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High throughput error correction 
in information reconciliation 
for semiconductor superlattice 
secure key distribution
Jianguo Xie1,3, Han Wu2,3, Chao Xia1, Peng Ding2, Helun Song2, Liwei Xu1 & Xiaoming Chen1*

Semiconductor superlattice secure key distribution (SSL-SKD) has been experimentally demonstrated 
to be a novel scheme to generate and agree on the identical key in unconditional security just by public 
channel. The error correction in the information reconciliation procedure is introduced to eliminate 
the inevitable differences of analog systems in SSL-SKD. Nevertheless, the error correction has 
been proved to be the performance bottleneck of information reconciliation for high computational 
complexity. Hence, it determines the final secure key throughput of SSL-SKD. In this paper, different 
frequently-used error correction codes, including BCH codes, LDPC codes, and Polar codes, are 
optimized separately to raise the performance, making them usable in practice. Firstly, we perform 
multi-threading to support multi-codeword decoding for BCH codes and Polar codes and updated 
value calculation for LDPC codes. Additionally, we construct lookup tables to reduce redundant 
calculations, such as logarithmic table and antilogarithmic table for finite field computation. Our 
experimental results reveal that our proposed optimization methods can significantly promote the 
efficiency of SSL-SKD, and three error correction codes can reach the throughput of Mbps and provide 
a minimum secure key rate of 99%.

Semiconductor superlattice secure key distribution (SSL-SKD) is a new secure key distribution technique based 
on chaos synchronization in superlattice PUF  pairs1 driven by a synchronizing digital signal. SSL-SKD only 
uses the public channel with all electronic structures to create and provide secure key data for cryptography in 
unconditional  security2. The procedure for generating the final secure key using SSL-SKD is divided into two 
phases, as shown in Fig. 1. In the analog front-end phase, the digital driving signal through a Digital-Analog 
Converter (DAC) was input to the superlattice  device3, and the analog output of the superlattice was fed to an 
Analog-Digital Converter (ADC) to get a digital output  sequence4. The analog front-end phase is now capable 
of operating at Gbps  throughput5. Both of the sender and the recipient own one of the matched superlattice 
devices. Although the matched superlattices’ behavior can be very similar, they will generate slightly different 
digital signals due to inevitable differences of analog  systems2.

Thus, a digital backend phase called post-processing is needed. The main task of post-processing is to convert 
imperfect digital signals to consistent secure key  pairs6. To accomplish this task, a series of post-processing opera-
tions have to be performed, including synchronization, information reconciliation, and privacy amplification, as 
shown in Fig. 2. Synchronization is to accurately map the digital output sequence of both parties. The information 
reconciliation technique is applied between the sender and the  recipient7 to get identical output digital signals 
from both of the two superlattices. The goal of privacy amplification is to eliminate some of the key information 
that the attacker may obtain in post-processing, and generate a final secure key.

The confidentiality of SSL-SKD is ensured by the fact that semiconductor superlattices are good examples of 
strong physical unclonable functions (PUFs)8. Moreover, the secure keys are generated and used locally. Thus 
the secure keys are difficult to be reproduced by anyone else except the owner of the superlattice devices. Mean-
while, the high rate of the analog front-end will pave the way to the practical implementations of a one-time pad 
cipher. Based on the above researches, the principle and framework of the SSL-SKD system have been verified. 
The long-haul symmetric key distribution experiment based on superlattice pairs was successfully performed in 

OPEN

1Beijing Electronic Science and Technology Institute, Beijing 100070, China. 2Key Laboratory of Nanodevices 
and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), 
Suzhou 215123, China. 3These authors contributed equally: Jianguo Xie and Han Wu. *email: chenxmphd@
yeah.net

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-82684-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3909  | https://doi.org/10.1038/s41598-021-82684-5

www.nature.com/scientificreports/

the actual environment and got a preferable  result1. The research for the SSL-SKD system has come to a practi-
cal period. We usually use error correction to perform information reconciliation in practical implementation, 
which is relatively computationally complex and viewed as the performance bottleneck.

Error correction is widely used in physical key distribution currently that allows for user authentication and 
encryption, e.g. Quantum Key Distribution (QKD)9–11 and Physical Unclonable Function (PUF)12. QKD is a 
technology based on the laws of quantum physics to create cryptographic keys between legitimate  users13. It as 
a promising direction, solving the problem of key distribution has already taken a worthy place among systems 
that provide confidential information  transmission14. BCH codes are typically used in small PUF  systems15,16 due 
to their simple construction, easy implementation in resource-constrained situations. Recently, LDPC  codes17 
and Polar  codes18 have entered our field of view due to their several advantages that can be summarized as fol-
lows: demonstrating better block error performance, error floors in much lower Bit Error Rate (BER) values, the 
ability to obtain good error performance with the length of block increases.

The error correction codes are closely related to the channel mathematical model by reliable channel trans-
mission  theorem19. We consider the slight differences in digital signals on matched superlattice PUF pairs is 
caused by binary symmetric channel (BSC) or AWGN channel using BPSK-mapper. Through the experiment, 
we found that the Hamming distance of matched superlattice PUF pairs is distributed between 3 and 12% , and 
the error distribution often appears in blocks. This high channel error rate makes it inconsistent with most error 
correction codes in the industry or academia. Moreover, it will bring high computational complexity and lower 
efficiency. It is necessary for a complete high throughput SSL-SKD system that the error correction must be able 

Figure 1.  The procedure for generating final secure key using SSL-SKD.

Figure 2.  The post-processing procedure for generating identical final secure key using matched superlattice 
PUF pairs.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3909  | https://doi.org/10.1038/s41598-021-82684-5

www.nature.com/scientificreports/

to operate at least Mbps to avoid limiting the throughput of final secure key distribution. The motivation of this 
paper is to design a method of error correction that makes the SSL-SKD system efficiency.

In this paper, we propose three high throughput error correction schemes by multi-threading and look-up 
table method in information reconciliation for SSL-SKD. We show that BCH codes, LDPC codes, and Polar codes 
with a 99% secure key rate can perform the error correction step that determines the maximum key throughput 
for SSL-SKD. For BCH codes, we employ  OpenMP20 for multi-codeword decoding, construct look-up tables to 
simplify the calculation of finite field. Eventually, the bit throughput achieves 2.7 Mbps. For LDPC codes, Dis-
tributed Stream Processing for the BP decoding by  MPI21 was used to accelerate and reach 15 Mbps. For Polar 
codes, significant optimizations, including fixed-point arithmetic, a lookup-table implementation, and multi-
codeword decoding, cause the bit throughput to reach 50 Mbps. It is confirmed that the SSL-SKD can be used 
for implementing one-time pad cipher. These three error correction codes are of great significance to SSL-SKD 
and play an important role in specific application scenarios.

Results
Distribution discrepancy of matched superlattice PUF pairs. Information reconciliation is an 
efficient way for matched superlattice PUF pairs to distill common corrected keys from similar digital output 
sequences. In Fig.  2, Alice (the encoder) calculates the syndrome information from its digital sequence and 
provides the helper data to Bob (the decoder). Then Bob uses helper data to correct its digital sequence so that 
the two parties have an identical digital sequence. In other words, the difference between aligned sequence A 
and B shifts to codeword C and C′ . The process from codeword C to C′ can be view as the binary symmetric 
channel(BSC) or AWGN channel using BPSK-mapper at the transmitter and a hard-decision demapper at the 
receiver. The information reconciliation process is carried out as follows in detail.

On Alice’s side: H = A+ C . And then transport helper data H to Bob through a public channel.
On Bob’s side: C′ = H + B = A+ C + B = C + (A+ B) = C + Noise . After decoding, Bob obtains C, and 

extracts A from the operation A = H + C.
We quantize the original waveforms to obtain a binary sequence for our experiment. We did multiple experi-

ments at room temperature. From those, we randomly select the number of blocks adding up to 20,000. As seen 
in Fig. 3, Hamming distance is mostly distributed between 3 and 12% . It is an important factor to determine the 
error correction code rate and also directly affects the final secure key rate. From the relationship between Bit 
Error Rate (BER) and Signal Noise Ratio (SNR) under BPSK  modulation22, we can get the SNR value distributed 
between 2.2 and 4.0 after removing the BER value over 12% . The proportion of Hamming distance exceeding 
12% in the entire block does not exceed 5% under multiple experiments. The frame error rate (FER) indicates 
the error correction performance, it refers to the failure probability of error correction. In order to ensure that 
the final secure key rate is not less than 99% , we set the FER target to 5e−3 . Since they will just be thrown away 
after the error correction, it is not crucial to lose these blocks for SSL-SKD.

Another vital characteristic of matched Superlattice PUF pairs is the burst-error1. The error distribution often 
appears in blocks rather than uniform. Therefore, when designing the error correction codes, we should try to 
increase the code length to reduce burst-error impact. The characteristics of high error rate and burst-error make 
the error correction of SSL-SKD different from other PUF systems. The implementation of the error correction 
schemes are evaluated on the multi-core computer; the specifications are shown in Table 1.

Figure 3.  The Hamming distance of 20,000 blocks from matched superlattice PUF pairs. And the block-length 
is 10,000.
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Error correction with BCH codes. First we select BCH codes for SSL-SKD error correction. Since BCH 
code have excellent performance when the code length is short. Its structure is simple and easy to implement 
in resource-constrained situations. Most of the current PUF systems use BCH codes for error correction. There 
is a strict algebraic structure among the code length n, the length of information digits k, and the number of 
error correction digits t. For any positive integers m ≥ 3 and t < 2m−1 , there exists a binary BCH code with the 
parameters shown in Eq. (1). To minimize the impact of burst error, we select the code length of n = 4095 . This 
is a compromise between computational complexity and code length. According to Eq. (1), it is known that to 
satisfy 12% error correction capability, the length of information digits we can only choose is k = 334 or less. 
While k = 322 , the error correction capability can achieve 16.7% , which is 4% higher than when k = 334 . 4% of 
the difference can significantly improve the final secure key rate. Moreover, the proportion of Hamming distance 
exceeding 16.7% does not exceed 0.1% . Thus, we finally choose the BCH code (n, k, t) = (4095, 322, 682) . The 
Berlekamp–Massey algorithm is selected to perform the decoding with low computational complexity and the 
benefit of software implementation.

In the encoder, we calculate the generator polynomial in advance and design a generator polynomial table 
to avoid a mass of redundant computation. The look-up table method takes up more RAM space to reduce time 
consumption. In the decoder, we use OpenMP for parallel processing of codewords decoding to maximize CPU 
usage efficiency. Multi-codeword decoding (MCD) uses multiple CPU threads to decode multiple codewords 
simultaneously. Since the complicated calculation is based on the finite field, we construct the logarithmic table 
and antilogarithmic table with m = 12 in Shared memory. As shown in Table 2, using MCD is significantly faster 
than not using MCD with the number of codewords increases. After the number of codewords reaches 500, the 
bit throughput of using MCD achieved about 2.82 Mbps. In contrast, the maximum bit throughput without 
using MCD is 0.64 Mbps (The CPU efficiency achieved more than 80% when using OpenMP). Its decoding result 
FER = 9.42e−4 match the target FER. In other words, while the error correction capability is 16.7% with using 
BCH codes, the secure key rate exceeds 99%.

Error correction with LDPC codes. A higher speed error correction method is required to support SSL-
SKD. We select Low-Density Parity Check (LDPC) codes for SSL-SKD error correction due to several factors. 
Firstly, LDPC codes are a class of linear block codes with implementable decoders, which provide near-capacity 
performance on a broad set of  channels23. Then there is a huge advantage of LDPC codes that possess sparse par-

(1)

{

n = 2m − 1
n− k ≤ mt
dmin ≥ 2t + 1

Table 1.  Specifications of computer.

Parameter Value

Operation system Windows 10

CPU Intel(R) I7-8700k

Threads per core 2

Memory 16GB LPDDR4

Storage 512GB SSD

Compiler Microsoft Visual C++ 14.2

MPI open mpi 1.10.7

OpenMP Follow compiler

Table 2.  By evaluating the 120,000 blocks with (n, k, t) = (4095,322,682), the bit throughput of using MCD 
and the bit throughput of not using MCD are respectively obtained. We also show the CPU efficiency of using 
MCD and the frame errors.

Number of 
codewords 1 5 0 20 100 500 120,000

Bit throughput of 
using MCD (Mbps) 0.049 0.28 0.44 0.73 2.184 2.82 2.86

Bit throughput of 
not using MCD 
(Mbps)

0.58 0.61 0.63 0.64 0.63 0.64 0.65

CPU usage effi-
ciency 8.93% 12.77% 20.45% 73.21% 85.21% 88.19% 90.91%

Frame errors 0 0 0 0 0 1 113

FER – – – – – – 9.42e−4
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ity-check matrices. The LDPC code-construction techniques can be partitioned into random construction and 
mathematical construction. Compared to mathematical construction, randomly constructed LDPC codes have 
higher error correction capabilities and fewer iterations because they have larger loops on Tanner graphs. Avoid-
ing trapping sets during decoding would often make the decoding converge faster and lower their error floors.

We generate the parity check matrices for N/M = 7200/6000 , N/M = 9000/8000 , N/M = 9000/7200 and 
N/M = 16,200/13,500 respectively. This construction method is designed by  MacKay24. Besides, the smallest 
loops of the Tanner graph corresponding to these matrices is greater than 6. We will see that this sparseness 
characteristic makes the code amenable to various iterative decoding methods based on Tanner graphs, which 
provide near-optimal performance in many instances. For parallel computing, we choose belief propagation (BP) 
decoding algorithm, which iteratively updates message between variable nodes (VNs) and check nodes (CNs) 
to converge on valid codewords.

To maximize the bit throughput, we construct lookup tables for the generator matrix G and parity check 
matrix H , respectively. These two matrices are stored in Shared memory while the program is running. The 
calculation of the BP algorithm with time complexity O(N logN) at CNs to update value is complicated. Thus 
we practice the improved BP algorithm (Min-Sum  algorithm25) to calculate log-likelihood ratio (LLR) values. 
Distributed Stream Processing uses MPI to perform BP decoding. In Stream Processing, a single vector value 
from a stream of multiple vectors is computed in a distributed manner. The data within each vector is distributed 
among multiple processors that perform computations, and then the value is gathered in the master processor. In 
the encoder, matrix multiplications are distributed across the processors and eventually converge to the master 
processor to perform addition and output. In the decoder, we perform the LLR values update for VNs and CNs 
on multiple processors.

For these four kinds of LDPC codes, 120,000 codewords are tested. The bit throughput of using MPI, the bit 
throughput of not using MPI, the CPU usage efficiency, the number of uncorrectable codewords, the number of 
iterations were shown in Table 3. The bit throughput with MPI exceeds 15 Mbps and is approximately four times 
faster than without MPI. However, as the block size increases, the memory required to store data is significantly 
increased, and the bit throughput is slightly attenuated. Under the same code rate, error correction capability 
is enhanced as the code length increases, and the number of iterations is also decreasing. This situation shows 
the excellent performance of LDPC codes with long code-length. The decoding results for LDPC code with 
N/M = 9000/8000 can match the target FER and provide the secure key rate by more than 99% . Additionally, 
the bit throughput is about 5.5 times of BCH code above-mentioned. Experiments show that the optimized 
implementations of LDPC codes can provide 15 Mbps secure key throughput for SSL-SKD.

Error correction with polar codes. The use of Polar codes has been considered for  QKD26 previously. 
Many specificities make Polar codes suitable for SSL-SKD post-processing. Firstly, Polar codes are the first prov-
ably capacity achieving family of codes with low encoding and decoding complexity. Secondly, they are as easy 
to construct as BCH codes. Furthermore, an impressive feature of Polar codes is their regular recursive structure. 
It allows us to implement a recursive, successive-cancellation (SC) decoder that achieves a higher speed than 
LDPC codes by software. For a given noise level on a given channel, Density  Evolution27 allows us to compute the 
capacities of the different bits of the code. Some of the bits corresponding to channels with the lowest capacities 
are revealed and are called the frozen bits (usually 0) of the codeword. Based on the SNR value calculated above, 
we use the Density Evolution to calculate the position of the frozen bit and set R = K

N = 1
4.

An important optimization in this decoder is to use fixed-point arithmetic and a lookup-table implementation 
of the function ϕ(x) = log(tanh(x/2)) used to update log-likelihood ratios (LLRs). Furthermore, we use MPI 
technology to perform multi-codeword decoding (MCD) for Polar codes. When the number of threads MPI 
opens is 8, it can guarantee the fastest speed and the highest CPU usage efficiency. Each thread independently 
obtains some codewords that need to be corrected to perform error correction procedures. The lookup table 
is in Shared memory, and the master thread allocates the data to be processed by the sub-thread. Polar code is 
inherently suitable for software implementation, making it much faster than the BCH codes and LDPC codes.

Under the condition of R = 1
4 , we evaluate six different block sizes N = 4096 , N = 8192 , N = 16,384 , 

N = 32,768 , N = 65,536 , N = 131,072 . For these six kinds of Polar codes, 120,000 codewords are tested. The 
bit throughput of using MCD, the bit throughput of without MCD, the CPU usage efficiency, the number of 

Table 3.  Four kinds of LDPC Codes are evaluated with 120,000 blocks. The number of iterations is the average 
value after 120,000 blocks of codeword measurements. The CPU usage efficiency is the peak value that appears 
when codewords were evaluated. Take the bit throughput of average value by multiple measurements.

Codewords N = 7200,M = 6000 N = 9000,M = 8000 N = 9000,M = 7200 N = 16,200,M = 13,500

Bit throughput of using MPI (Mbps) 16.17 15.77 15.34 15.19

Bit throughput of not using MPI 
(Mbps) 4.08 4.14 4.16 4.78

CPU usage efficiency 88.77% 85.53% 89.16% 90.11%

Number of iterations 5 4 5 3

Frame errors 1045 139 1261 803

FER 8.7e−3 1.16e−3 1.05e−2 6.69e−3
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uncorrectable codewords are shown in Table 4. After MPI opens eight threads, its CPU usage efficiency reaches 
the highest, and bit throughput is also maximum. From the view of frame errors, when the code rate of Polar 
codes is greater than that of LDPC codes, the error correction ability is stronger than that of LDPC codes. As 
the code length increases, the long-length performance of the Polar code gradually becomes prominent. On the 
other hand, the bit throughput is gradually decreasing. The decoding results for Polar code with N ≥ 32,768 
can match the target FER and provide the secure key rate by more than 99% . Additionally, the bit throughput is 
about 17.7 times of BCH code above-mentioned. Experiments show that the optimized implementations of Polar 
codes can provide exceeding 50 Mbps secure key throughput and secure key rate 99% minimum for SSL-SKD. 
The Polar codes decoding throughput by the software is enough for state-of-the-art SSL-SKD implementations.

Discussion
In this paper, we propose an experiment of multi-threaded high bit throughput error correction for SSL-SKD. 
Different from many communication channels, QKD or traditional PUF, the Hamming distance between matched 
superlattice PUF pairs ranges from 3 to 12% (relatively high), and the error pattern is burst-error. We show that 
BCH codes, LDPC codes, and Polar codes with a 99% secure key rate minimum and exceeding the through-
put of Mbps can be used to perform the error correction step for SSL-SKD. The performance of the proposed 
optimized scheme and the results obtained by other work are shown in Table 5. BCH code is used for feasibility 
verification of the post-processing scheme in QKD with the performance  omitted29. In our implementation of 
SSL-SKD, the bit throughput of BCH code with parameters (n, k, t) = (4095,322,682) reaches 2.8 Mbps, but the 
code rate ( R = 0.079 ) is extremely low into an uncommon realm relative to other published  works30–32. Jouguet 
et al. respectively obtain the speed to 7.3 Mbps with MET-LDPC code on GPU and 10.9 Mbps with Polar code 
on  CPU26. Milicevic et al. obtain the speed to 9.17 Mbps with quasi-cyclic (QC) LDPC  codes28 on GPU. For 
LDPC codes, we perform fine-grained parallelization for the Min-Sum algorithm. Good performance has been 
obtained of LDPC codes on multi-core CPU with bit throughput using MPI reaches 15 Mbps. For Polar codes, we 
select multi-codeword decoding, in which the main thread controls the IO and communicates with sub-threads 
to reduce the delay caused by IO to the greatest possible extent. Then, Polar codes achieve good efficiencies with 
bit throughput of using MCD reaches 50 Mbps. The error correction speed we achieved is faster than previous 
demonstrations, which is supporting high throughput SSL-SKD system.

The optimized scheme we proposed can be applied in different scenarios with great efficiency. One of the key 
features of the BCH code is that there is precise control over the number of symbol errors correctable by the code 
during code design. It simplifies the design of the decoder for these codes, using small, low-power electronic 
hardware. BCH codes are of great significance for the miniaturization of SSL-SKD. Both LDPC and Polar codes 
can meet the practical application requirements of SSL-SKD, and they both have the advantage of high speed and 
close to the Shannon limit. Moreover, we have seen that the Polar decoders that can match the error-correction 
performance of LDPC codes usually have lower hardware efficiency than their LDPC decoder counterparts. 
The low hardware efficiency stems mainly from the low throughput that SC decoder is not suitable for parallel 
computing, and not so much from their area requirements. This is the first practical application of Polar code 
for physical key distribution as far as we know. Polar codes are typically used in the demonstration of SSL-SKD. 
LDPC codes are now very mature in communication; its hardware implementation and chip design have entered 

Table 4.  Six kinds of Polar codes are evaluated with 120,000 blocks. The number of threads MPI opens 
is 8. The CPU usage efficiency is the peak value that appears when codewords are evaluated. Take the bit 
throughput of average value by multiple measurements.

Codewords ( R =
1

4
) N = 4096 N = 8192 N = 16,384 N = 32,768 N = 65,536 N = 131,072

Bit throughput of using MCD (Mbps) 72.63 64.33 61.77 56.61 53.27 50.64

Bit throughput of not using MCD (Mbps) 12.77 12.14 11.60 10.85 9.93 9.36

CPU usage efficiency 89.87% 85.72% 83.42% 84.77% 89.71% 93.20%

Frame errors 1432 1351 663 294 147 117

FER 1.19e−2 1.13e−2 5.53e−3 2.45e−3 1.23e−3 9.75e−4

Table 5.  Throughput comparison with QKD by different type of error correction codes.

Refs. Code type Block length Code rate Platforms Throughput (Mbps)

Jouguet et al.26 MET-LDPC 217 0.1 GPU 7.3

Milicevic et al.28 QC-LDPC 220 0.1 GPU 9.17

Jouguet et al.26 Polar 216 0.1 CPU 10.9

This work BCH 4095 0.079 CPU 2.86

This work MacKay-LDPC 9000 1
9

CPU 15.77

This work Polar 217 0.25 CPU 50.64
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the industry. Soon as SSL-SKD, the hardware implementation of LDPC codes in information reconciliation will 
match the analog stage throughput, and finally, the throughput of SSL-SKD can reach Gbps.

Methods
BCH encoder and decoder. Algebraic coding is the feature of BCH codes. To encode a binary sequence 
of length k bit, first write it as a polynomial m(x) = m0 +m1x +m2x

2 + · · · +mk−1x
k−1 . Through generator 

polynomial g(x) we can get the polynomial of the check bit r(x) = xrm(x)modg(x) . Through r(x) and m(x) then 
the codeword polynomial c(x) = xrm(x)+ xrm(x)modg(x) . At this point, the encoding is completed, and the 
error codeword information R(x) is received on the decoding party.

T h e n ,  s y n d rom e  S = {s1, s2, . . . , s2t} i s  c a l c u l at e d .  T h e  e r ror- l o c at or  p o l y n om i a l 
σ(x) = σtx

t + σt−1x
t−1 + · · · + σ1x + 1 can be found by Berlekamp–Massey33 algorithm under the syndrome 

S. Last solving the roots of the polynomial σ(x) by Chien  search34 to determine the error location. The decoding 
algorithm as shown in Algorithm 1. 

LDPC encoder and decoder. For encoding, the information bits are first copied to the output bits. Each 
processor selects a subset of columns to form the k columns of Generator matrix G . The partial output calculated 
by each processor is then gathered at the master processor by using MPI_Gatherv() command from MPI for 
further processing.

For Min-Sum decoding algorithm, the information passed between the variable nodes (VNs) and the check 
nodes (CNs) are the log-likelihood ratio information (LLR) as shown in Fig. 4. The LDPC decoding process using 
the Min-Sum decoding algorithm is divided into four parts. First initialize η(0)mn = �

(0)
nm = 0 , �(1)nm = In . Then the 

VNs are updated at the k-th iteration using Eq. (2).

Figure 4.  Variable node and check node transfer information mutual. Intrinsic Information is defined 
In = log

p(rn|cn=0)
p(rn|cn=1) . In is the characteristic of channel. For BSC channel, if rn = 0 , In = log

1−p
p  , if rn = 1 , 

In = log
p

1−p . For AWGN channel, In = log −2
√
Eb

σ 2 x , 
√
Eb is the modulated signal amplitude.
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The next CNs are updated at the k-th iteration using Eq. (3).

Afterwards, determine whether �(k)n = In +
∑

m∈Mn
η
(k)
mn is greater than 0, if �(k)n ≥ 0 is satisfied, cn = 0 , if �(k)n < 0 

is satisfied, cn = 1 . Finally, judge whether to stop the iteration. If cHT = 0 is satisfied, the decoding stops, oth-
erwise the iteration is continued.

For each iteration of the decoding algorithm, we first divide the VNs and CNs among all CPU processors. For 
each iteration the processors calculate the LLR η(k)mn of CNs using Eq. (3). When all processors have calculated their 
respective updated values, the CNs send the updated value to adjacent VNs. In the same way, the VNs’ values 
are updated and sent. The steps of node update are separated for all CPU processors that ensures the minimum 
communication consumption.

Polar encoder and decoder. Polar code is a new linear block code based on the channel polarization 
theory. Channel polarization refers to the combination and splitting of any N = 2n(n ≥ 0) independent BDMCs 
in a specific way. As the number of channels N increases, the sub-channel characteristics show a polarization 
phenomenon. According to the phenomenon of channel polarization, N original channels that are mutually 
independent can be transformed into N channels with unequal channel capacity. When N tends to infinity, some 
channels’ capacity tends to 0, and others tend to 1. Assuming that the capacity of K channels tends to 1, and the 
N − K channels tends to 0. K channels with capacity close to 1 can be selected to transmit information bits, and 
N − K channels with a capacity close to 0 are selected to transmit frozen bits. Thereby realizing a correspond-
ence from K information bits to N codewords, that is, realizing the encoding process of the Polar code with 
R = K

N  . The specific encoding method of Polar code can be expressed by xN1 = uN1 GN , where GN = BNF
⊗n , BN 

is the N-order bit permutation matrix, F =

[

1 0
1 1

]

.

SC decoding algorithm is not suitable for parallel implementation, so we use MPI technology for multi-code-
word decoding. The decoding party received error codeword yN1  . The decoding process is to obtain an estimation 
of ûN1  of the information sequence uN1  based on the known received signal yN1  . A denote the set of information 
bit positions, and the complement Ac denote the set of frozen bit positions. The SC decoding is shown in Eq. (4).

hi(y
N
1 , û

i−1
1 ) =

{

0 L
(i)
N (yN1 , û

i−1
1 ) ≥ 1

1 others
 is the decoding criterion, where L(i)N =

W
(i)
N (yN1 ,ûi−1

1 |0)

W
(i)
N (yN1 ,ûi−1

1 |1)
.

While the block size of Polar code tends to infinity, since each split channel is close to full polarization, the 
SC decoding algorithm can ensure the correct decoding of each information bit, so that the Polar code can 
theoretically reach the symmetric capacity of the channel I(W).
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