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An evaluation of approaches 
for rare variant association 
analyses of binary traits in related 
samples
Ming‑Huei Chen1*, Achilleas Pitsillides2 & Qiong Yang2

Recognizing that family data provide unique advantage of identifying rare risk variants in genetic 
association studies, many cohorts with related samples have gone through whole genome sequencing 
in large initiatives such as the NHLBI Trans‑Omics for Precision Medicine (TOPMed) program. 
Analyzing rare variants poses challenges for binary traits in that some genotype categories may have 
few or no observed events, causing bias and inflation in commonly used methods. Several methods 
have recently been proposed to better handle rare variants while accounting for family relationship, 
but their performances have not been thoroughly evaluated together. Here we compare several 
existing approaches including SAIGE but not limited to related samples using simulations based on the 
Framingham Heart Study samples and genotype data from Illumina HumanExome BeadChip where 
rare variants are the majority. We found that logistic regression with likelihood ratio test applied 
to related samples was the only approach that did not have inflated type I error rates in both single 
variant test (SVT) and gene‑based tests, followed by Firth logistic regression that had inflation in its 
direction insensitive gene‑based test at prevalence 0.01 only, applied to either related or unrelated 
samples, though theoretically logistic regression and Firth logistic regression do not account for 
relatedness in samples. SAIGE had inflation in SVT at prevalence 0.1 or lower and the inflation was 
eliminated with a minor allele count filter of 5. As for power, there was no approach that outperformed 
others consistently among all single variant tests and gene‑based tests.

Family data provide a distinct advantage of detecting rare risk genetic variants associated with human traits. 
One of the possible reasons for lack of reproducibility in population-based genetic studies of rare variants is 
heterogeneity, that is, multiple causal rare variants are underlying the disease. Using family samples can increase 
the presence of the disease predisposing alleles thus has a better chance to detect the association than using 
unrelated samples.

With continuous traits, linear mixed effects model (LME) is the commonly used method for association analy-
ses with related samples implemented in popular software packages such as GCTA 1,  RAREMETALWORKER2, 
 EPACTS3, FREGAT 4 (Family REGional Association Tests) and seqMeta (https ://cran.r-proje ct.org/web/packa 
ges/seqMe ta/index .html). These software packages use either a relationship coefficient matrix based on pedi-
gree information or a genetic/genomic relationship matrix (GRM) estimated from genotype data to account for 
relatedness. Those that use a GRM (e.g. GCTA, RAREMETALWORKER, EPACTS) can additionally account for 
population stratification.

For binary traits, the field is more complex possibly due to the need to deal with computational and separa-
tion issues caused by low frequencies in some genotype category and/or event outcome. The aforementioned 
packages either handle an unrelated subset only, which results in power loss, or use LME and treat binary traits 
as continuous for fast computing speed, which however produces uninterpretable effect estimate.

We have developed RVFam that provides tools for analyzing three types of traits: continuous, binary and 
survival measured in family  samples5. For binary outcomes, RVFam fits a generalized linear mixed effects model 
(GLMM). Unlike LME, there is no close form solution to the maximum likelihood of GLMM, therefore binary 
trait association analyses using RVFam/GLMM take more time than using LME.
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Additional tools for binary outcomes have emerged in recent years that tried to address the computational 
and separation issues caused by low frequencies in some genotype category and/or event outcome. GMMAT 
(generalized linear mixed model association test) fits GLMM with a GRM and derives a score statistic for asso-
ciation analyses which is faster than the maximum likelihood  method6. However, such score statistic can be 
inflated when applied to rare variants. Recently Zhou et al.7 proposed Scalable and Accurate Implementation 
of Generalized mixed model (SAIGE) that uses the saddle point approximation to calibrate the distribution of 
score test statistics to better handle extremely unbalanced data. It reduces computational and memory cost by 
utilizing strategies such as the average information restricted maximum likelihood algorithm and replacing the 
spectral decomposition with the preconditioned conjugate gradient method to solve linear systems and avoid 
the need of inversing GRM.

Firth logistic  regression8,9 was proposed to resolve the separation issue by adding a penalty for sparsity on the 
likelihood of a logistic regression. It has been shown that Firth logistic regression maintained a valid type I error 
when applied to rare variants analyses in unrelated  samples10. Note Firth logistic regression does not account for 
relatedness and population structure. However, population structure can be controlled by adjusting for principal 
components of variance-standardized relationship matrix estimated using genome-wide data in association test-
ing as is also the practice of other methods which we compared in this study. Here we are interested in examining 
its performance on both unrelated and family samples.

In this paper, we perform extensive simulation studies to compare RVFam, GMMAT, seqMeta, EPACTS-q.
emmax (LME treating binary traits as continuous), logistic regression with likelihood ratio test (LRT), Firth 
logistic regressions and SAIGE. These approaches are population based as opposed to family based methods 
such as family based association tests  (FBAT11), rare-variant transmission disequilibrium test (RV-TDT12), rare-
variant generalized disequilibrium test (RV-GDT13), and a rare-variant association test for affected  sibships14. 
The family based methods use within family information to control for population stratification and can be 
used for association analyses of binary phenotypes measured on families. However these family-based methods 
may be less powerful compared to population based methods when the latter are able to control for population 
stratification through covariate adjustment. In this study, we focus on the population based methods.

Materials and methods
Existing methods. There are few software packages available for testing association between rare variants 
and binary outcomes with family data. We selected RVFam, GMMAT and SAIGE designed for analyzing this 
type of data. We also compared software packages designed for analyzing rare variants with unrelated samples in 
the same simulations using a subset of unrelated samples from the family data—we selected seqMeta R package 
and logistf R  package9 implementing Firth’s logistic regression  method8. We also included logistic regression 
with LRT and EPACT’s q.emmax that uses LME and treats binary outcomes as continuous for comparison.

RVFam (https ://cran.r-proje ct.org/web/packa ges/RVFam /) is an R package/wrapper for rare variants analy-
sis with family data that can be applied to continuous, binary or survival  traits5. For binary traits, RVFam uses 
GLMM with a logistic link by calling the glmer() function in lme4 R package. Users can choose a gene-based 
test from either a collapsing burden  test15, a Madsen and Browning’s burden  test16 or a sum of squares (SSQ) 
 test17 in addition to single variant test (SVT). RVFam reports p-values from LRT except for the SSQ test that is a 
chi-square test. When a convergence issue occurs in estimating the variance–covariance matrices of the random 
effects in the glmer() function call (page 16 of lme4’s reference manual, https ://cran.r-proje ct.org/web/packa ges/
lme4/lme4.pdf), RVFam catches warning messages returned from lme4 and provides a remark. Even though 
the warning messages do not necessarily imply incorrect glmer fitting, the resulting regression coefficients may 
not be reliable.

GMMAT (Generalized Linear Mixed Model Association Tests, https ://githu b.com/lin-lab/GMMAT ) is an 
R package that uses a logistic mixed model with a GRM to account for population substructure and relatedness 
in genetic association studies of binary  traits6. GMMAT also has a component for analyzing continuous traits. 
Gene-based tests including burden tests and sequence kernel association  test18 (SKAT) are available in addi-
tion to SVT. GMMAT is the component for binary traits in GENESIS (GENetic EStimation and Inference in 
Structured samples, https ://bioco nduct or.org/packa ges/relea se/bioc/html/GENES IS.html) R package available 
on the Analysis Commons, a cloud-based computing platform, for National Heart, Lung, and Blood Institute’s 
TOPMed project.

SAIGE, (Scalable and Accurate Implementation of GEneralized mixed model, https ://githu b.com/weizh 
ouUMI CH/SAIGE ), is a software implemented for efficiently controlling for unbalanced case–control ratios, 
sample relatedness and population stratification for genome-wide association study (GWAS) of large sample 
sizes. SAIGE uses saddle point approximation to control for case–control imbalance in a logistic mixed effects 
model and reports score test results7. Advanced optimization techniques are used in SAIGE and their efficiency 
is seen in its applications to UK Biobank data of 408,961 white British samples. Burden test and SKAT are also 
available in SAIGE.

seqMeta (https ://cran.r-proje ct.org/web/packa ges/seqMe ta/index .html) is an R package that can be used 
for individual study analysis and meta-analysis, and it can be applied to continuous, binary and survival traits 
using unrelated samples, with exception of continuous traits that can be applied to family data using LME. For 
binary outcomes, seqMeta uses logistic regression. Burden tests and SKAT are implemented in addition to SVT.

Logistic regression with LRT is carried out using the glm () function in R and is denoted as GLM. Based on 
RVFam’s binary traits component framework, we implemented a function for SVT and gene-based tests using 
GLM. Firth logistic regression is proposed to correct asymptotic bias of maximum likelihood estimates and to 
provide a solution to separation by using a penalized likelihood  function8,9. The approach is implemented in 
logistf R package (https ://cran.r-proje ct.org/web/packa ges/logis tf). We created a function for gene-based tests 
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and SVT using Firth logistic regression implemented in logistf R package based on RVFam’s binary traits compo-
nent. Theoretically both GLM and Firth logistic regression (denoted Firth test) are only applicable to unrelated 
samples as they do not account for relatedness.

EMMAX (efficient mixed-model association eXpedited), is a component for analyzing continuous traits 
using LME in  EPACTS3 (Efficient and Parallelizable Association Container Toolbox, https ://genom e.sph.umich 
.edu/wiki/EPACT S). Treating binary traits as continuous was seen in some GWAS literatures using popular 
software that implement  LME1,3,19–21. Here we used q.emmax option in EPACTS and treated binary outcomes 
as continuous.

Simulation designs. We conducted two simulation studies to evaluate the performance of aforementioned 
methods in terms of type I error rate and statistical power for testing genetic association.

In the first simulation study, we used the real genotypes of 246,670 Single Nucleotide Polymorphisms (SNPs) 
captured on the Illumina HumanExome  BeadChip22 and simulated phenotypes of 3380 Framingham Heart 
Study (FHS) Offspring Cohort participants with exome chip data in 1147 pedigrees containing participants 
from three generation  recruitments23–25. The exome chip data consists of 85% rare variants defined as variants 
with minor allele frequency (MAF) less than 0.01. Among the 3,380 samples, a subset of 1,868 unrelated samples 
were identified. We first simulated a QTL and its linked continuous trait using the FHS sample with  SOLAR26. 
The QTL (MAF 0.05) explained 2% of the trait variance (genotypic mean decided by sqrt(0.02/(2 × 0.05 × 0.95)) 
under an additive model) and the polygenic variance proportion was set to be 25%. With prevalence (k = 0.01, 
0.05, 0.1 and 0,2), genotype relative risk (GRR = 1.5) and the QTL allele frequency, we computed the probabilities 
of being affected per genotype under an additive model and used them as quantiles to dichotomize simulated 
continuous traits per genotype group to obtain our binary outcomes. To evaluate type I error rates, 100 replicates 
of phenotype data were generated and tested for association with all exome chip variants independent of the 
QTL. For power simulation, as RVFam has a survival component, we simulated a survival trait and took the 
event variable as our binary trait, so we could evaluate both survival (not included in the present study) and 
binary components. The survival trait was simulated to follow a Weibull distribution with shape parameter 1 
(constant failure rate over time) and scale parameter that incorporated normally distributed random effects 
and effects of the five selected independent  (r2 < 0.0063) QTL with various MAF from the ABO gene that con-
tained 36 variants (4 monomorphisms) in the exome chip data. The MAF,  r2 and assigned effect information of 
the five QTL (exm792698, exm792721, exm792730, exm792750, and exm792745) are given in Supplementary 
Table S1. The random effects were simulated using the FHS sample with SOLAR, where polygenic variance was 
25% (QTL variance was 0). The prevalence was 0.2. We simulated 100 replicates to assess statistical power. Both 
SVT and gene-based tests were conducted for all considered approaches. For gene-based tests, MAF ranges of 
(0, 0.01) and (0, 0.05) were used to select SNPs. We used T1/T5, SSQ1/SSQ5 and SKAT1/SKAT5 to denote the 
three gene-based tests with MAF range 0.01/0.05, Li and Leal 2008’s collapsing/burden test, Pan 2009’s SSQ test 
and SKAT, respectively. Note the burden test implemented in all methods use a variant weight of 1, SSQ and 
SKAT use a variant weight of beta(1,25). The Bonferroni corrected genome-wide significant threshold was set as 
0.05/246,670 = 2.027E−7 and 0.05/26,651 = 1.876E−6 for SVT and gene-based tests, respectively.

In the second simulation study, we were interested in evaluating the type I error rates of SVT using simulated 
genotypes and phenotypes based on the same FHS samples. We simulated dichotomized traits similarly as in 
the first study with two differences: (i) polygenic variance was additionally set to 50%, (ii) a SNP independent 
of the QTL was simulated to have MAF of 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 and 0.3, and was tested to 
estimate type I error rates. That is, we have polygenic variance (vg) at 0.25 and 0.5, prevalence (k) at 0.01, 0.05, 
0.1 and 0.2, and MAF (p) at 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 and 0.3, 64 scenarios in total and 10,000 
replicates for each scenario. Thus, each vg has 32 scenarios (4 k’s and 8 p’s), each k has 16 scenarios (2 vg’s and 8 
p’s) and each p has 8 scenarios (2 vg’s and 4 k’s). Type I error rates were evaluated at significance levels of, 0.05, 
0.001 and 5E−6. An inflated type I error rate was claimed when a type I error rate estimate was greater than 
significance level inferred by a one-sided proportion test.

In both simulation studies, all methods including GLM and Firth test were applied to related samples, except 
for seqMeta. Firth test was also applied to unrelated samples. All analyses and figures were conducted or produced 
using the R language and  environment27.

Results
First simulation study. Table 1 presents the type I error rate results. Type I error rate was computed by 
total number of SNPs/genes that passed genome-wide significance threshold in 100 replicates divided by total 
number of SNPs/genes in 100 replicates, which has been calibrated by dividing the significance threshold. A 
value greater than 1 in Table 1 indicates inflation.

GLM had the best performance on controlling type I error rates in both SVT and gene-based tests as no 
inflation was observed, followed by Firth tests that had slight inflation observed only in SSQ1 and SSQ5 at preva-
lence 0.01, SAIGE that had inflation only in SVT at prevalence 0.1 or lower, and then RVFam that had inflation 
in both SVT and gene-based tests only at prevalence 0.01. GMMAT, q.emmax and SeqMeta all had inflation 
across all scenarios in both SVT and gene-based tests. In general, type I error rates increased when prevalence 
decreased for methods with inflations. It was interesting that no inflation was also observed in GLM and Firth 
test applied to related samples and that SSQ tests applied to related samples had less inflation than applied to 
unrelated samples in Firth test.

As the majority of the exome chip data are rare variants, we applied two minor allele account (MAC) filters to 
exclude rare variants with MAC not greater than 5 and 10 to see whether this could eliminate the inflated type I 
error rates in SVT. Table 2 shows that inflation was eliminated for SAIGE only but remained for other approaches 
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with inflated type I error rates. We generated QQ plots (Fig. 1) arbitrarily using results of the first replicate simu-
lated data for evaluating type I error rates at each prevalence (0.01, 0.05, 0.1 and 0.2). Genomic inflation  factor28 
(λ) estimates were presented in the legend of each QQ plot. Dash line represents the genome-wide significance 
level for SVT, points above this line represent false positives. SeqMeta, GMMAT and q.emmax identified many 
false positives at prevalence 0.01, 0.05 and 0.1. SAIGE identified several rare variant (MAC < 3) false signals at 
prevalence 0.01 with very small p-values that were replaced by 1E-45 for better presentation. At prevalence 0.05, 
GLM, RVFam, Firth test and SAIGE identified one false positive each. No false positive was detected at prevalence 
0.2. Firth (unrelated) test did not identify any false positive. The results agreed with Table 1 in general. In terms 
of λ, interestingly, the estimates of Firth tests’ decreased from > 3 to < 0.64 as prevalence increased from 0.01 to 
0.2, while the trend was opposite for other approaches.

We further computed λ in SVT of all replicates at each prevalence for each approach and then made average 
λ versus prevalence plots (Fig. 2). When no MAC filter was applied (top left panel), the plot essentially presents 
λ estimates similar to what were reported in Fig. 1 legends. The genomic inflation factor λ evaluates the medium 
of the test statistic distribution compared to that of the expected under the null hypothesis of no association. It 
is relevant because for example in meta analyses where moderate test statistic values from multiple studies are 
cumulated, and high λ values in some studies may result in inflation in overall summary statistics. The plots 
show Firth tests had opposite trend compared to others. At low prevalence (0.01 and 0.05) and no MAC filter, 
all approaches had low λ estimates except for Firth tests. In this case, genomic control  correction28 may need to 
be applied to correct for inflation observed in Firth tests, which may result in a lower power for variants with 
p-values at the tail of the distribution. As rare variants are the dominant majority in exome chip data, one may 
apply the correction to rare variants only. When either MAC filter was applied, unlike other approaches that had 
fluctuating λ estimates at different prevalences, GLM had stable λ estimates very close to 1.

Table 3 presents the power results. Obviously approaches applied to the whole 3,380 samples had better power 
than approaches applied to the unrelated subset, and gene-based tests had better power than SVT for the rare 
variants. T1 had better power than T5 because three rare QTL of the same effect direction were selected in T1 
and T5 further included a QTL with different effect direction that weakened the total effect and the association of 
ABO gene. As SSQ and SKAT tests are effect direction insensitive, we expect SSQ5/SKAT5 to have better power 
than SSQ1/SKAT1, which can be seen in GLM, RVFam, SAIGE and Firth tests, however, not in other approaches. 
There was no approach that consistently outperformed others in all scenarios. We particularly compared GLM, 
SAIGE and Firth test applied to related samples. For SVT, GLM and Firth test had better power in identifying 
the common QTL exm792745, while SAIGE had slightly better power in detecting the rare variant exm792721. 
For gene-based tests, GLM’s SSQ1/5 had better power in detecting ABO gene than Firth test and SAIGE, while 
Firth test and SAIGE had slightly better power in T1 than GLM.

Figure 3 presents boxplots of regression coefficient (beta) estimates of the five QTL from all methods (except 
for q.emmax) and Supplementary Table S2 presents their averages and standard deviations. For RVFam in 
Supplementary Table S2, we reported results of all 100 replicates  (4th column) and results of replicates without 

Table 1.  Calibrated type I error rate (Type I error rate was computed by total number of SNPs/genes that 
passed genome-wide significance threshold in 100 replicates divided by total SNPs/genes in 100 replicates, 
which has been calibrated by dividing the significance threshold. A value greater than 1 indicates inflation) of 
the first simulation study. Genome-wide significance level for single variant tests (SVT) = 2.027E−7; for gene-
based tests = 1.876E−6. Methods with “unrelated” are those applied to unrelated samples, all other approaches 
were applied to related samples. T1/T5, SSQ1/SSQ5 and SKAT1/SKAT5 denote the three gene-based tests with 
MAF threshold 0.01/0.05, collapsing/burden test, sum of squares test and SKAT, respectively.

Prevalence

RVFam GMMAT Firth

SVT T1 SSQ1 T5 SSQ5 SVT T1 SKAT1 T5 SKAT5 SVT T1 SSQ1 T5 SSQ5

0.01 11,478.2 2138.8 11,478.2 2138.8 4550.8 7618.4 843 1582 2431 2294.8 0.4 0.2 109.8 0.2 100.4

0.05 0.4 0.8 0.4 0.8 0.4 937.6 154.4 266.6 121.8 201.4 0.6 0.6 0.6 0.2 0.6

0.1 0.4 0.2 0.4 0.2 0 127.6 31.2 46.4 23.2 34.4 0.6 0.8 0.2 0.6 0.2

0.2 0 0.4 0 0.4 0.2 2.2 2 3.2 1.6 2.8 0 0.2 0 0.2 0

Prevalence

q.emmax seqMeta (unrelated) Firth (unrelated)

SVT T1 SKAT1 T5 SKAT5 SVT T1 SKAT1 T5 SKAT5 SVT T1 SSQ1 T5 SSQ5

0.01 7923.2 1536.6 3447.8 1258.2 2611.8 19,126.4 2242.6 5155.6 1774.8 3752.4 0.2 0.8 242 0.8 225

0.05 562.8 195.4 332.2 159.6 257.2 1487.6 342 566.2 266.6 422.6 0.4 1 0.4 0.6 0.6

0.1 182.8 37 53.4 29.4 41.2 138.2 50.6 75.2 40.8 56.2 0 0.2 0 0.4 0

0.2 2.6 1.8 4 1.8 3.2 1.4 3 3.2 2.4 3 0 0.2 0 0.6 0

Prevalence

SAIGE GLM

SVT T1 SKAT1 T5 SKAT5 SVT T1 SSQ1 T5 SSQ5

0.01 1489.4 0 0.2 0 0.2 0 0 0 0 0

0.05 6109.2 0.4 0.6 0.2 0.6 0.4 0.4 0.4 0.2 0.4

0.1 1021.8 0.2 0 0 0.2 0.4 0.2 0 0.2 0

0.2 0 0.4 0.6 0.2 0.8 0 0.4 0.2 0.4 0.2
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convergence remark  (5th column). The convergence issues occurred to rare variants exm792721 and exm792698 
and that led to very biased beta estimates. Excluding results with convergence issues, the biases were reduced  (5th 
column). First of all, Firth test applied to related samples consistently had the best precision (smallest standard 
deviation of effect estimates). For exm792698 (MAF 0.00012, true beta 4.8), GMMAT gave the closest estimate, 
followed by seqMeta, Firth tests, GLM and RVFam. For exm792721 (MAF 0.00104, true beta 3.0), Firth tests gave 
the closest estimate, followed by GMMAT, seqMeta, GLM and RVFam. While for the other three QTL, RVFam’s 
were closest to the true beta values, followed by GLM, Firth tests, seqMeta, GMMAT and SAIGE. Estimates 
from GMMAT and SAIGE were quite similar. Without excluding results with convergence issues, estimates from 
RVFam and GLM were also similar.

We also compared computing efficiency for approaches applied to related samples using a Linux Centos 6.6 
cluster with a 2 ten-core 2.6 GHz Intel Xeon E5-2660v3 processor and 256 Gigabytes memory. We used a rep-
licate of simulated data with prevalence 0.2 used in assessing type I error rates in the first simulation study and 
analyzed chromosome 1 only for SVT and gene-based tests with MAF threshold of 0.05. With a single thread, 
GLM, Firth test, SAIGE, GMMAT and RVFam took 9.13, 21.15, 15.6, 18.12, and 52.1 minutes.

Even though GLM outperformed other methods in maintaining correct type I error rates and computation 
efficiency, its biased effect estimate in rare variants can lead to biased results in the popular fixed effect meta-
analysis. As Firth test was proposed to correct bias, we sought to replace GLM with Firth test in SVT for variants 
with some MAC threshold. We first computed mean of the effect estimate and its standard deviation of GLM 
and Firth test applied to related samples with MAC thresholds of 5 and 10 (Supplementary Table S3) using all 
replicates from the first simulation study evaluating type I error rates (where true effect was zero). We wanted 
to find a MAC threshold so that the GLM estimates of variants with MAC greater than the threshold were rea-
sonably close to Firth test’s. The results showed that variants with MAC > 10 still showed differences between 
GLM and Firth test. We then tried MAC filters in disease samples (MAC.d) of 1, 2, and 3. The means were much 
closer to 0 and the standard deviations were smaller. We found MAC.d filter of 2 would be a good threshold as 
the means from GLM were even closer to 0 than from Firth test and the standard deviations were reasonably 
close to Firth test’s. The hybrid strategy that uses GLM for variants with MAC.d > 2 and Firth test otherwise, 
significantly reduced bias in effect estimation while keeping correct type I error rates and similar power in SVT.

Second simulation study. Table 4 summarizes the results of the second simulation study. Numbers in the 
table indicate the number of scenarios with inflated type I error rates, i.e. false positive rates greater than level 
of significance inferred by a one-sided test. At significance level 0.05 (Table 4, α1), unlike the first simulation 
study where inflation increased when prevalence decreased in most approaches (except for Firth tests that had 
no inflation), no such trend was observed in all methods. No inflation was seen at MAF 0.0001 in all methods. 
RVFam and GLM had the same number of scenarios with inflation and did not have inflation at MAF ≤ 0.001, 
Firth test applied to unrelated samples did not have inflation at MAF ≤ 0.005. Firth test applied to unrelated sam-
ples, q.emmax and SAIGE had the least scenarios with inflation, while RVFam and GLM had the most scenarios 
with inflation (23/64).

At significance level 0.001 (Table 4, α2), the observation of inflation increased when prevalence decreased 
was seen in GMMAT, seqMeta and Firth test applied to unrelated samples. RVFam, GLM, both Firth tests and 
SAIGE had better control on type I error rates compared to GMMAT, seqMeta and q.emmax. RVFam and GLM 
again had the same number of scenarios with inflation.

At significance level 5E−6 (Bonferroni correction, Table 4, α3), GLM was the only approach that had no 
scenario with inflation. In general, more scenarios with inflation were identified when prevalence decreased 
(as observed in the first simulation study). The observation contradicted results in Table 4 at significance level 
of 0.05 (α1). Again, RVFam, both Firth tests and SAIGE had better control on type I error rates compared to 
GMMAT, seqMeta and q.emmax.

Overall, more scenarios with inflation were seen at polygenic variance 50% compared to polygenic variance 
25%, no matter which significance level was used. GMMAT, seqMeta and q.emmax had more scenarios with 
inflation compared to others at α2 and α3, while RVFam, GLM and Firth test applied to related samples had less 
scenarios with inflation when significance level was more stringent. The number of scenarios with inflation for 
SAIGE and Firth test applied to unrelated samples seemed stable and less than other approaches’, except for GLM 
at α3 that had no scenario with inflation.

Discussion
In this paper we presented results of two simulation studies that compared several existing methods for rare vari-
ants association analysis of binary outcomes with family data. The first simulation study used exome chip data 
and simulated binary outcomes to mimic a whole genome study where rare variants are the dominant majority. 
GLM is the only approach that had no inflated type I error rates for both SVT and gene-based tests. Firth tests 
applied to either related or unrelated samples had inflated type I error rates only for SSQ1/5 at prevalence 0.01. 
Firth test is also implemented in EPACTS, however no gene-based Firth test has been implemented. We also 
applied Firth test in EPACTS for SVT of the first simulation study using unrelated samples, the results are quite 
similar to ours. SAIGE had inflation only in SVT but the inflation was eliminated with a MAC filter of 5.

RVFam reports a remark when lme4 generates convergence warnings (in estimating variance–covariance 
matrices of random effects) that are not necessarily due to incorrect fitting. However, Fig. 3 and Supplementary 
Table S2 show that convergence failures lead to biased beta estimates for the two rarest QTL in our power analysis. 
In addition, lme4’s reference manual also reports that the warnings tend to occur with large datasets (number 
of observations greater than 100,000 approximately). When a genome-wide significant signal is identified with 
a remark by RVFam, we suggest users follow necessary steps recommended by lme4 authors/maintainers to 
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evaluate and resolve the warnings. One can also use GLM or Firth test to check given that both methods had 
the correct type I error rates in our simulations. In the two simulation studies for evaluating type I error rates, 
RVFam results were assessed without excluding those with a remark. If we exclude those with a remark, the 
type I error rates will improve. While in the power simulation, power was evaluated with remark being ignored 
(Table 3). However, this did not impact the estimated power, as the warnings occurred mostly in the two rarest 

Table 2.  Estimated type I error rates (Type I error rate was computed by total number of SNPs that passed 
genome-wide significance threshold in 100 replicates divided by total SNPs in 100 replicates, which has been 
calibrated by dividing the significance threshold. A value greater than 1 indicates inflation) after applying MAC 
filters of 5 and 10 in single variant tests (SVT) of the first simulation study. Genome-wide significance level: 
SVT = 2.027E−7. Methods with “unrelated” are those applied to unrelated samples, all other approaches were 
applied to related samples.

Prevalence

RVFam GMMAT Firth q.emmax
seqMeta 
(unrelated) Firth (unrelated) SAIGE GLM

MAC5 MAC10 MAC5 MAC10 MAC5 MAC10 MAC5 MAC10 MAC5 MAC10 MAC5 MAC10 MAC5 MAC10 MAC5 MAC10

0.01 9560.2 8219.6 675.8 296 0.2 0.2 1912.6 828.8 5863.2 1561.8 0 0 0 0 0 0

0.05 0.4 0.2 213.6 44.6 0.6 0.4 274.8 56.4 545.2 157.6 0.4 0.2 0.4 0.2 0.4 0.2

0.1 0.4 0.4 45.4 11.8 0.6 0.6 61 14.2 95 30.6 0 0 0.4 0.4 0.2 0.2

0.2 0 0 2.2 1.4 0 0 2.6 1.4 1.4 1.2 0 0 0 0 0 0

Figure 1.  QQ plots of replicate 1 for assessing Type I error inflation in single variant tests (SVT) of the first 
simulation study.
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Figure 2.  Plot of average genomic control parameter (λ) estimate from 100 replicates versus prevalence k in the 
first simulation study for evaluating type I error rates in SVT without minor allele count (MAC) filter (top left), 
with MAC5 filter (top right) and with MAC10 filter (bottom left).

Table 3.  Power analysis results of the first simulation study. Methods in bold are those not having severe 
inflation in type I error study and thus whose power can be compared together. Genome-wide significance 
level for single variant tests (SVT) = 2.027E−7; for Gene-based tests = 1.876E−6. Methods with “unrelated” are 
those applied to unrelated samples, all other approaches were applied to related samples. T1/T5, SSQ1/SSQ5 
and SKAT1/SKAT5 denote the three gene-based tests with MAF threshold 0.01/0.05, collapsing/burden test, 
sum of squares test and SKAT, respectively.

Method

SVT power (%) Gene-based test power (%)

exm792698 exm792721 exm792730 exm792745 exm792750 T1 SSQ1/SKAT1 T5 SSQ5/SKAT5

RVFam 0 0 10 71 1 33 38 0 66

GMMAT 0 12 32 63 0 57 60 0 39

q.emmax 0 20 32 63 0 59 65 0 38

Firth (unre-
lated) 0 0 1 15 0 9 11 0 19

Firth 0 0 13 72 1 37 29 0 55

seqMeta (unre-
lated) 0 20 5 10 0 24 28 0 3

SAIGE 0 3 12 61 0 37 37 0 38

GLM 0 0 12 72 1 35 41 0 68
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QTL with 0 power to detect them. In Supplementary Table S2, we presented results with or without excluding 
variants with a remark for contrast. Excluding those with a remark did bring the regression coefficient estimates 
closer to the true values for the two rarest QTL.

Figure 3.  Box plots of beta estimates of the five selected QTL from power analysis of the first simulation study.
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The second simulation study demonstrates that for SVT at Bonferroni correction threshold, GLM did not 
identify any false positives and thus had 0 scenario with inflation, followed by Firth test applied to related sam-
ples (1 scenario with inflation), Firth test applied to unrelated samples and RVFam (each with 2 scenarios with 
inflation) and then SAIGE (4 scenarios with inflation).

Based on our simulation results, we recommend a hybrid strategy that uses GLM for gene-based tests and 
variants with MAC.d > 2 and Firth test otherwise in SVT for rare variant association analyses of binary outcomes 
with unrelated samples or family data. This strategy provided correct type I error rates, least biased effect estima-
tion, good power and computation efficiency without necessity of filtering out variants. Even though theoreti-
cally GLM and Firth test do not account for relatedness in samples, our simulation results showed that they 
outperformed other approaches like RVFam, GMMAT and SAIGE that account for relatedness in controlling 
type I error rates when applied to related samples. We think this may be due to (i) the use of LRT, (ii) the fact that 
the familial correlation of complex binary outcomes is weaker than continuous traits’, and (iii) an appropriate 
genome-wide significance is used. In the case of population stratification, one can adjust for genetic principal 
components in association testing.

Our study evaluates the statistical performance of approaches applied to binary trait GWAS with family data 
using exome chip data from the FHS. We believe our results can be generalized to similar datasets. However 
there are limitations. First, we considered only population based methods that do not adjust for ascertainments, 
so they may be subject to ascertainment bias if the families were collected from proband(s) instead of randomly 
sampled, e.g. in cohort studies where sample collection does not depend on the disease status of other family 
members. Second, there are scenarios that were not considered in the study, e.g. rarer diseases (prevalence less 
than 0.01). So we could not assess e.g. whether GLM still have correct type I error rates for rarer diseases that 
can be considered for much larger sample sizes. In addition, it’s also likely that SAIGE and the hybrid strategy 
will need a larger MAC/MAC.d filter to avoid false positives.
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