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Surface wave manipulation 
by plasmonic metasurface based 
on mode resonance
Baoshan Guo

We proposed a method to manipulate the surface waves with a deep subwavelength metasurface 
by applying resonators with interfering mode resonance. The simulation results demonstrate that 
a single deep subwavelength obstructed groove can effectively control the propagation of surface 
terahertz (THz) waves by a small step increase (< 1/20 λ) of the depth or a slight change of refractive 
index (Δn = 0.1). The surface waves transmitted and reflected by the single groove can be controlled 
periodically by increasing the groove depth or refractive index with a high efficiency owing to the 
mode resonance between surface spoof plasmonics modes and groove cavity modes. The generated 
circle resonance mode provides a new idea for the development of THz devices. Importantly, the 
transmitted or reflected intensity of the surface wave is also enhanced by the Mode resonance. It is a 
simple and effective method to operate surface THz waves and manufacture more compact integrated 
optical devices in deep subwavelength scale.

The most important characteristic of plasmonics is to confine the electromagnetic (EM) energy and enhance the 
interaction between light and matter in the subwavelength  range1,2, which has been applied in a wide range of 
fields, such as the miniaturization of photonic  circuits3,4, near-field optics and  microscopy5,6, biological  sensors7,8, 
and  photovoltaics9,10. At terahertz (THz) frequencies, various subwavelength metal structures based on spoof 
SPPs (SSPPs)11–13 have been developed to efficiently control the properties of THz  fields14–20. Based on this, a 
series of new THz devices with high performance have been developed and applied in different areas, such as 
THz  sensors21–23, THz spectrum and imaging  detection24–26, and THz  communication27. One of the most repre-
sentative devices is the one-dimensional THz metal grating waveguide, which has been designed and fabricated 
into different groove shapes, including rectangular, inclined rectangular, trapezoidal, V-shaped, serrated and 
meniscus  grooves28–37. If the surface grating has gradient  depth38–42, gradient  period43, and vertical or downward 
pyramid  grooves44, it can realize the so-called "trapped rainbow" that has been proved to be a reflection rather 
than a real EM wave  trapping45,46. In addition to the groove shape of the grating, the surface EM wave can also be 
controlled by changing the local refractive index of the dielectric layer covering the metal grating, just as a new 
dielectric grating is formed above the metal  grating47. In fact, the change of refractive index in a groove of the 
metal grating itself can also significantly change the transmission characteristics of the surface wave, which will 
be discussed below. Furthermore, detailed understanding of the physical mechanism underlying single-groove 
manipulation of EM waves still needs study whether there is a covered dielectric layer or not. In this paper, it is 
revealed that the controlling of surface EM waves can be achieved by simply changing the depth or refractive 
index of a single deep subwavelength groove in the metal grating, and detailed physical explanation is given. With 
the increase of the groove depth or refractive index, the surface wave propagation characteristics show obvious 
periodic changes, which is essentially caused by the mode resonance between the surface modes and the groove 
cavity modes, similar to the Fano  resonance47–50. Moreover, under the mode resonance, the grating surface will 
form high-intensity local standing waves, which can be applied to deep subwavelength resonators or spasers.

Simulation and discussion
The metal grating (Fig. 1) has rectangular grooves with depth (d), width (w), and period (p). By simply adjust-
ing the main parameters of depth (d), width (w), and period (p), it can be designed to propagate or deceler-
ate EM waves of different frequencies, because the dispersion property of the grating is determined by theses 
 parameters11,13,45. In addition, as previously mentioned, the refractive index (n) of the material filling in the 
grooves can also affect the propagation of the EM waves. To further investigate how to control the surface 
EM waves by the mode resonance between the grating and its single groove, a metal grating model (Fig. 1) is 
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established and simulated by the finite difference time domain (FDTD) method. A special groove with gradual 
changes in refractive index (n) is marked in grey in Fig. 1. The grating model with a uniform cell of ∆x = ∆z = 1 μm 
is treated as a perfect conductor (PEC) during the FDTD simulation, and surrounded by a perfectly matched 
absorption layer. The depth and refractive index of the filling media of the single grey groove are the main param-
eters to control the propagation of surface waves. At 1000 μm to the left of the single grey groove, a p-polarized 
(Hy, Ex, Ez) THz source is introduced in the form of end fire excitation and used to excite the surface THz waves 
to propagate from left to right as shown by the black arrow in Fig. 1.

The cutoff frequency of a metal grating with period of 20 μm, width of 10 μm and depth of 10 μm is lower than 
4.6  THz45. Hence, a source of 3.75 THz is used to excite the propagating surface wave, which propagates smoothly 
along the grating until it encounters the special grey groove (as shown in Fig. 1). In the simulation process, we 
only change the depth and refractive index of the single grey groove. The surface wave intensities before and 
after the single groove are recorded by two monitors, respectively, so as to analyze the surface wave intensities 
reflected and transmitted by the single groove. According to the FDTD simulation results (Fig. 2), the surface 
wave intensities before (reflection) and after (transmission) the single groove are all changed periodically with the 
increase of groove depth (Δd) or refractive index (Δn). The intensity of electric field at localized points could be 
larger than “1” because of the joint contribution of mode resonance between plasmonic surface mode and groove 
cavity mode, and the interference between reflection surface wave and incident wave. For a grating working as 
a normal waveguide, the monitored intensity values at the reflection and transmission points are almost same 
and far below “1” as shown in Fig. 3. For example, at the zero point of Fig. 3a, Δn = 0, Δd = 0 μm, the grey groove 
is exactly same with other grooves, and the grating becomes a normal grating. Therefore, the transmission and 
reflection intensity are all approximately equal to “0.4”, which is a base intensity of the surface wave. When the 
reflection gradually increases and the transmission gradually weakens, the measured reflection intensity starts 
to be greater than “0.4”, while the transmission intensity is gradually less than “0.4”. Hence, the reflection and 
transmission intensity value are very different. It is also the reason why the scale bar value in Fig. 2a, b are dif-
ferent. The reflection intensity defined here is changing on the base intensity of “0.4” as shown in Fig. 2a.

For the single groove of Δn = 0 (n = 1) (Fig. 3a), the changing period of the surface wave intensity with the 
depth is approximately 30 μm. And the intensity peak shows a clear asymmetry shape, which is similar to the 
Fano resonance between the grating surface modes and groove cavity modes. When Δn = 0.5 (n = 1.5) (Fig. 3c), 
the changing period with depth is decreased to 20 μm (equals to 30 μm / 1.5), which means the effective wave-
length is decreased corresponding to the increase of refractive index. For Δd = 0 μm (Fig. 3b), the reflection of 
the surface wave is sharply increased first with the increase of Δn, and is decreased slowly after the peak (Δn ≈ 

Figure 1.  Schematic of metal grating showing width (w), period (p), depth (d), and refractive index (n) of the 
material filling in the single grey groove. The surface waves propagate along the direction of the X axis as shown 
by the black arrow.

Figure 2.  Intensity of surface waves at 3.75 THz before (a) and after (b) the single grey groove of varying depth 
(Δd) and refractive index (Δn).
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0.4) (black line in Fig. 3b). The transmission intensity (black line in Fig. 3b) of the single groove shows a trend 
opposite to the reflection intensity (red dashed line in Fig. 3b). However, there is no obvious periodicity because 
the single groove is not deep enough to form obvious mode resonance. When the depth of the single groove is 
increased to 50 μm (Δd = 40 μm) (Fig. 3d), a serials of strong periodical mode resonance are generated with the 
increase of Δn.

Utilizing the sharp asymmetry property of the Fano resonance, we can control the surface waves with high 
sensitivity and efficiency. As an example, two points marked in Fig. 3a and two points marked in Fig. 3d are 
chosen, respectively, to demonstrate the ability of surface wave manipulation. The two points marked in Fig. 3a 
correspond to the transmission peak at Δd = 32 μm and transmission valley at Δd = 36 μm, respectively for the 
surface wave (Δn = 0). It means that the excited surface wave with frequency of 3.75 THz can be propagated 
along the surface grating and transmitted over the single groove (Fig. 4a) when the single groove depth is 42 μm 
(Δd = 32 μm). However, when Δd = 36 μm, the propagated surface wave is almost totally blocked (Fig. 4b). Hence, 
we can precisely control the transmission or reflection of the surface wave by adjusting the depth of the single 
grey groove within a step range of 4 μm (< 1/20 λ).

In order to further understanding the mode interaction, the Poynting vector distributions around the single 
obstructed groove with different depth are shown in Fig. 4c (Δd = 32 μm), and Fig. 4d (Δd = 36 μm), respectively. 
For Δd = 32 μm, there are no resonance between the surface spoof plasmonics mode and groove cavity mode, 
and the metasurface works as a high efficient waveguide. The plasmonics mode is propagated along the surface 
and coupled from groove to groove (Fig. 4c). The groove cavity mode is formed in the single obstructed groove 
which is similar to a Fabry–Perot mode, which can be seen in Fig. 5 more clearly. However, when Δd = 36 μm, 
the resonance between the surface spoof plasmonics mode and groove cavity mode forms a new circle resonance 
mode as shown in Fig. 4e (the enlarged region marked by black dotted line in center of Fig. 4d), which is the 
physical reason of the deep subwavelength single grey groove can manipulate the surface wave.

Similarly, the two points marked in Fig. 3d correspond to the transmission peak at Δn = 0.5 and transmis-
sion valley at Δn = 0.6, respectively (Δd = 40 μm). Therefore, the propagated surface wave with frequency of 3.75 
THz can be transmitted when Δn = 0.5, but blocked when Δn = 0.6 (Fig. 5). It means that we can also control the 
transmission or reflection of the surface wave with a slight changing of refractive index (Δn = 0.1). Importantly, 
the transmitted or reflected waves are all enhanced to higher intensity than the normal surface waves by the mode 
resonance, which provide a new and easy way to obtain the controllable surface waves with enhanced intensity. If 
we want to use it for the refractive index sensing, the sensing sensitivity (Δλ/Δn) can be estimated by the trans-
mission curves at different refractive index as shown in Fig. 6 in the manuscript. Here, the transmission peak 
is not shifted with the refractive index changing as traditional sensor. The main difference of the square dotted 
black line (n = 1.5) and circle dotted red line (n = 1.6) is the existence of the transmission peak from wavelength 

Figure 3.  Intensity of surface waves before (black solid line) and after (red dashed line) the single grey groove 
of varying depth, Δn = 0 (a), Δn = 0.5 (c); and various refractive indices, Δd = 0 μm (b), Δd = 40 μm (d).
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of 78 μm to 82 μm. Hence, Δλ here could be the peak width (~ 4 μm). The refractive index sensing sensitivity 
(Δλ/Δn) is approximately 40 μm/RIU, which is already a competitive value comparing to typical  sensors22,51–53.

Figure 4.  Two-dimensional field distribution of EM wave with a frequency of 3.75 THz obtained through 
grating with a single obstructed groove of varying depth (Δn = 0). The increased depths of the obstructed groove 
are Δd = 32 μm (a), Δd = 36 μm (b). The Poynting vector distribution near the single obstructed groove with 
Δd = 32 μm (c), Δd = 36 μm (d). The Poynting vector distribution in the enlarged region marked by black dotted 
line in center of (d) is shown in (e).
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At last, the transmission spectrum of the single obstructed groove (Δn = 0, Δd = 36 μm) at around 3.75 THz 
(corresponding to wavelength of 80 μm) is presented in Fig. 7a. The plasmonic surface modes begin to appear 
from wavelength of 75 μm (black reflection curve), and all blocked by the mode resonance effect. The resonance 
effect begins to disappear at wavelength of 82 μm (red transmission curve), which demonstrates that the meta-
surface has a high sensitivity spectral response. The full-wave at half maximum (FWHM) of the square dotted 
black line peak is approximately 6 μm, which could be considered as the FWHM of the mode resonance spec-
trum peak. After wavelength of 85 μm, the reflection intensity and transmission intensity go into the same level. 
It means that the reflection field faded, and the metasurface works as a waveguide again. The Poynting vector 
distribution at wavelength of 84 μm is shown in Fig. 7b. The circle resonance mode shown in Fig. 4e is no longer 
exist, which also verifies the high sensitivity spectral response of the mode resonance.

Conclusion
It has been demonstrated that the propagation characteristics of surface waves can be efficiently controlled by 
a single deep subwavelength groove with only 4 μm depth changing (< 1/20 λ) or refractive index changing of 
0.1. We can use a few or more special grooves of different depth or refractive index located at different positions 
to manipulate the EM waves of different frequencies by the mode resonance between the plasmonic mode and 
groove cavity mode. The physical reason is the new circle resonance mode generation. It provides a new idea 
for the development of new THz devices. In addition, the intensity of the transmitted or reflected waves are all 
enhanced by the mode resonance, which is important for high sensitivity detection. From the application point 
of view, the depth or refractive index of the single groove is easy to change, which can provide a simple scheme 
to efficiently control the transmission characteristics of the EM wave at the deep subwavelength scale. Hence, it 
can further promote the development of THz compact devices and integrated technology.

Figure 5.  Two-dimensional field distribution of EM wave with a frequency of 3.75 THz obtained through 
grating with a single grey groove of varying refractive index (Δd = 40 μm). The increased refractive indices of the 
single groove are Δn = 0.5 (a), Δn = 0.6 (b).

Figure 6.  The transmission spectrum of the single groove (Δd = 40 μm) with different refractive index: n = 1.5 
(square dotted black line), n = 1.6 (circle dotted red line).
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