found at least once 
in U. Therefore, we set the first M rows in U equal to matrix Ulc. The remaining rows in U were taken from Ulc, 
picking M/2 pairs of indexes i, i + 1 , choosing i values at random from the set of odd numbers between 1 and 
M − 1 . In this way, and unlike the transition graphs that solve an s-task, nodes could receive just one edge, or 
more than two.

So far, if a row vector appeared in matrix U more than once, then it appeared only in odd rows, or only in 
even rows, but not in both. This is because indexes were ordered from 1 to M in the first half of U, and ordered in 
pairs of i, i + 1 indexes in the second half. The resulting graph would be one in which any given node is reachable 
as the result of the presentation of either s1 or s2, but not from both. In other words, if node b is reachable from 
node a after si presentation, then node b is reachable from node c only after si presentation, where c is any other 
node from which b is reachable. In terms of the colour code of the graph in Fig. 1b, any node receives arrows of 
the same colour. We wanted graphs as random as possible, so nodes reachable through different stimuli were 
desired. We defined these nodes as bicoloured nodes. In terms of indexes in matrix U, a bicolored node trans-
lates into a row vector ui that appeared in matrix U in both odd and even rows. For example, if we had indexes 
(1, 2, 3, 4) for the first 4 rows of U, with (u1, u2,�) and (u3, u4,�) each being linearly combined, then we wanted 
to change this series to (1, 2, 2, 4) , or (1, 2, 3, 1) . This requires to generate new linear combinations, in particular, 
(u1, u2, u4,�) should be linearly combined, for the first example, and (u1, u2, u3,�) in the second example. 
Thus, we modified matrix U to generate fbcM/4 bicolored nodes, where fbc stands for ‘bicolored fraction’ and is 
a number between 0 and 1. The maximum number of bicolored nodes is M/4, since we generated one node for 
each series of indexes i to i + 3 . Finally, we constructed matrix Z by thresholding matrix Ulc, and then matrix 
C, which rows were in the form:

where zi is the ith row vector in matrix Z, and vector k is a permutation of the list of integers from 1 to M.
Following the above procedure, we constructed random transition graphs that satisfied the linear combi-

nations required so that a consistent system of equations could be constructed. Given that these networks do 
not solve the s-task but are the minimum Frobenius norm solution to a random transition graph, we call them 
Frobenius (F) networks. The procedure avoids index sequences like (1221) , since this ordering gives a consistent 
system only if � = 0 , in which case stimuli cannot be distinguished by the network. The procedure also avoids 
index sequences of the type (11) (one node leads to another node through both stimuli, s1 and s2). If this were 
the case, one possibility is that s1 and s2 produce the same u values (u being an element of vector u). Therefore, 
� is a vector of zeros and stimuli cannot be discriminated. Another possibility is that stimuli lead to different 
vectors u, but these vectors in turn lead to the same vector z after thresholding. This situation is possible, but 
would require careful selection of u values in relation to θ , and for this it was avoided.
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We constructed networks that followed random transition graphs and compared their properties with the 
properties of networks that solved the s-task. In particular, we measured the reciprocity of the network, defined 
as the Spearman correlation between weights of incoming and outgoing synapses. Reciprocity was computed 
over matrix Wnorm, a normalized version of the synaptic weights constructed by taking the absolute values of W 
and scaling them between 0 and 1. Since imposing structural constraints like Dale’s principle, or sparsity, may 
generate many zero-valued weights, reciprocity was computed for synaptic weight pairs such that both wnorm

ij  
and wnorm

ji  were both non zero.
For each network generated to solve the s-task we also picked a network from its isofunction space, that is, 

from the set of all networks that had the same stimulus–response mapping (as described above). We refer to 
these networks as Task (T) networks, since they solve the s-task but they are not the minimum Frobenius norm 
solution. The linear mapping M in Eq. (10) has entries M(i, j) = ri,j max

i,j

(

W(i, j)
)

 , where ri,j is a random number, 
different for each entry, sampled uniformly from the [−1, 1] interval, and W is the synaptic weight matrix from 
which an isofunction network is desired. We defined mapping M in this way to obtain isofunction networks 
with synaptic weight values within the range of the weights in the original network.

In addition, for each network that solves the s-task we constructed an isofunction network with structural 
constraints: no self-connections and Dale’s principle with excitatory and inhibitory neurons in equal numbers.
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