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Using blood data for the differential 
diagnosis and prognosis of motor 
neuron diseases: a new dataset 
for machine learning applications
Alberto Greco1*, Maria Rosa Chiesa2, Ilaria Da Prato2,5, Anna Maria Romanelli2, 
Cristina Dolciotti2, Gabriella Cavallini3, Silvia Maria Masciandaro2,5, Enzo Pasquale Scilingo1, 
Renata Del Carratore2 & Paolo Bongioanni4,5

Early differential diagnosis of several motor neuron diseases (MNDs) is extremely challenging due to 
the high number of overlapped symptoms. The routine clinical practice is based on clinical history and 
examination, usually accompanied by electrophysiological tests. However, although previous studies 
have demonstrated the involvement of altered metabolic pathways, biomarker-based monitoring 
tools are still far from being applied. In this study, we aim at characterizing and discriminating patients 
with involvement of both upper and lower motor neurons (i.e., amyotrophic lateral sclerosis (ALS) 
patients) from those with selective involvement of the lower motor neuron (LMND), by using blood 
data exclusively. To this end, in the last ten years, we built a database including 692 blood data and 
related clinical observations from 55 ALS and LMND patients. Each blood sample was described by 108 
analytes. Starting from this outstanding number of features, we performed a characterization of the 
two groups of patients through statistical and classification analyses of blood data. Specifically, we 
implemented a support vector machine with recursive feature elimination (SVM-RFE) to automatically 
diagnose each patient into the ALS or LMND groups and to recognize whether they had a fast or slow 
disease progression. The classification strategy through the RFE algorithm also allowed us to reveal 
the most informative subset of blood analytes including novel potential biomarkers of MNDs. Our 
results show that we successfully devised subject-independent classifiers for the differential diagnosis 
and prognosis of ALS and LMND with remarkable average accuracy (up to 94%), using blood data 
exclusively.

Motor neuron diseases (MNDs) represent a heterogeneous group of lethal neurodegenerative disorders whose 
causes are still largely  unknown1. The annual incidence is 2 per 100,000 and prevalence of 5–7 per 100,0002,3. 
MND leads to progressive muscle weakness and atrophy, with upper or lower motor neuron signs, or a mixture 
of them, due to the degeneration of pyramidal neurons in the motor cortex, cranial motor neurons, and anterior 
horn cells in the spinal cord. Amyotrophic lateral sclerosis (ALS) is the most common expression of the dis-
ease. It involves both upper and lower motor neuron symptoms. Less common variants are a pure upper motor 
neuron disease (UMND, primary lateral sclerosis), or a pure lower motor neuron disease (LMND, progressive 
muscular atrophy)4.

Even if the diagnosis of MND is correct in 95% of the cases, the absence of a specific diagnostic test makes 
it difficult to distinguish ALS from other MNDs with the selective involvement of the upper or the lower motor 
 neuron1,5, and to find specific therapeutic markers for different MND  types6. Indeed, ALS can come with a prog-
nostic outlook often ambiguous and undistinguishable compared to other  MNDs5. Recently, brain MRI studies 
have shown fast-progressing LMND as a possible ALS phenotypic variant, whereas slow-progressing LMND 
patients have been considered phenotypically different from ALS  patients7,8 (even if a clear and unique progres-
sion rate (PR) threshold has not been yet  identified7,9,10). In addition, symptoms may vary among individuals 
and, especially at the early stages of the disease, an in-depth neurological exam may have similar results for 
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different MNDs, making the differential diagnosis hard to apply. Particularly, neurologists often fail to make a 
diagnosis of ALS as compared to other MNDs within the first year of  illness11. The long latency in the differential 
diagnosis of most ALS/MND cases limits the possibility of a proper therapeutic  approach12,13. In contrast, an 
earlier diagnosis reduces the period of uncertainty for the patient allowing them to plan the future care and the 
essential support, which may have an impact on the progression of the  disease3.

The current formal diagnosis of ALS is clinical and based on the revised El Escorial  criteria4,14–16. Other tools 
such as neuroimaging, electrophysiology, and cerebrospinal fluid (CSF) have the limited role of excluding the 
possibility of alternative neurological conditions with similar  symptoms17. Previous studies on blood data have 
already proven the involvement of altered metabolic pathways in MNDs, despite limiting their investigation on 
ALS patients, i.e., the most common form of  MND18–22. However, biomarker-based monitoring tools are still far 
from being applied in the clinical  practice23. More specifically, Lu et al.23 have already evaluated the combined 
blood expression of neuromuscular and inflammatory biomarkers as predictors of disease progression and 
prognosis in ALS. Furthermore, ALS-specific systemic inflammatory signals have also been reported, including 
a reduced frequency of regulatory T cells in the blood in individuals with a faster disease  progression18–22. A 
common limitation of studies investigating MND-related blood analytes is due to the small number of analytes 
that are usually arbitrarily and heuristically chosen. A more innovative way to proceed might start from a bigger 
number of blood parameters later selected according to a data-driven strategy.

In this work, we introduce a new dataset containing diachronic clinical and biochemical data acquired over 
the last 10 years from both ALS and LMND patients. Each patient has been clinically followed up by the same 
experienced neurologist through periodical medical examinations and blood analysis until either today or his/
her death. Our dataset is unique in the scientific literature as every single record combines clinical outcomes with 
a remarkable collection of 108 common and rare blood analytes, including haemochrome indexes, haemostasis 
and metabolism parameters, routine functional profiles of the main organs, and inflammatory/immunological 
and oxidative markers.

Through the application of robust and well-validated statistical and machine-learning (ML) methods to this 
new dataset, we aim to detect specific patterns of blood analytes capable of automatically discriminating ALS 
from LMND patients helping out in the prognosis.

ML techniques have already been successfully applied to ALS data sets and some promising diagnosis models 
have been  proposed17. Prognostic models have been tested using clinical, biological, and neuroimaging  data17. 
However, to the best of our knowledge, there are no studies that have applied ML techniques to support a dif-
ferential diagnosis of different MNDs. The main limitation of classification performance is due to the small 
number of training samples compared to the large number of features. In our study, we have addressed the issue 
of the poor sample-to-feature ratio by successfully applying a feature selection algorithm that uses a backward 
elimination  procedure24,25. Thanks to this method, we identified the smallest but at the same time most informa-
tive subset of blood analytes with the aim of reducing the necessary number of blood analyses and, consequently, 
increasing the cost-effectiveness.

Methods
Standard protocol approvals, registrations, and patient consents. The ethical approval was 
obtained from the Tuscany Ethics Committee N◦ 14568. All participants signed an informed consent or, if this 
was not possible, gave their verbal permission for a carer to sign on their behalf. Moreover, all methods were 
carried out following relevant guidelines and regulations.

Patient recruitment criteria. Inclusion criteria. Our study included 726 blood samples acquired from 
41 ALS and 25 LMND patients, diachronically withdrawn during the last 10 years. Among these, we considered 
692 blood samples acquired from 35 ALS and 20 LMND patients to build the dataset and the classifiers presented 
in this work. The remaining 34 blood samples acquired from 6 ALS and 5 LMND additional patients were in-
cluded in the study at a later stage only for performance evaluation of the classification analyses (see “Generaliza-
tion performance evaluation” section).

All ALS and LMND patients underwent periodical electrophysiological examinations including electromyo-
graphy, electroneurography, and motor/magnetic evoked potentials. The patients were diagnosed and included 
in the study according to the El Escorial revised  criteria4,15. According to these criteria, the ALS patients showed 
the simultaneous presence of upper (cortical) and lower (brainstem or spinal) motor neuron signs such as spastic 
tone, hyperreflexia, clonus, pathologic reflexes; the indisputable progression of the disease; the absence of an 
alternative reasonable explanation for symptoms and signs. On the other hand, LMND criteria considered only 
patients with the exclusive presence of lower motor neuron signs combined with weakness, muscle atrophy, 
fasciculations, and the indisputable progression of the disease. Of note, we enrolled only “clinically definite” 
patients, namely those with clinical signs of the involvement of both the upper and lower motor neurons for the 
ALS group or of the exclusive involvement of the lower motor neuron for the LMND group, in three out of four 
body regions: bulbar, cervical, thoracic, and lumbosacral. More in detail, we enrolled in the study 14 ALS and 
6 LMND patients showing clinical signs in the bulbar, cervical, and lumbosacral regions; 7 ALS and 3 LMND 
patients in the bulbar, cervical, and thoracic regions; 5 ALS and 5 LMND patients in the bulbar, thoracic and 
lumbosacral regions; and 16 ALS and 11 LMND patients in the cervical, thoracic and lumbosacral regions.

It is important to note that LMND patients in the course of their disease could exhibit symptoms and signs 
related to the involvement of the upper motor neuron, and consequently fall within the diagnosis of ALS. 
Accordingly, we included in our study only LMND patients who kept exclusive involvement of the lower motor 
neuron over time: i.e., patients who were diagnosed with LMND one year or longer prior the study and did not 
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manifested any impairment of the upper motor neuron in the meantime. In addition, during the study, they were 
re-evaluated, and only those still meeting the criteria for “clinically definite” LMND were definitively considered.

Exclusion criteria. We excluded patients suffering from “clinically probable” or “clinically possible” ALS or 
LMND, namely those with clinical signs in one or two body regions only, respectively. Moreover, we excluded 
patients suffering from UMND and those clinically definite, probable, and probable-laboratory supported ALS 
or LMND also suffering from other neurological diseases (cerebrovascular, neuroinflammatory/immune or 
neurodegenerative), and/or severe brain injuries, and/or severe non-neurological illnesses (cardiovascular and 
blood diseases, kidney, liver or pancreas failure, immune disorders).

Data collection. Over the last 10 years, we have collected 692 clinical and blood data from 35 ALS and 20 
LMND patients approximately every 3 months. The data have been used to developing an on-going database 
including symptom onset (defined as the first patient-reported body weakness  complaint23, PR, and other clini-
cal data, together with 108 blood analytes (Table 1).

Clinical data. Clinical data include demographics, medical history, treatment information, and disease severity 
index. This latter was scored according to the revised form of the ALS Functional Rating Scale,  ALSFRSR26. In 
addition, we calculated the disease PR by subtracting the ALSFRSR score from 48 (i.e. the maximal ALSFRSR 
score) and dividing by the disease duration (from the symptom onset) expressed in  months23. Within both 
our ALS and LMND groups of patients, we considered two sub-groups according to their PR. Specifically, we 
defined a relatively slower progressing sub-group and a relatively faster-progressing sub-group using a cut-off of 
0.5 as  in23. Accordingly, within the LMND dataset, 185 blood data were labeled as “low PR” and 99 as “high PR”. 
Instead, concerning the ALS group, blood samples were divided into two groups of 259 and 149 data with low 
land high PR, respectively.

Lab data. Blood analytes (n=108) included haemochrome and routine profiles for kidney, liver, pancreas, 
and heart functions, together with haemostasis and metabolism parameters, inflammatory and immunological 
markers (lymphocyte subsets, immunoglobulins, cytokines and growth factors), and oxidative markers, which 
are thoroughly reported in Table 1.

Database description. We considered three different datasets: one including all the 692 clinical and blood data 
from both patient groups (all-patients), and two sub-datasets selecting only patients at their early disease stages, 
namely those with high scores ( ≥ 35/48 ) of ALSFRSR (hSc) and those within their first year from the symptom 
onset (1-y). More in detail, the hSc dataset represents a group of data taken from patients both with benign prog-
nosis (from the clinical outcome) and at the beginning of their disease course. This included 44 patients (30 ALS 
and 14 LMND) for a total of 143 blood samples. The 1-y dataset included 31 patients (20 ALS and 11 LMND) 
for a total of 70 blood samples acquired during the first year of the course of the disease, without considering 
the prognosis. Comparison between hSc /1-y ALS and hSc /1-y LMND might help us to get information for an 
early differential diagnosis.

Data are available upon reasonable request and verification of all ethical aspects, at p.bongioanni@ao-pisa.
toscana.it.

Statistical and classification analysis. The dataset comprising of 692 observations and 108 features, and 
its subsets described in “Data collection” section, were used to perform exploratory statistical analysis and to 
build five different pattern recognition systems.

Descriptive statistics. An exploratory group-wise statistical comparison between ALS and LMND patients was 
performed for each blood analyte. We used a non-parametric Mann-Whitney U test with a Holm-Bonferroni 
adjustment for multiple testing. The same non-parametric statistical analysis was used also to analyze possible 
statistical differences between both ALS and LMND patients with low (< 0.5) and high PR ( ≥ 0.5).

Classification analysis. For each of the three datasets described in “Database description” (i.e., all-patients, hSc, 
and 1-y), we performed a classification analysis aiming at distinguishing between the ALS and LMND groups 
using only blood data information. Moreover, a further classification analysis was performed on the complete 
dataset only to distinguish, within each of the two groups, between patients with high PR and low PR.

Our learning algorithm is based on a support vector machine (SVM) model. The SVM finds the decision 
boundary that maximizes the margin separating the two classes of training data points. However, due to the 
characteristics of our dataset, two main issues needed to be addressed: first, our data were not linearly separable, 
i.e., the boundary between the two classes could not be linear as in standard SVM; secondly, the very high num-
ber of features (i.e., analytes) compared to the number of data points led to a high overfitting risk, as well as less 
interpretable results. To solve the first issue, we adopted an RBF kernel that mapped the original input dataset 
into a new space where our data became linearly separable (using the “kernel trick”) (see Fig. 1). Alternatively, we 
can say that the RBF kernel made our decision boundary nonlinear. To address the second point, we employed a 
feature selection (FS) strategy. Particularly, we implemented a recently developed recursive-feature-elimination 
(RFE) algorithm embedded in the SVM model, including also a correlation bias reduction  strategy27. Embed-
ded FS ranked the features based on their importance in separating the two classes through a specific classifier, 
i.e., the SVM. Once we ordered the features, we iteratively removed the last ranked since it has the least effect 
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on classification. At each iteration step, we estimated the classification performance (i.e., accuracy) until all the 
features have been removed (Fig. 1). The later a feature was removed, the more important it was.

The classifier model was fit and evaluated through a leave-one-subject-out procedure (LOSO) which is a 
nearly unbiased estimator of the out-of-sample  error28–30. More in detail, within the LOSO scheme, consider-
ing N subjects, iteratively we split the feature-set into a training set, comprising of n observations from ( N− 1 ) 
patients, and into a test set comprising of the m observations from the remaining patient. This approach is indeed 
a highly reliable procedure, especially in the case of multiple correlated observations from the same  source31.

To solve the SVM optimization problem, we used the default hyper-parameters and solver suggested by LIB-
SVM  library32. Indeed, when FS algorithms are adopted, they already lead to a deep exploration of the hypothesis 
space. Therefore, a parameter tuning might often lead to an over-searching condition with consequent over-
optimistic accuracy estimation, as well as a high computational cost.

Table 1.  List of all analytes with the related acronyms and the group they belong to.

Inflammation and Immunology MON Absolute monocyte count Cell development and survival

APO1/FAS Apoptosis antigen-1/FAS MON% Monocytes percentage EGF Epidermal growth factor

BAS Absolute basophil count NEU Absolute neutrophil count EPO Erythropoietin

BAS% Basophils percentage NEU% Neutrophils percentage FGF Fibroblast growth factor

CD16+56 CD16+56+ lymphocytes PAlb Prealbumin IGF1 Insulin growth factor 1

CD19 CD19+ lymphocytes SAA Serum amyloid A PDGF Platelet-derived growth factor

CD25 CD25+ lymphocytes TNFα Tumor necrosis factor-alpha TGFβ1 Transforming growth factor 
beta 1

CD3 CD3+ lymphocytes TNFαR1 Tumor necrosis factor-alpha 
receptor I VEGF Vascular endothelial growth 

factor

CD4 CD4+ lymphocytes TNFαR2 Tumor necrosis factor-alpha 
receptor II Oxidative stress

CD40R CD40 receptor WBC White blood cells FRD Free radical derivatives

CD45 CD45+ lymphocytes Cell adhesion GPx Glutathione peroxidase

CD45RA CD45RA+ lymphocytes ICAM1 Intercellular adhesion mol-
ecule 1 GR Glutathione reductase

CD45RO CD45RO+ lymphocytes MMP9 Matrix metalloproteinase 9 SOD Superoxide dismutase

CD8 CD8+ lymphocytes Sel E Selectin E TPAO Total plasma antioxidants

CRP C reactive protein Sel L Selectin L Metabolism

EOS Absolute eosinophil count Sel P Selectin P ALT Alanine aminotransferase

EOS% Eosinophils percentage VCAM1 Vascular cell adhesion mol-
ecule 1 Amy Amylase

ESR Erythrocyte sedimentation rate Basics AST Aspartate aminotransferase

Fibr Fibrinogen α1GI Alpha1 globulin BA Biliary acids

γGl Gamma globulin α2GI Alpha2 globulin Bil Bilirubin

Ifnβ Interferon beta Alb Albumin Chol Total cholesterol

IgA Immunoglobulin A β1GI Beta1 globulin CK Creatine kinase

IgE Immunoglobulin E Ca Calcium Cre Creatinine

IgG Immunoglobulin G Cl Chloride Fe Iron

IgM Immunoglobulin M Hb Hemoglobin Fer Ferritin

IL1 Interleukin 1 Hct Hematocrit Fol Folate

IL2 Interleukin 2 INR International normalized ratio GGT Gamma glutamyltransferase

IL3 Interleukin 3 K Potassium Glu Glucose

IL4 Interleukin 4 MCH Mean corpuscle hemoglobin HDL High-density lipoprotein Chol

IL5 Interleukin 5 MCHC Mean corpuscle hemoglobin 
content LA Lactic acid

IL6 Interleukin 6 MCV Mean corpuscle volume LDH Lactic dehydrogenase

IL7 Interleukin 8 Mg Magnesium Lip Lipase

IL8 Interleukin 10 Na Sodium Tran Transferrin

IL6 Interleukin 12 P Phosphorus Trig Triglicerids

IL2R Interleukin-2 receptor Plt Platelet Urea Urea

IL6R Interleukin-6 receptor PT Prothrombin time VitB12 Vitamin B12

LYM Absolute lymphocyte count PTT Partial thromboplastin time

LYM% Lymphocytes percentage PTTr Partial thromboplastin time 
ratio

MCP1 Monocyte chemoattractant 
protein RBC Red blood cells
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In summary, the employed method combined both the possibility of a nonlinear model and an FS strategy 
that also mitigates the bias due to correlated  features27. Particularly, FS had a crucial role not only to maximize 
the classification accuracy and reduce the overfitting risk, but also to allow us to remove the irrelevant, noisy, and 
redundant analytes highlighting the most informative  subset9,33. Previous studies have proved that embedded 
FS, i.e., scoring features based on the output of a predictive model, commonly outperform the other FS strategies 
such as Filter and Wrapper  approaches9,33. Of note, further embedded approaches for reducing the dimension of 
the feature space were tested, e.g. LASSO-based models such as L1-SVM and LASSO binomial generalized linear 
model. However, very poor results were achieved, probably because L1-regularization does not enable employing 
the RBF kernel, which has proved to play a crucial role in the good classification of our datasets.

Generalization performance evaluation. As mentioned in “Lab data”, to measure the classifier generalization 
performance, we recruited 11 additional patients (6 ALS and 5 LMND) to build an independent test set com-
prised of 34 new blood samples. These patients were included in the study only at the end of the model identifica-
tion analyses to estimate the generalization error in an unbiased way. Since this test set did not include patients 
at the early stage of the disease, it was used to test the generalization performance of only three classifiers: (i) 
ALS versus LMND considering the all-patients dataset, (ii) High versus Low PR considering the ALS dataset, 
and (iii) High versus Low PR considering the LMND dataset. It is worthwhile noting that, unlike the training 
and validation sets, such a test set included only the reduced subset of analytes previously selected through the 
LOSO validation procedure.

Results
In this section, we present the results obtained from both statistical analysis and classification. The section is 
organized into sub-sections according to the kind of comparison (ALS versus LMND or high PR versus Low 
PR), the dataset considered, and the kind of analysis (statistics and classification).

ALS versus LMND statistical comparison. All-patients dataset. Concerning the dataset that includes 
the whole group of patients, we observed that most of the analytes’ average values were within the normal 
healthy ranges for both ALS and LMND (except for IGF1, MMP9, ICAM1, VCAM1, and IgE). Instead, the re-
sults of the statistical comparison revealed several analytes that significantly differed between ALS and LMND.

The list and relative descriptive statistics of the significant analytes (corrected p value < 0.05 ) are shown 
in Table 2. The most relevant differences are described hereafter. Specifically, ALS had a significantly inferior 
quantity of RBC, but in a larger size (MCV) and containing more Hb (MCH, MCHC) than LMND. Chol and 
Trig blood content was also higher in the LMND group as well as the number of growth factors (FGF and IGF1) 
and cell-adhesion molecules (ICAM1 and VCAM1). Instead, ALS patients showed a higher level of Fe and Fer 

Figure 1.  SVM-RFE with correlation bias reduction—conceptual scheme.
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Analyte Median ± MAD (ALS) Median ± MAD (LMND) p values

Dataset: all-patients

IgG 1190  ±  206.5 1000  ±  161.5 7.92E−18

MCH 30.2  ±  1.2 28.9  ±  1 6.96E−17

γGl 16.25  ±  2.65 13.8  ±  2.2 7.39E−17

α2Gl 9.5  ±  0.9 11  ±  1.5 8.58E−17

CD19 9.7  ±  2.6 12.2  ±  2.5 1.69E−15

GPX 40.75  ±  10.7 30.2  ±  8.1 2.75E−15

βGl 6.1  ±  0.6 7  ±  1 2.25E−14

P 3.1  ±  0.4 2.6  ±  0.48 1.92E−11

IgM 107  ±  36 69  ±  31 3.83E−11

MCV 89.45  ±  3.05 87.7  ±  2.6 1.76E−10

Lip 28  ±  7 35  ±  9 6.20E−10

FGF 1.6  ±  0.9 2.5  ±  1.4 1.85E−09

Chol 177.5  ±  30.5 199  ±  23 2.70E−09

Bil 0.69  ±  0.26 0.5  ±  0.11 5.10E−09

IL12 104  ±  49 158  ±  70 5.01E−08

VCAM1 856  ±  253.5 1077  ±  401 6.80E−08

RBC 4.465  ±  0.325 4.78  ±  0.26 8.45E−08

MMP9 556  ±  261.5 784.5  ±  203.5 1.43E−07

CD3 75.45  ±  4 72.3  ±  4.1 1.72E−06

MON% 6.85  ±  1.25 5.8  ±  1.2 4.62E−06

IL6R 141  ±  29 162  ±  43 9.42E−06

TNFR2 3.35  ±  1.25 4.2  ±  1.7 1.05E−05

Fer 147  ±  103 65  ±  51 1.84E−05

IL2R 1.5  ±  0.5 2.2  ±  0.9 7.08E−05

Gluc 85  ±  7 90  ±  10 7.10E−05

IL3 4.55  ±  3.05 2.6  ±  2 1.26E−04

CD4 45.9  ±  4.5 41.8  ±  3.7 2.45E−04

Fe 88  ±  22 80  ±  16 2.72E−04

IgA 196  ±  53.5 189  ±  84 2.95E−04

IGF1 133  ±  44.75 146  ±  44 8.11E−04

PLT 216  ±  59.5 245  ±  35 8.74E−04

MCHC 33.3  ±  0.7 32.8  ±  0.8 9.01E−04

NEU% 62.7  ±  4.85 65.4  ±  4.4 1.20E−03

TNFR1 1.7  ±  0.5 2.1  ±  0.6 1.27E−03

Tran 227  ±  23 241  ±  37 1.83E−03

NEU 3.99  ±  0.83 4.59  ±  0.99 2.44E−03

CK 105.5  ±  43.5 78  ±  46 2.49E−03

AST 23  ±  5 21  ±  4 2.81E−03

Trig 110  ±  34 139  ±  63 4.24E−03

IgE 36.5  ±  12.5 26  ±  11 8.47E−03

GGT 19  ±  6 23  ±  11 8.47E−03

PTT 29.9  ±  1.9 30.9  ±  1.9 9.57E−03

IL8 2.4  ±  1.1 1.8  ±  1 1.20E−02

ICAM1 295  ±  80 338  ±  79 1.41E−02

K 3.89  ±  0.18 3.96  ±  0.21 1.74E−02

LA 11.95  ±  3.35 12.8  ±  3.4 2.91E−02

TNF 5.6  ±  3.8 9.1  ±  6.5 4.06E−02

Dataset:hSc

Tran 221  ±  19.5 270  ±  40 1.89E−05

CD8 25.9  ±  5.5 33.4  ±  5 4.03E−04

P 3.1  ±  0.4 2.4  ±  0.53 8.51E−04

IL3 5.1  ±  3.95 1.3  ±  1.1 0.0013

β1Gl 5.85  ±  0.55 7.3  ±  2 0.0028

Fer 209  ±  133 61  ±  53 0.0035

Ca 9.4  ±  0.5 8.9  ±  1.1 0.0035

Continued
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(associated with a reduced amount of Tran), and higher values of CK (associated with lower values of LA) than 
LMND. From the inflammatory-immunological analyte group, ALS patients had a lower amount of alpha- and 
beta-globulin, but a higher number of gamma-globulins as well as IgG, IgA, IgM, and IgE content. Other relevant 
immunological biomarkers were found significantly different between the two patients’ groups: ALS showed 
higher amounts of CD3 and CD4, IL3, IL8, and lower levels of CD19 lymphocytes, soluble IL2R, soluble IL6R, 
TNF, TNFRs, and IL12 (Table 2).

hSc and 1-y datasets. When we consider only the subset of patients with high ALSFRSR (i.e., hSc group), we 
note that ALS patients had average lower values of Tran and higher levels of iron than LMND ones. Moreover, 
also in this case, several immunological biomarkers were found significantly different between the two patients’ 
groups (see Table 2): results revealed a higher percentage of CD4 cells and IL3 as well as a significantly lower 
percentage of CD8 and CD25 cells in the hSc-ALS group. Focusing on the 1-y dataset, 1-y-LMND patients had a 
significantly higher level of soluble IL2R than 1-y-ALS patients.

ALS versus LMND classification results. The results of the SVM-RFE automatic classification between 
ALS and LMND patients using the different datasets described in “Data collection” section are shown in Fig. 2. 
Considering the whole group of patients (all-patients dataset), we achieved maximum recognition accuracy of 
72.53 %. This accuracy was obtained by selecting only the first 6 most informative analytes according to the RFE 
criterion (Fig. 2A). Taking into account only those patients at an early stage of the disease (i.e., hSc and 1-y data-
sets), the maximum accuracy increases to 81.25 % for the hSc dataset using 11 analytes (Fig. 2B), and to 93.94% 
for the 1-y dataset combining the first 10 ranked features (Fig. 2C).

Most informative selected analytes Exploring the analytes selected by the RFE algorithm (see Table 2), it is 
worthwhile noting that Cre, Tran, P, Ca are in the first positions among the selected analytes in the three classi-
fications. However, the most informative ranked analytes are the immunological ones: 3 out of 6 considering the 
all-patients dataset, i.e., monocytes%, IgM, and CD3 lymphocyte counts; 5 out of 11 considering the hSc group, 
i.e. IgE, IgM, absolute leucocyte counts, CD4 and CD8 lymphocyte; 5 out of 10 considering the 1-y group, i.e., 
IgE, IgG, γGl, CD4 and CD8 lymphocyte counts.

Test set evaluation The generalization performance of the classifier fitted on the all-patients dataset was 
assessed also on the test set of 11 patients described in “Generalization performance evaluation”. The result 
revealed an accuracy of 70.59%, i.e., consistent with the performance estimated by the LOSO procedure.

Low versus high progression rate statistical comparison. Table 3 shows the results of the statistical 
comparison between patients with high and low PR, for the ALS and LMND datasets, respectively.

ALS dataset. In the fast progressive ALS group, we found higher levels of Ca, K, Mg, P, Vit B12, Fol, Chol HDL, 
ESR, and Amy than in the LMND group. On the other hand, in slowly progressing ALS, we found more baso-
phils (BAS), a higher percentage of CD3 and CD8 cells, and higher levels of LDH, albumin, IgG, IL4, IL10, IL2R, 
IL6R, EPO, ICAM1, ERS, associated with lower percentages of CD16+56 and CD45 cells.

LMND dataset. Considering the LMND group, we observed higher levels of VitB12, Fer (associated with lower 
values of Tran), ALT, GGT, and LDH in the fast progressive LMND group than in the slow progressive one. 
Moreover, the fast progressive LMND showed also a reduced quantity of MON, EOS, TPAO, ESR, K, and Na; 
whereas the soluble IL2R and IGF1 resulted higher than in the slow progressive one.

Low versus high progression rate classification results. Concerning the automatic recognition of 
fast and slow progressive ALS and LMND patients, high accuracy was achieved for each of the two groups. 
Particularly, considering the ALS patients, we obtained 87.25% of accuracy by using the first 16 ranked analytes 
(Fig. 3A). Likewise, considering the LMND patients, we achieved an accuracy of nearly 93 % by using the first 
12 ranked analytes (Fig. 3B).

Analyte Median ± MAD (ALS) Median ± MAD (LMND) p values

Fe 86  ±  16.5 73  ±  18 0.0196

CD25 2.1  ±  0.6 3.1  ±  1.2 0.0197

CD4 47.75  ±  4.45 42.5  ±  5.7 0.0239

GPX 38.55  ±  9.55 28.9  ±  7.6 0.0239

MCH 29.85  ±  1.05 29  ±  1.1 0.0441

Dataset: 1-y

IL2R 1.5  ±  0.45 2.3  ±  0.9 0.0235

Table 2.  List of significantly different blood analytes between ALS and LMND, and the related descriptive 
statistics (median and median absolute deviation, MAD).
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Figure 2.  Classification accuracy trend of the ALS versus LMND recognition model as a function of the first 
30 selected blood analytes. The red marker indicates the maximum accuracy. (A) The result achieved on the 
all-patients dataset (i.e., maximum accuracy of 72.53% combining the first 6 ranked features). (B) The result 
achieved on the hSc dataset (i.e., maximum accuracy of 81.25% combining the first 11 ranked features). (C) The 
result achieved on the 1-y dataset (i.e., maximum accuracy of 93.94% combining the first 10 ranked features).
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Most informative selected features The list of selected analytes is shown in Table 2. In both groups, the highest 
recognition accuracy was achieved by a combination of analytes of different origins. Interestingly, Chol, HDL, 
Fer, VitB12, CD16+56, and MCP1 are shared between the ALS and LMND datasets.

Test set evaluation The results of the generalization performance assessment on the test set showed an accuracy 
of 81.25% for the ALS group and 90.91% for the LMND one, confirming the very good performance estimated 
by the LOSO procedure.

Discussion
In our study, we introduce a novel dataset of blood data and present an ML approach aiming at supporting 
clinicians in making a differential diagnosis of MNDs. Specifically, the applied learning algorithm is able to dis-
criminate ALS from LMND patients, using blood data information exclusively. Moreover, our approach is able 
to predict the prognosis of MND patients with remarkable accuracy, recognizing whether the patients have high 
or low disease progression. Our results are obtained performing an automatic selection of the best combination 
of blood analytes ensuring the maximum classification accuracy.

Over the last 10 years, we have enrolled 55 ALS and LMND patients and collected 692 blood samples from 
which 108 blood parameters have been extracted. This outstanding collection of blood analytes together with a 
large number of blood samples is unique in the scientific literature and grants an important value to our results. 
Moreover, most of the studies focus on more invasive and expensive methods, such as CSF analysis or neuro-
imaging, not suitable for repeated sampling over time, rather than routine investigations. Indeed, plasma, easily 
available, represents an attractive biological fluid for the detection of biomarkers, and extensible CSF-based 
 biomarkers34. ML models and large datasets offer unprecedented opportunities to appraise candidate diagnostic, 
monitoring, and prognostic  biomarkers17. Our database has been used as input of an SVM-RFE algorithm. This 
method together with the LOSO cross-validation strategy allows mitigating the risk of confounding classification 
results (i.e., overfitting), which cannot be underestimated with such a number of features (i.e., 108). Indeed, on 
the one hand, the LOSO strategy reduces the risk of a biased optimistic estimation of the classifier accuracy avoid-
ing the presence of observations of the same subject in both the training- and test-set. On the other hand, the RFE 
algorithm reduces the dimension of the dataset and, at the same time, selects the combination of analytes that 
maximizes the accuracy using the SVM classifier. To our knowledge, this is the first study, which investigates and 
develops characterization and classification of different MNDs (ALS and LMND) at single-subject level, based 
on blood data alone. In addition, a better understanding as well as an early recognition and prognosis of ALS 
and LMND may have a significant impact on research activities concerning not only the differential diagnosis 
but also the development of specific differentiated treatment of ALS and other MNDs. To this end, given the 
little progress that has been made in these last years, a novel system able to support the clinical practice is highly 
desirable. Our results showed a good prediction accuracy (72.53%) in recognizing the disease form of the patient 
under examination (ALS vs. LMND) that even strongly increased when the early stage of the disease was con-
sidered (81.25% based on the ALSFRSR, and 93.94% considering the first year of the disease). The three patients’ 
subgroups are associated with different combinations of blood parameters (Table 2), which allow discriminat-
ing between ALS and LMND with the highest accuracy. On the one hand, our selected analytes confirmed the 
importance of blood immunological properties in the discrimination of MNDs, as already reported by Lu et al23. 
In fact, we found that, among the selected analytes, most were inflammatory and immunological. Accordingly, 
some of the most relevant information was found in the leukocytes and their related analytes (i.e., lymphocyte 
subsets and immunoglobulins). Some of these analytes were highlighted also in the univariate statistical analysis. 
Particularly, ALS as compared with LMND patients were characterized by increased percentages of CD3, CD4, 
and CD8, as already observed in ALS patients compared to healthy  controls35, as well as higher levels of IgM. On 
the other hand, our classifier revealed the importance of some non-standard predictive features such as P,  Cre36, 
and  Tran37, which have been only recently indicated as factors related to the disease and potential markers and 
are still under study. Such data could highlight important new mechanisms related to the disease. Moreover, our 
statistical results have indicated significant differences in other recently proposed non-standard potential markers 

Table 3.  List of the most informative features selected by the SVM-RFE for each ALS/LMND classification.

Dataset All-patients hSc 1-y

Accuracy 72.53% 81.25% 93.94%

Selected feature ranking

Cre P Chol

Tran Ca CD8

MON% WBC IgG

α2Gl CD8 γGl

IgM MCHC HDL

CD3

PT PT

IgM Trig

MCH CD4

IgE IgE

CD4
PTT

SelE
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ANALYTE Median ± MAD (Low PR) Median ± MAD (high PR) p values

ALS patients

Ca 9.3  ±  0.3 9.7  ±  0.3 1.74E−19

Chol 161  ±  37 202  ±  25 4.72E−18

PT 94  ±  7 104  ±  7 1.01E−14

INR 1.04  ±  0.06 0.99  ±  0.04 1.59E−13

α2Gl 9.1  ±  0.8 10.2  ±  1 1.49E−12

Mg 1.93  ±  0.17 2.11  ±  0.14 2.14E−10

P 2.9  ±  0.5 3.3  ±  0.3 1.21E−09

VitB12 422  ±  115 530  ±  135 1.65E−09

HDL 48  ±  11 56  ±  10 2.28E−09

VES 10  ±  8 24  ±  13 1.21E−06

PLT 195  ±  68 244  ±  44 2.92E−06

α1Gl 3.9  ±  0.6 4.4  ±  0.5 1.05E−05

CD45 98.8  ±  0.3 99.1  ±  0.3 1.32E−05

BAS% 0.5  ±  0.2 0.4  ±  0.1 1.83E−05

CD8 29.5  ±  4.7 23.9  ±  5.5 3.16E−05

K 3.82  ±  0.19 3.96  ±  0.15 4.10E−05

MCH 30.6  ±  1.1 29.6  ±  1.1 0.00044

IL6R 149  ±  27 122  ±  28 0.0005

BAS 0.03  ±  0.01 0.02  ±  0.01 0.00078

ERS 0.31  ±  0.233 0.179  ±  0.105 0.00121

IL10 3.3  ±  2.1 2.2  ±  0.9 0.00194

Fol 6  ±  2.4 7.5  ±  2.9 0.00196

FRD 333  ±  64 295  ±  53 0.00215

IL4 0.5  ±  0.3 0.4  ±  0.1 0.00517

Alb 60.2  ±  2.9 57.6  ±  3.6 0.00525

IGG 1220  ±  200 1067  ±  208 0.00534

CD16 +56 11.8  ±  2.6 15.4  ±  5.7 0.00629

PTT 30.2  ±  2.2 29.5  ±  1.5 0.01372

BA 6  ±  1.9 7  ±  2.1 0.01568

MCV 90.3  ±  3.3 89.1  ±  2.8 0.02522

Cl 103  ±  2 102  ±  2 0.02843

ICAM1 318  ±  80.5 270  ±  60 0.03073

LA 11  ±  3.5 12.4  ±  2.1 0.03414

CD3 76.5  ±  3 72.9  ±  5.9 0.03414

EPO 12.6  ±  5.3 9.7  ±  2.3 0.03554

LDH 213  ±  57 185  ±  26 0.03556

IL2R 1.6  ±  0.6 1.4  ±  0.4 0.03556

Amy 50  ±  16 59  ±  16 0.04246

PTTr 1.01  ±  0.06 1  ±  0.05 0.04774

LMND patients

Fer 49.5  ±  31.5 264.5  ±  100 1.41E−20

VitB12 432  ±  100 750  ±  235 6.04E−12

Tran 269  ±  46 213  ±  17.5 7.02E−12

MCHC 32.6  ±  0.7 34.1  ±  0.9 9.35E−11

IL2R 1.9  ±  0.7 3.8  ±  1.55 4.64E−08

PTTr 1.05  ±  0.05 1  ±  0.07 2.63E−07

MON% 6.2  ±  1 4.5  ±  1 1.24E−06

K 4.03  ±  0.22 3.79  ±  0.16 4.12E−06

ALT 19  ±  6 28  ±  8 3.63E−05

EOS% 2.5  ±  1.1 1.45  ±  0.45 1.15E−04

IGF1 132  ±  34 183  ±  51 1.13E−04

PTT 31.2  ±  1.6 29  ±  2.15 1.19E−04

PLT 250  ±  30 219  ±  38.5 5.67E−04

EOS 0.16  ±  0.05 0.11  ±  0.04 0.00157

MON 0.4  ±  0.08 0.325  ±  0.075 0.00159

Continued
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Table 4.  List of significantly different blood analytes between high and low PR patients within the ALS and 
LMND groups.

ANALYTE Median ± MAD (Low PR) Median ± MAD (high PR) p values

NEU% 64.55  ±  4.35 68.4  ±  4.95 0.00314

HCT 41.9  ±  2.2 38.8  ±  2.2 0.00444

GGT 19.5  ±  7.5 59  ±  44 0.01028

TPAO 1.085  ±  0.2 0.96  ±  0.205 0.01072

Na 140  ±  1 139  ±  2 0.03027

ERS 22  ±  7.5 14.5  ±  11.5 0.04039

Bil 0.5  ±  0.1 0.605  ±  0.17 0.04039

LDH 173  ±  43.5 213  ±  37.5 0.049
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Figure 3.  Classification accuracy trend of the low versus high progression rate recognition model as a function 
of the first 30 selected blood analytes. The red marker indicates the maximum accuracy. (A) The result achieved 
on the ALS dataset (i.e., maximum accuracy of 87.25% combining the first 16 ranked features). (B) The result 
achieved on the LMND dataset (i.e., maximum accuracy of 92.80% combining the first 12 ranked features).
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such as RBC, MCH, and  MCV38, ICAM1 and  VCAM139, FGF and  IGF140, and  MMP941. Future investigations 
on them might have a strong impact on translational medicine, helping to provide early diagnosis of MNDs. 
Concerning the disease progression, by means of an ML approach, we succeeded in classifying slowly versus 
fast progressive ALS and LMND patients with very good prediction accuracy (87.25% and 92.8%, respectively), 
indicating the potential of blood analyte measurements for prognostic purposes. Exploring the selected blood 
analytes for the evaluation of prognosis, we found that the RFE algorithms were able to select a common group 
of markers for both diseases: VitB12, CD16+56, Chol, HDL, and Fer. As far as VitB12 is concerned, no correla-
tion data of its endogenous levels to disease severity have been reported. CD16+56 has been found higher in 
ALS patients compared to healthy  controls35. Contrasting results are still reported for  Fer42 or Chol and  HDL43 
as biomarkers, nevertheless, some studies suggest that hyperlipidemia is a protective factor in  ALS13. This could 
suggest that the aforementioned analytes play a crucial role in differentiating the disease progression regardless 
of the type of MNDs. More in detail, from the statistical comparison we observed that VitB12 was significantly 
higher in fast versus slow progressive patients for both ALS and LMND groups. Whereas, on the one hand, sig-
nificantly higher amounts of Chol and HDL characterized fast PR in ALS patients exclusively, on the other hand, 
higher Fer levels were related to fast PR in the LMND group only. Of note, since the resulted optimal learning 
model only requires the acquisition of few blood analytes, some of them typical of routine clinical analysis, not 
only the risk of overfitting is strongly mitigated, but this leads to a diagnosis and prognosis support tool with 
reasonably low costs.

Due to the difficult and the slow process of recruiting such kinds of patients, the high economic cost for the 
biochemical analyses, and the strict inclusion criteria, the patient sample size is limited, even if the number of 
blood samples is large. Moreover, when the hSc and 1-y, as well as the PR classification problems are considered, 
the datasets are subjected to a decrease in the number of observations. This might induce a higher risk of over-
fitting. For this reason, the applied methodological strategies were specifically conceived to mitigate the risks 
due to a non-large number of recruited patients and to make our 692 observations enough to achieve positive, 
robust, and replicable results. It is worthwhile noting that even considering the prediction accuracy achieved 
after selecting only the first five most informative features, and consequently reducing the complexity of the 
model and the overfitting risk, recognition accuracy of over 75% was always reached in all classification tasks, 
except for the hSc problem where 6 features were necessary. Moreover, to test the generalization performance of 
the proposed recognition systems, and, therefore, the possibility to export our results in a real clinical scenario, 
we tested the fitted model on a test set including 11 new patients. The results confirm even in this case very 
high accuracy consistent with that estimated during the LOSO procedure. This is a further confirmation of the 
robustness of our recognition system suggesting good replicability of our results, and the fact that the relatively 
low amount of data did not strongly affect the reliability of the results.

In conclusion, this study, besides strengthening the importance of the immunological components in the 
MNDs diseases, raises many questions about those analytes (widely used but trivial) that have shown to be 
important in the discrimination of ALS and LMND but not yet specifically related to the different types of MNDs. 
On the other hand, the immunological information is not sufficient if it is not supported by other blood analytes 
that so far have been considered non-standard markers for neurodegenerative diseases. Moreover, our data and 
results strongly support the hypothesis that ALS and LMND represent two different diseases, whereas in many 
cases they are considered and treated as a single one.

Table 5.  List of the most informative features selected by the SVM-RFE for each High PR/Low PR 
classification problem.

Patient group ALS LMND

Accuracy 87.25% 92.8

Selected feature ranking

BAS IgA

Chol Fer

Hb VitB12

MCP1 PTTr

MCV Alb

Fer MCP1

HDL Tran

a2Gl NEU%

Ca Trig

CD16+56 HDL

FRD CD16+56

VitB12

Chol

CD19

IL6R

LA

PT
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Although significant p-values were reported for several analytes, the confidence intervals (Median ± MAD) 
should not be translated into a list of cut-offs levels to be used in the clinical practice. Indeed, despite the statistical 
significance, such intervals are often strongly overlapped between the two groups under comparison as well as fall 
within the ranges of healthy controls. On the other hand, our classification system might provide the clinicians 
with an automatic tool that can easily support the differential diagnosis of the LMND and ALS patients, show-
ing the resulted class with the related accuracy level, in an easier and more interpretable way compared to the 
statistical cut-offs. It is also surprising to note that the accuracy increased when data related to the first year from 
the onset of the symptoms are considered. Consequently, our results can support the clinician in differentiating 
between the two diseases at the very early stage of the disease, whereas, with the normal clinical practice, it is 
often difficult to understand the actual involvement of the upper motor neuron.

From the methodological point of view, this study does not add a significant innovation in the machine 
learning field, although the selected method perfectly fits the aims of our study and the specifications of our 
type of data. However, this study can be considered as an onset for future innovative methodological applica-
tions. Indeed, data collection will go on to increase the number of patients and blood samples. This will give the 
possibility to apply deep learning-based classification methods, which might lead to further improvement of 
the classification performance.

To sum up, this work introduces a new tool to apply automatic techniques for the diagnosis and prognosis of 
different MNDs and paves the way for future research in which clinicians and scientists will search for an effec-
tive treatment for MNDs following a differential and selective approach. Our next study will deeply investigate 
these analytes that have been automatically selected using a data-driven approach and will compare these results 
with those achieved including some a priori clinical knowledge in the learning models. Moreover, hierarchical 
regression models will be employed to predict the disease progression at a single-subject level.
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