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Mutational processes in cancer 
preferentially affect binding 
of particular transcription factors
Mo Liu1,2, Arnoud Boot1,2, Alvin W. T. Ng1,2, Raluca Gordân3 & Steven G. Rozen1,2*

Protein binding microarrays provide comprehensive information about the DNA binding specificities 
of transcription factors (TFs), and can be used to quantitatively predict the effects of DNA sequence 
variation on TF binding. There has also been substantial progress in dissecting the patterns of 
mutations, i.e., the "mutational signatures", generated by different mutational processes. By 
combining these two layers of information we can investigate whether certain mutational processes 
tend to preferentially affect binding of particular classes of TFs. Such preferential alterations of 
binding might predispose to particular oncogenic pathways. We developed and implemented 
a method, termed "Signature-QBiC", that integrates protein binding microarray data with the 
signatures of mutational processes, with the aim of predicting which TFs’ binding profiles are 
preferentially perturbed by particular mutational processes. We used Signature-QBiC to predict 
the effects of 47 signatures of mutational processes on 582 human TFs. Pathway analysis showed 
that binding of TFs involved in NOTCH1 signaling is strongly affected by the signatures of several 
mutational processes, including exposure to ultraviolet radiation. Additionally, toll-like-receptor 
signaling pathways are also vulnerable to disruption by this exposure. This study provides a novel 
overview of the effects of mutational processes on TF binding and the potential of these processes to 
activate oncogenic pathways through mutating TF binding sites.

While the oncogenic effects of mutations in the coding sequences of genes have been intensively studied, relatively 
little is known about the possible oncogenic effects of mutations in noncoding sequence—98% of the human 
genome. Among noncoding sequences, promoters and other cis-regulatory elements are known to be function-
ally important, and therefore mutations within these regions are especially likely to contribute to oncogenesis. 
Transcription factors (TFs) recognize and bind to short DNA sequences (usually ~ 10 nucleotides long), often in 
the proximal promoter regions of a gene the TF regulates. The binding of the TF then enhances or represses the 
gene’s transcription. A mutation in a TF binding site can lead to a dramatic increase or decrease of TF’s binding 
affinity, and hence the expression of target genes. Despite the potential impact of mutations in promoter regions 
on oncogenesis, however, at present only a few oncogenic mutations in cis-regulatory regions have been identi-
fied. Oncogenic mutation-induced gain of binding sites for ETS (E-twenty-six)-family transcription factors in 
the promoter of the TERT gene is the most prominent  example1,2.

Protein-binding microarray (PBM) studies have provided systematic, high-throughput data on the effects of 
sequence changes on TF binding  affinity3,4. A PBM is a microarray in which each of ~ 40,000 features contains 
a collection of 60-base-pair duplex DNA probes, all with a particular sequence. A glutathione S transferase 
(GST)-epitope-tagged TF is allowed to bind to the DNA duplexes on the array, after which a fluorescently labelled 
anti-GST antibody provides a readout of TF concentration at each feature. A universal PBM is one in which the 
probes contain multiple instances of all possible 8-mers5.

There are several approaches for inferring sequence-dependent changes in binding affinity from universal 
PBM image intensity data. Here, we use QBiC (Quantitative predictions of TF Binding Changes due to sequence 
variants)6. Briefly, QBiC estimates binding of one TF to a given 6-mer using ordinary-least-squares regression 
to fit a model in which the log of the fluorescent intensity of a feature is the dependent variable and the number 
of instances of the given 6-mer in the feature is the independent variable. The fitted coefficient then provides an 
estimate of the binding. So, for example, when intensity is low despite multiple copies of the 6-mer in the probe 
sequence, the fitted coefficient will be small, indicating weak binding. Conversely, if intensity rises markedly 
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as a function of the number of 6-mers, the coefficient will be larger, indicating stronger binding. Six different 
6-mers overlap a single position, spanning a total of 11 base pairs. Based on the binding change effect of the 
6-mers overlapping a single point mutation, QBiC estimates the effect of every single-nucleotide change in the 
center of every 11-mer. We selected QBiC rather than other approaches to predict binding because of reports 
that QBiC outperformed DeepBind and position weight matrix (PWM) models in predicting in vitro TF bind-
ing changes and allele-specific binding in vivo6. The PBM data on which QBiC is based contain information on 
582 human TFs.

In parallel with the recent growth of PBM-based TF-binding data, next-generation sequencing has enabled 
the systematic study of the signatures of mutational processes in 10 s of thousands of  tumors7. Different muta-
tional processes generate characteristic patterns of mutations in particular sequence contexts, and these patterns 
can be detected in the somatic mutations in a tumor. For example, skin-cancer genomes bear the signatures of 
ultraviolet-induced mutations, and most lung cancers bear the signature of mutations caused by tobacco smoking. 
Henceforth, for brevity, we will refer to the signature of a mutational process as a “mutational signature”. A recent 
compendium of single-base-substitution mutational signatures comprises 47 non-artifactual, non-clustered, 
signatures (COSMICv3) extracted from 4645 whole genome and 19,184 exome sequences across most types of 
 cancer7 (Catalogue Of Somatic Mutations In Cancer [COSMIC]).

There have been some studies on how particular mutational processes might generate mutations that affect 
particular genes or pathways. In particular, APOBEC mutagenesis is probably responsible for recurrent mutations 
in the promoters of the TBC1D12 and PLEKHS1 genes in breast  cancers8. However, we are aware only of a study 
by Chan et al. that systematically predicted the effects of the signatures of mutational processes on binding of 
100 s of  TFs9. This study assessed the probability that a TFs’ binding affinity would be perturbed by the signature 
of a particular mutational process. A key output of this analysis was a matrix of the signatures of mutational 
processes × PWMs, in which each cell contained the probability that a mutation from a given process would 
cause a gain or loss of binding of the TF recognizing that PWM. The main differences from the study reported 
here are as follows (1) Chan et al., used Regulatory Sequence Analysis Tool  (RSAT10) on PWMs to generate a 
binary classification of mutations as either creating or abrogating binding of TF. In the current study we use 
PBM data analyzed by QBiC to quantitatively predict increases or decreases in binding affinity. (2) Chan et al., 
analyzed binding changes across the entire genome, whereas in the current study we focus on proximal promoter 
regions, which are highly enriched for functional binding sites. (3) Chan et al. analyzed 512 target PWMs over 
all vertebrates. The current analysis was based on PBM data from 667 experiments that provided information 
for 582 human TFs. In addition, the current study examined the role of affected TFs in oncogenic pathways, a 
topic not addressed in Chan et al.

In this study, we developed the "Signature-QBiC" model that integrates signature profiles of mutational pro-
cesses with the QBiC estimates of changes in binding affinity to investigate the effect of mutational signatures 
on the binding of 582 human TFs. We then identified biological pathways enriched for TFs with binding that is 
likely to be affected by the signature of each process.

Methods
Mutational signatures and mutation data. We adopt common usage, in which we analyze the signa-
tures of mutational processes in terms of the relative proportions of mutations in each of the mutation classes 
ACA>AAA, ACA>AGA, ACA>ATA, CCA>CAA, …, TTT>TGT 11. These mutation classes consist of all single 
nucleotide substitutions in the context of the immediately preceding and following bases. These mutation classes 
do not take into consideration the DNA strand of the central mutated base, and by convention we reverse com-
plement the source trinucleotide if the mutated base is a purine, i.e. A or G. For example, AGC>ATC mutations 
are grouped with GCT>GAT mutations. Thus, there are 96 mutation classes: 4 bases 5′ of the mutated base × 2 
possible mutated bases [C or T] × 3 possible central bases after the mutation × 4 bases 3′ of the mutated base. We 
can view the signature of a mutational process as a multinomial distribution that describes the probability that 
a new mutation will be one of the possible 96 classes. Figure 1a shows an example of signature SBS7a, which is 
caused by ultraviolet radiation. The height of each vertical bar indicates the proportion of mutations in a particu-
lar mutation class. For example, in SBS7a, mutations from TCC>TTC, with a probability of 0.331, are the most 
common, and other mutations from TCN>TTN are also common (the red bars near the middle of the plot). 
We use σ to denote a mutational signature and subscript its elements by mutation class. For example, in SBS7a, 
σTCA>TTA = 0.238 (Fig. 1a). We used the non-artifactual single-base-substitution mutational signatures from 
COSMIC Mutational Signatures v3.0 (https ://cance r.sange r.ac.uk/cosmi c/signa tures /SBS/)7.

We downloaded signature exposure data from https ://www.synap se.org/#!Synap se:syn11 73866 9 and muta-
tion calls from https ://dcc.icgc.org/api/v1/downl oad?fn=/PCAWG /mutat ional _signa tures /Input _Data_PCAWG 
7_23K_Spect ra_DB/vcf_like_simpl e_files /WGS_Other .20180 413.simpl e.gz7.

Estimating the effect of mutations on binding change. As described above, for a given TF, for 
each single-nucleotide change in the center of an 11-mer, QBiC provides a score that estimates the effect of 
that change on the binding of the TF. For example, for the TF HOXD13 (Homeobox D13), the QBiC-score for 
AAA ATC CGGAA>AAA ATT CGGAA is 22.61 (ranking in the 99th percentile of all QBiC-scores), with a QBiC 
estimated p = 3.024 × 10−113. The low p value and high QBiC score indicate high confidence that this mutation 
strongly increases binding with HOXD13. QBiC-scores can be positive or negative: positive QBiC-scores indi-
cate increased TF binding affinity and negative scores indicate reduced TF’s binding affinity. For this study, we 
used the "prediction" (i.e. the QBiC score) and "p value" tables downloaded from http://qbic.genom e.duke.edu/
downl oad/ on June 4, 2019. QBiC-Pred used 667 high-quality PBM experiments which tested human TFs as 
well as homologous TFs with high amino-acid identity in the DNA-binding domain region (more details  in6). 

https://cancer.sanger.ac.uk/cosmic/signatures/SBS/
https://www.synapse.org/#!Synapse:syn11738669
https://dcc.icgc.org/api/v1/download?fn=/PCAWG/mutational_signatures/Input_Data_PCAWG7_23K_Spectra_DB/vcf_like_simple_files/WGS_Other.20180413.simple.gz
https://dcc.icgc.org/api/v1/download?fn=/PCAWG/mutational_signatures/Input_Data_PCAWG7_23K_Spectra_DB/vcf_like_simple_files/WGS_Other.20180413.simple.gz
http://qbic.genome.duke.edu/download/
http://qbic.genome.duke.edu/download/
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These PBM experiments were mapped to 582 human TFs. The binding domain classifications for these TFs were 
downloaded from http://human tfs.ccbr.utoro nto.ca/downl oad/v_1.01/Datab aseEx tract _v_1.01.csv on June 10, 
2019  (reference12).

Integrating mutational signatures with QBiC scores. For a given signature and TF, we can combine 
the probability of a mutation of a given mutation class (e.g. TCA>TTA) with the QBiC predictions of binding 
changes (QBiC scores and p values) in all 11-mers centered on that mutation (e.g. centered on TCA). There 
are  4(11−3) = 65,536 11-mers centered on TCA, each of which can undergo 3 mutations at the central nucleotide 
(C>A, C>G, C>T). Thus, there are a total of 196,608 possible 11-mer changes for a given central trinucleotide, 
and 6,291,456 for changes from the 32 possible central trinucleotides centered on C or T. Assuming that muta-
tions in all mutation classes occur with equal frequency, we can plot the distribution of the QBiC scores of these 
6,291,456 changes as a histogram that (e.g. DHOXD13 in Fig. 1b). Then, for a given signature (e.g. SBS7a), we can 
multiply the probability of mutations in each mutation class (e.g. TCA>TTA) in the signature times the distribu-

Figure 1.  Predicting the effect of mutations due to UV exposure, which generates mutational signature SBS7a, 
on HOXD13 binding affinity. (a) Visualization of mutational signature SBS7a. Central mutations (e.g. C>A) 
are listed along the top of the xaxis, and source trinucleotides for 96 mutation classes are indicated along the 
bottom. The height of each bar represents the proportion of mutations due to a particular mutation class. 
For example, the proportion of TCA>TTA mutations (indicated) is 0.238. (b–f) Signature-QBiC analysis. (b) 
 DHOXD13 is the histogram of HOXD13 QBiC scores for all 6,291,456 possible 11-mer changes over all possible 
central trinucleotides. Because there are long tails of extreme QBiC scores, we display the QBiC scores with 
absolute value ≥ 20 as single bars at the extreme tails of the histogram. (c)  DHOXD13 can be decomposed into 
histograms for each of the 96 mutation classes. Only 4 example mutation classes out of the 96 classes are 
shown: ACA>AAA (DACA >AAA ), TCA>TTA (DTCA >TTA ), TCC>TTC (DTCC >TTC ), and TTT>TGT (DTTT >TGT ). (d) 
We multiply each histogram in (c) by the proportions of the corresponding mutation classes in mutational 
signature SBS7a, to get (e) 96 histograms weighted by the expected frequencies of mutations due to SBS7a: 
D′

ACA>AAA, . . . ,D
′

TCA>TTA,D
′

TCC>TTC , . . .D
′

TTT>TGT . (f) The sum of all 96 weighted histograms in (e) yields 
D′

SBS7a,HOXD13 , which is the histogram of HOXD13 QBiC scores for all mutations weighted by the expected 
frequencies of mutations due to SBS7a. In (a) and (f), red dashed lines at QBiC scores corresponding to FDR < 
0.1 demarcate the DPos, DNeg, D′

Pos , and D′

Neg portions of the histograms.

http://humantfs.ccbr.utoronto.ca/download/v_1.01/DatabaseExtract_v_1.01.csv
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tion of QBiC scores of the 65,536 11-mer changes associated with that mutation class (Fig. 1c–e). This results in 
a new histogram ( D′

TCA>TTA in Fig. 1e). Then, to get D′

σ , the expected distribution of QBiC scores for a given TF 
due to mutations induced by a given signature (e.g. D′

SBS7a,HOXD13 in Fig. 1f, where SBS7a is σ and the subscript 
HOXD13 indicates the TF in question), we compute

where μ is one mutation class, M is the set of 96 mutation classes [ACA>AAA, ACA>AGA, …, TTT>TGT], σμ is 
the probability of μ in signature σ, and Dμ is the distribution of QBiC scores for a given TF and a given mutation 
class μ (e.g. DTCA>TTA ) assuming equal frequency of all mutation classes. Figure 1b–f shows the computation of 
D′

SBS7a for the example of the TF HOXD13.
We will define Gain Ratio (GR) and Loss Ratio (LR) to indicate whether a TF’s binding affinity likely increases 

or decreases as a result of the expected distribution of mutation types generated by a particular mutational 
process. GR and LR are computed from the comparison between (1) the expected distribution of QBiC scores 
based on the assumption that all mutations occur with equal frequency versus (2) the expected distribution 
of scores based on the assumption that the frequency of different mutations depends on the signature of the 
mutational process. As noted above, for each TF, QBiC provides scores for 6,291,456 mutations. For each TF, it 
also provides a p value for each of the 6,291,456 mutations. This is the p value for the null hypothesis that the 
mutation does not change PBM intensity (which is a proxy for binding) versus the alternate hypothesis of a 
change in PBM intensity. For a given TF, let DPos be the expected distribution of positive QBiC scores that have a 
Benjamini–Hochberg FDR < 0.1 under the assumption that all mutations occur with equal frequency (Fig. 1b). 
The p value is a strictly decreasing function of the absolute value of the QBiC score. Therefore, DPos is also the 
distribution of QBiC scores > a particular QBiC score, T. We define DNeg analogously for mutations with nega-
tive QBiC scores. For a given signature, σ, we then define D′

Pos , as the portion of the distribution D′

σ (Eq. 1) with 
QBiC scores > T (equivalent to Benjamini–Hochberg FDR < 0.1, Fig. 1f). We note that since T is the same for both 
DPos and D′

Pos , both distributions comprise the same mutations; only the expected frequencies of the mutations 
change between DPos and D′

Pos . We define D′

Neg , analogously.
Finally, we want to know if, given the mutations caused by the mutational process that generates the signature, 

there are more mutations that increase binding than under the assumption that all mutations arise with equal 
frequency, i.e. if area

(

D′

Pos

)

> area(DPos) . We assessed whether area
(

D′

Pos

)

 is statistically > than area(DPos) by 
testing the null hypothesis that area

(

D′

Pos

)

− area(DPos) is no greater than expected by chance given random 
mutations assuming that all mutations arise with equal frequency (function ResampleMutationFrequency in our 
code file at https ://githu b.com/liumo LM/SigQB iC/blob/maste r/Code_for_paper /Examp leOfS ignat ureQB iC.pdf). 
We tested whether area

(

D′

Neg

)

− area
(

DNeg

)

 is statistically significant using the same procedures. We also define

and

If a TF was assayed in multiple PBM experiments, we used the median GR and LR from those experiments.

Genome annotation. We identified the locations of genes and transcription start sites from human genome 
reference sequence GRCh37 (http://hgdow nload .cse.ucsc.edu/golde nPath /hg19/bigZi ps/hg19.fa.gz) and GEN-
CODE release 27 (ftp://ftp.ebi.ac.uk/pub/datab ases/genco de/Genco de_human /relea se_27 /GRCh37_mapping/
gencode.v27lift37.annotation.gtf.gz).

Code availability. Signature-QBiC and related code are available from https ://githu b.com/liumo LM/SigQB 
iC.

Results
TF binding-change predictions based on signatures alone are consistent with predictions 
based on actual mutations in tumors. Mutation rates and signature profiles in proximal promoter 
regions might be altered by local characteristics, such as binding by protein complexes involved in transcription 
and transcriptional regulation or DNA damage and repair stemming from transcriptional  initiation13. There-
fore, we compared TF binding-change predictions based on mutational signatures alone (e.g. Fig. 1f) with TF-
binding-change predictions based on observed proximal promoter mutations in actual tumors. For this analysis, 
we selected signatures that have identified etiologies and, importantly, often dominate the mutational spectra of 
affected tumors: SBS2, SBS4, SBS7a, SBS10a, SBS13, SBS17b, and SBS22 (Table 1). We analyzed mutations in the 
proximal promoter regions of tumors in which ≥ 40% of mutations across the whole genome were due to one of 
these mutational  signatures7.

We generated the aggregate proximal-promoter mutation spectrum observed for each signature (Table 1), 
and for each signature’s aggregate spectrum we calculated the GR and LR for each PBM experiment. To mini-
mize interference from other signatures, for all signatures except SBS4, we only analyzed mutations in the major 
mutation classes present in the signature. For each signature, we selected the major mutation class or classes 
(i.e. mutations of single nucleotides in isolation) that collectively contribute > 90% of the mutational signature. 

(1)D′

σ =

∑

µ∈M

σµ · Dµ,

(2)GR = area
(

D′

Pos

)

/area(DPos)

(3)LR = area
(

D′

Neg

)

/area
(

DNeg

)

https://github.com/liumoLM/SigQBiC/blob/master/Code_for_paper/ExampleOfSignatureQBiC.pdf
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27
https://github.com/liumoLM/SigQBiC
https://github.com/liumoLM/SigQBiC
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For example, SBS2 consists almost exclusively of C>T mutations (99.24% of the signature). Therefore, we only 
analyzed the C>T mutations in the heavily SBS2-mutated tumors. GRs and LRs based on the signature profile 
alone (Fig. 2) were highly correlated with the GRs and LRs based on actual promoter mutations (mean  R2 0.965). 
Thus, atypical characteristics of mutational processes in promoters do not distort the mutational signatures. We 
therefore based further analyses on GRs and LRs computed from the mutational signature alone according to 
equations (Eq. 2) and (Eq. 3).

Comprehensive analysis of TF binding affinity alteration caused by mutational signatures. We 
used the mutational-signatures and QBiC scores and p values to determine the GRs and LRs of 582 human TFs 
for each of 47 mutational signatures (Tables S2 and S3). When a given TF was represented by > 1 PBM experi-
ments, we used the median of GRs or LRs. Clustering of signatures by GR and LR across the 582 TFs identified 2 
major clusters: I and II on the left of Fig. 3a. Clustering of TFs by GR and LR across the 47 mutational signatures 
identified 4 major groups of TFs (Table S4): A through D along the top of Fig. 3a. Every cluster of TFs was pre-
dominantly affected by certain clusters of mutational signatures: TF Cluster A was characterized by high LRs in 
Signature Cluster I, B by high LRs in Signature Cluster II, C by relatively high GRs in Signature Cluster II, and 
D by high GRs in Signature Cluster I. As expected, we observed that for a given TF, mutational signatures that 
cause a gain of binding usually do not result in a loss of binding, and vice versa. This is clearly reflected in the 
overlap in clusters B and D, where > 80% of the TFs overlap (p < 2.2 × 10−16, Fisher’s exact test).Some of the TF 
clusters are dominated by one or a few TF classes, which partly accounts for the pattern of clustering (Fig. 3a, 
c). TF clusters A and C mainly contain TFs with C2H2 zinc finger (C2H2 ZF) or basic helix-loop-helix (bHLH) 
binding domains. TF clusters D and B consist largely of TFs with homeodomains, with TFs in Cluster D hav-
ing high GRs for Cluster I signatures, and TFs in Cluster B having high LRs for Cluster II signatures. For TF 
Cluster D, signatures in Cluster I are dominated by mutations from C>A or C>T (denoted “+ AT” mutations 
in Fig. 3b) which results in the creation of the AT-rich homeodomain recognition sequence 5

′TAAT 3′

3′ATTA 5′
14. For 

example, signature SBS2 consists of 99% C>T mutations, and these cause high GRs in most TFs in Cluster D 
(Fig. 3a, b). As an example of a TF strongly affected by SBS2, nearly 80% of the large SBS2-associated GR for 
the PHOX2A (Paired Like Homeobox 2A) homeodomain TF is due to TCA>TTA mutations, which constitute 

Table 1.  Summary of tumors dominated by particular mutational signatures, selected for analysis of 
mutational signatures in proximal promoters. Table S1 provides details. a Regions from 2000 bp 5′ to 2000 bp 3′ 
of transcription start sites.

Signature Etiology Cancer types Major mutation classes Number of tumors
Total number of mutations in proximal 
 promotersa

SBS2 Activated APOBEC Breast, pancreatic, etc C>T 9 9,339

SBS4 Tobacco smoke Lung and head & neck All 45 117,413

SBS7a UV radiation Skin melanoma C>T 80 413,834

SBS10a Defective polymerase epsilon proofreading Colorectal and uterine C>A 6 86,917

SBS13 Activated APOBEC Breast, pancreatic, etc C>A, C>G 16 13,895

SBS17b Unknown Esophageal and stomach T>G 11 8,750

SBS22 Aristolochic acids Liver and kidney T>A 6 3,709

Figure 2.  Gain and loss ratios based on the frequencies of mutations in the signatures were similar to gain and 
loss ratios based on actual promoter mutations observed in tumors with mutations dominated by a particular 
signature. Each dot corresponds to a PBM experiment for one TF.
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> 50% of SBS2 mutations (Table S5). Thus, SBS2 induces many mutations from 5
′
TGAT 3′

3′ACTA 5′
 to the PHOX2A rec-

ognition sequence 5
′
TAAT 3′

3′ATTA 5′
 (shown conventionally from the perspective of the bottom strand as TCA>TTA).

In the second case, TFs in Cluster B have large LRs caused by Cluster II signatures which are often dominated 
by T>C and T>G mutations (denoted “-AT” mutations in Fig. 3b). For example, SBS26, 84% of which consists 
of T>C mutations, has a high LR in most TFs in Cluster B. This is because T>C mutations disrupt the AT-rich 
homeodomain recognition sequence.

In addition, within Signature Cluster II, there is a “weak-effect" sub-cluster consisting of SBS3, SBS5, SBS22, 
SBS25, SBS34, SBS39 and SBS40 (Fig. 3a). Signatures in this sub-cluster do not have strong effects on any TF. 
This set of signatures can be further subdivided into 2 groups. First, there are the so-called "flat signatures", SBS3, 
SBS5, SBS25, SBS39 and SBS40, which show mutagenesis in all 6 mutation types. Because of this, they cause both 
gain and loss of binding mutations, thus they do not affect any TF in a very specific manner, resulting in low GRs 
and LRs (Figure S2). The remaining signatures in the weak-effect sub-cluster (SBS22 and SBS34) are those that 
consist mostly of T>A mutations (Figure S2).

In general, mutational signatures had larger GRs than LRs (Fig. 3d, Wilcoxon test p < 2.2 × 10−16), but this 
trend varied among TF binding-domain classes (Figure S3). However, a strong difference was observed between 
signatures. For example, SBS13 had GRs > 1 for 83.3% of TFs, whereas SBS7d had LRs > 1 for 75.9% of TFs; SBS33 
had GRs > 1 for 28.4% of TFs and SBS44 has LRs > 1 for 19.4% of TFs (Fig. 3e).

Relationships between + AT and − AT signatures, change in binding, and change in entropy. We 
investigated the relationships between (1) signatures dominated by + AT mutations, which tend to increase 

Figure 3.  Overview of mutational signatures’ effects on TF binding affinity. (a) Heatmap of GRs and LRs for 
582 human TFs (columns) and 47 mutational signatures (rows). Both dimensions were grouped by the R hclust 
function using unsupervised hierarchical clustering with complete linkage on Euclidean distance. (b) The 
proportions of mutations in each signature that mutate cytosine or guanine to adenine or thymine (labelled 
"+ AT") or vice-versa (labelled "–AT"). Each row corresponds to a signature labelled in (a). (c) Binding-domain 
classes within each TF cluster in (a). Most frequently affected classes in each cluster are labelled. bHLH, basic 
helix-loop-helix; C2H2 ZF, C2H2-zinc finger. Additional details in Figure S1 and Table S4. (d) Histograms of 
GRs and LRs for all pairs of TFs and mutational signatures. (e) The numbers of gain- and loss-of-binding TFs 
for each of the 47 mutational signatures.
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entropy of AT-rich sequences and (2) increased binding of TFs that recognize motifs with high proportions of 
AT. We also investigated the converse relationships for signatures dominated by − AT mutations. First, using 
each TF’s PWM as derived from PBM experiments (http://cisbp .ccbr.utoro nto.ca/), we categorized TFs as “AT-
PWM TFs” (AT percent > 60%) and “GC-PWM TFs” (AT percent < 40%), where AT percent was the average of 
the sum of the A and T cells in the PWM. For TFs assayed with multiple PBMs we used the median AT percent. 
There were 321 AT-PWM TFs and 74 GC-PWM TFs (Table S4) To further analyze the effect of + AT signatures 
on AT-PWM TFs, for each + AT signature, we examined the expected change in entropy of “AT-rich sequences” 
(AT-content > 60%) given the expected proportions of different mutation classes in the mutational signature, 
by multiplying the entropy change for each mutation by the mutation’s frequency in the signature. We found 
that + AT signature mutations in AT-rich sequences tend to increase binding of AT-PWM TFs (columns 2 and 
3 in Table S8). Conversely, − AT signature mutations in “GC-rich sequences” (< 40% AT), also usually increase 
binding of GC-PWM TFs (columns 2 and 3 in Supplementary Table S9), although the effect is less pronounced. 
However, for each individual TF, the connection between change in entropy and QBiC score is variable. Figure 4 
shows two examples. One is the effect of + AT mutations in AT-rich sequences on binding by ALX1, a TF with an 
AT-PWM. These mutations tend to decrease entropy (median change − 0.11, median absolute deviation [MAD] 
0.09) and increase binding (median QBiC score 1.53, MAD 1.88, Fig. 4a). For all mutations in all sequences the 
median change in entropy and median QBiC score are 0 (Fig. 4b, MAD for change in entropy 1.36, MAD of 
QBiC scores 0.10). The converse example is the effect of − AT mutations in GC-rich sequences on binding by 
TCFAP2C, a TF with a GC-PWM. These mutations also tend to reduce entropy (median change − 0.11, MAD 
0.09) and increase binding (median QBiC score 0.47, MAD 2.28, Fig. 4c). For all mutations in all sequences the 
median change in entropy and median QBiC score are 0 (Fig. 4d, MAD for change in entropy 1.50, MAD of 
QBiC scores 0.10).

Pathways enriched for TFs affected by mutational signatures. Given that we can predict how the 
frequencies of mutation types induced by a particular mutational process with a particular signature are likely to 
affect the binding of a TF, it is natural to ask whether the set of TFs affected by the process are overrepresented 
in any pathways. To do this, for a given mutational process and its associated mutational signature, we define the 
pair as “gain-of-binding” if area

(

D′

Pos

)

− area(DPos) is significantly > 0. We define the pair as “loss-of-binding” 
if area

(

D′

Neg

)

− area
(

DNeg

)

 is significantly > 0 (Table  S10 and S11). For each signature, we used the R 
enrichR::enrichr function to search for enrichment of the gain-of-binding TFs for that signature against the 
Reactome 2016  database15,16. We used the same procedure for loss-of-binding TFs. In total, we identified 90 
pathways that are significantly enriched for gain- or loss-of-binding of TFs for at least one signature (q < 0.005, 
as computed by enrichr using Fisher’s exact tests and Benjamini–Hochberg false discovery rates, Figure  S4; 
Tables S6, S7 list the TFs driving enrichment for each pathway).

Among these 90 pathways, it is notable that 8 NOTCH1-related pathways were enriched for TFs with gain 
or loss of binding due to a large number of signatures (Fig. 5a). NOTCH1 pathways are dysregulated in skin and 
esophageal cancer which are dominated by SBS7a, SBS7b and  SBS17a17,18, and thus these signatures may tend to 
promote this dysregulation. There are also 13 toll-like receptor (TLR) signaling pathways enriched for TFs with 
gain or loss of binding due to SBS1 and SBS7a (Fig. 5b). Skin melanomas usually have many SBS7a mutations, 
which are caused by UV radiation, and, consistent with SBS7a mutations affecting TLR promoters, abnormal TLR 
expression and signaling have been reported in skin  melanomas19,20. Additionally, 4 G0-G1-S phase pathways 
were enriched for TFs that are affected by several signatures including SBS1 and SBS6 (Fig. 5c). SBS1 signatures 
tend to accumulate with age in all cells, and SBS6 is caused by defective DNA mismatch  repair21,22.

Comparison with Chan et al.. We are aware of a single previous study in this area, one reported by Chan 
et al.9. This study made binary predictions of gain or loss of TF binding. These predictions were based on the p 
values for mutation-induced sequence changes that were computed by the matrix-scan function in RSAT (Regu-
latory Sequence Analysis  Tool10) using PWM representations of recognition sequences. We therefore refer to this 
as the “RSAT/PWM” method.

Across all TFs and signatures, RSAT/PWM predicted a correlation between motif disruption and motif crea-
tion. By contrast, Signature-QBiC found GRs and LRs to be strongly anticorrelated (Fig. 6a, Spearman correlation 
− 0.93, p < 2.2 × 10−16). Chan et al. did not publish their code, so we were unable to systematically investigate all 
the differences that led them to conclude a correlation between disruption and creation. However, this difference 
may partly stem from the fact that RSAT/PWM did not capture information on mutations at the first and last 
base pairs of PWMs. For example, Signature-QBiC predicted that signature SBS1 would tend to cause strong 
gain of binding and weak loss of binding by FOXL1 (GR 1.22, LR 0.18). However, RSAT/PWM’s published 
prediction was that the chances of creating or destroying a binding site were similar. Examination of the FOXL1 
PWM (Fig. 6b) shows that a FOXL1 binding site can be created by NCG>NTG mutations (CGN>CAN on the 
complementary strand), which make up 89% of SBS1 mutations. In particular, these mutations can generate an 
adenine at position 7 and thereby enhance FOXL1 binding affinity, but mutations at this position are not consid-
ered by RSAT/PWM. While NCG>NTG (CGN>CAN) mutations can also generate new adenines at positions 3 
or 4, the preceding cytosines are only weakly favored, as shown in the logo. Therefore, mutations at bases 3 or 4 
barely affect FOXL1 binding. Conversely, none of the main mutation types in signature SBS1 disrupt the FOXL1 
binding motif. Therefore, the Signature-QBiC prediction of strong gain of binding due to SBS1 mutations seems 
well supported by the PWM, while RSAT/PWM did not consider the critical mutation at position 7.

Nevertheless, Signature-QBiC concurred with two other results reported by Chan and colleagues. First, like 
RSAT/PWM, Signature-QBiC confirmed a previous report that APOBEC signatures tend to create rather than 
destroy MYB binding sites (Wilcoxon rank-sum test, p = 3.18 × 10−9, Fig. 6c)23. RSAT/PWM also predicted that 

http://cisbp.ccbr.utoronto.ca/
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mutations caused by UV radiation (signature SBS7 in  COSMICv224,) tend to disrupt binding sites across ETS-
family TFs. Signature-QBiC was concordant: it found that signatures caused by UV exposure (SBS7a, SBS7b, 
SBS7c and SBS7d in COSMICv3  (reference7) tend to disrupt binding of ETS-family TFs (Fig. 6d).

Conclusion and discussion
While several studies have searched for noncoding driver mutations in  cancer25–27, there has been little system-
atic study of the overall likely effects of mutational signatures on TF binding. Indeed, we are aware of only one 
previous study in this  area9, and we refer to the method in this study as the “RSAT/PWM method”. We believe 

Figure 4.  Relationships between change in QBiC-score and change in entropy due to + AT mutations or − AT 
mutations in TFs with an AT-PWM or a GC-PWM. (a) ALX1 has an AT-PWM (72% average AT content in the 
PWM). For ALX1, + AT mutations in AT-rich sequences tend to decrease entropy (median − 0.11, MAD 0.09) 
and have positive QBiC-scores (median 1.53, MAD 1.88). Larger decreases in entropy are weakly associated 
with higher QBiC scores (slopes as shown). (b) By contrast, over all mutations in all sequences the median 
change in entropy and the median QBiC score are 0 (MAD of QBiC score 0.10, MAD of entropy 1.36, one-sided 
Wilcoxon rank-sum test versus + AT mutations in AT-rich sequences p < 2.2 × 10−16). Larger decreases in entropy 
are still weakly associated with higher QBiC scores. (c) TCFAP2C has a GC-PWM (32% average AT content 
in the PWM). For TCFAP2C, − AT mutations in GC-rich sequences tend to decrease entropy (median − 0.11, 
MAD 0.09) and have positive QBiC scores (median 0.47, MAD 2.28). Larger decreases in entropy are weakly 
associated with higher QBiC-scores. (d) By contrast, over all mutations in all sequences the median change in 
entropy and the median QBiC score are 0 (MAD of QBiC score 0.10, MAD of entropy 1.50, one-sided Wilcoxon 
rank-sum test versus − AT mutations in GC-rich sequences p < 2.2 × 10−16). Larger decreases in entropy are 
still weakly associated with higher QBiC scores. Change of entropy calculated by the “entropy” function in the 
DescTools package (https ://CRAN.R-proje ct.org/packa ge=DescT ools); slopes computed by the rlm function 
in the MASS package, https ://CRAN.R-proje ct.org/packa ge=MASS). Num. mutations indicates the number of 
mutations in 11-mer context in each hexagonal bin. AT-rich sequences are > 60% AT; GC-rich sequences are 
< 40% AT.

https://CRAN.R-project.org/package=DescTools
https://CRAN.R-project.org/package=MASS
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Signature-QBiC provides two advantages over RSAT/PWM. First, compared to the binary assessments of dif-
ferences in binding in RSAT/PWM, PBM experiments provide nuanced, quantitative estimates of differences 
in binding affinity. Second, RSAT/PWM did not consider mutations that change the first or last base pair of the 
PWM. In addition, RSAT/PWM was applied to the entire genome sequence, rather than proximal promoter 
regions, which in general are enriched for functionally important TF binding. On the other hand, Signature-
QBiC uses universal PBM data, which only captures information on binding to 11 bp sequences, and therefore 
provides limited information on the binding-sequence preferences of the relatively few TFs with longer recog-
nition sequences, including, notably many members of the C2H2-ZF family which recognize sequences of up 
to 20 or 30 bp.

To summarize the present study, we developed a method, Signature-QBiC which integrates profiles of the 
signatures of mutational processes with universal PBM data to predict the likely effects of mutations caused by 
each of 47 mutational signatures on the binding of each of 582 human TFs. We showed that the GRs and LRs 
computed from mutational signatures are very similar to GRs and LRs computed from actual somatic promoter 
mutations observed in tumors dominated by the same mutational signature.

Three interesting generalizations arise from the results in this study. First, mutational signatures that increase 
or decrease the AT-content of TF binding sites have relatively strong effects on the binding affinity of a broad 
range of TFs. For most TF classes, signatures dominated by mutations from C to A or T (“+ AT” mutations in 
Fig. 3b), cause loss of binding, which is consistent with the predominance of cytosines and guanines in the bind-
ing sites of most TFs. However, for some TF classes, those with AT-PWMs, + AT mutations in AT-rich sequence 
tend to decrease sequence entropy and increase binding (Table S8 and Fig. 4a, b). In complementary fashion, 
for GC-PWM TFs, − AT mutations in GC-rich sequence also tend to decrease entropy and increase binding 
(Table S9 and Fig. 4c, d). Second, although C>G mutations do not affect AT content, mutational signatures that 
are dominated by C>G mutations strongly affect TF binding. Surprisingly, this includes homeodomain TFs, 
even though these recognize AT-rich sequences (e.g. SBS13 in Fig. 3a, b). Third, in contrast to C>G mutations, 
signatures dominated by T>A mutations have little effect on the binding affinity of TFs. For example, mutational 
signatures SBS22 and SBS34 have little effect on the binding affinity of any TF class, including homeodomain TFs, 
even though these recognize AT-rich sequences. Taken together, these generalizations lead to the conclusion that 
cytosines and guanines are crucial in determining TF-binding and are not interchangeable.

To better understand the possible biological consequences of altered binding affinity by particular signa-
tures, for each signature we investigated the pathways enriched for gain- or loss-of-binding TFs. We found that 
pathways involved in NOTCH1 signaling and TLR signaling may be affected by mutational processes that are 
prevalent in some types of cancer. An example affecting NOTCH1 and TLR signaling is UV-induced mutagenesis 
that causes signature SBS7a. In conclusion, the present study raises the hypothesis that particular mutational 
signatures may preferentially affect binding of particular classes of TFs in ways that tend to promote particular 
pathways to oncogenesis.

Figure 5.  Signatures with pathways enriched for gain or loss-of-binding TFs. (a) NOTCH1 pathways. (b) TLR 
(toll-like receptor) signaling pathways. (c) G0-G1-S phase pathways.
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Figure 6.  Comparison with the RSAT/PWM approach. (a) Unlike RSAT/PWM’s finding of correlation between 
motif-disruption and motif-creation probabilities, Signature-QBiC GRs and LRs were anti-correlated over all 
TF-signature pairs. GR, gain ratio; LRs loss ratio. Each dot represents a TF-signature pair. (b) FOXL1 PWM logo 
(downloaded from http://jaspa r.gener eg.net/stati c/logos /svg/MA003 3.2.svg on December 23, 2019). NGC>NTG 
(GCN>GAN) mutations generating adenines at positions 3, 4 or 7 enhance FOXL1 binding affinity. However, 
the effects at positions 3 and 4 are relatively weak, while the effect at position 7 is strong, and RSAT/PWM does 
not take mutations at this position into consideration. (c) Like RSAT/PWM, Signature-QBiC supports the 
finding that APOBEC signatures tend to increase MYB binding. Like the “alteration offset” in Chan et al., GR 
minus LR captures the difference between the probabilities of a gain of binding and a loss of binding as the result 
of the mutational signature caused by a particular mutational process. Three TFs with MYB binding sites (MYB, 
MYBL1 and MYBL2) represented by PBM experiments M01855_1.94d, M01856_1.94d and M01854_1.94d, 
respectively. (d) Signature-QBiC supports Chan et al.’s conclusion that UV signatures (SBS7a, SBS7b, SBS7c and 
SBS7d) tend to disrupt binding of ETS-TFs. “Mean GR minus LR”, which is the mean value of GRs minus LRs of 
28 TFs, is analogous to “mean differential alteration probability” in Chan et al.’s analysis. This analysis comprises 
28 ETS-family TFs represented by 29 PBM experiments (details in Table S4).

http://jaspar.genereg.net/static/logos/svg/MA0033.2.svg
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