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The dynamics of explore–exploit 
decisions reveal a signal‑to‑noise 
mechanism for random exploration
Samuel F. Feng1,4, Siyu Wang2, Sylvia Zarnescu2 & Robert C. Wilson2,3*

Growing evidence suggests that behavioral variability plays a critical role in how humans manage the 
tradeoff between exploration and exploitation. In these decisions a little variability can help us to 
overcome the desire to exploit known rewards by encouraging us to randomly explore something else. 
Here we investigate how such ‘random exploration’ could be controlled using a drift‑diffusion model 
of the explore–exploit choice. In this model, variability is controlled by either the signal‑to‑noise ratio 
with which reward is encoded (the ‘drift rate’), or the amount of information required before a decision 
is made (the ‘threshold’). By fitting this model to behavior, we find that while, statistically, both drift 
and threshold change when people randomly explore, numerically, the change in drift rate has by far 
the largest effect. This suggests that random exploration is primarily driven by changes in the signal‑
to‑noise ratio with which reward information is represented in the brain.

When choosing a class in college, should you exploit the Math class you are sure to ace, or explore the Photog-
raphy class you know nothing about? Exploiting Math may be the way to a better grade, but exploring Photog-
raphy—and finding that it scratches an itch you never knew you had—could be the path to a better life. As with 
all such ‘explore–exploit’ decisions, picking the optimal class is hard—explore too much and you’ll never finish 
your degree, exploit too much and, like us, you will do Math for the rest of your life.

From a computational perspective, the difficulty of explore–exploit decisions arises due to uncertainty about 
the outcome of each choice (Will I like photography or won’t I?) and the long time horizon over which the conse-
quences of a choice can play out (If I like photography should I change my major?). To make an ‘optimal decision,’ 
that is a decision that maximizes our expected future reward, we need to average over all possible futures out to 
some time  horizon1. However, averaging over all possible futures requires us to mentally simulate all possible 
futures—a computation that scales badly with uncertainty and horizon, and that is surely beyond what any brain 
can perform. Thus it is necessary for humans and animals to use heuristics and approximations to make practical 
explore–exploit choices that may be suboptimal in theory, but good enough in practice.

Inspired by research in machine learning  (see2 for review), recent findings in psychology suggest that humans 
use two strategies to make explore–exploit decisions: an explicit bias for information (‘directed exploration’), and 
the randomization of choice (‘random exploration’)3–13. In directed exploration, a decision is made by comparing 
the expected values of exploring and exploiting. These expected values combine the predicted short-term payoff 
from picking an option once, the ‘expected reward,’ with an estimate of the long-term value of the information 
obtained from choosing that option, the ‘information bonus,’ also known as the future expected  value14. The 
information bonus increases the value of exploratory options such that, when all else is equal, a directed explorer 
will always explore. In random exploration, the tendency to exploit the option with highest short-term expected 
reward is countered by ‘noise’ in the decision process. This noise introduces random variability to the decision, 
which sometimes leads to exploration by chance.

A key feature of both types of exploration is that they appear to be subject to cognitive control. Thus, when it 
is more valuable to explore—because there is more time to  explore4, because the options are more  uncertain5,9, 
or because exploring is the only way to gain  information10—people exhibit more information seeking (directed 
exploration) and more variability in their behavior (random exploration). Exactly how the brain achieves this 
control of directed and random exploration is unknown.

In this work we develop a value-based drift-diffusion  model15–18 of explore–exploit behavior to investigate 
how random exploration could be controlled. In this model, we assume that the decision between exploration 
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and exploitation is accomplished by accumulating evidence over time. At any moment, we assume that this 
evidence is made up of a signal, µ , proportional to the difference in expected values between the two options, 
and noise with variance c2 . The accumulation process starts from a starting point, x0 , that captures the initial 
bias towards one option or the other, and makes a decision when the accumulated evidence crosses a threshold 
at +β for (e.g.) exploration and −β for exploitation (Fig. 1).

In the drift-diffusion model, behavioral variability can be controlled by three different parameters corre-
sponding to three different mechanisms for random exploration: (1) the signal, µ , (2) the variance of the noise, 
c2 , or (3) the threshold, β . As shown in the “Results” section, at the level of choice it is impossible to distinguish 
between these three parameters. That is, identical changes in choice variability can be caused by changes in either 
signal, noise, or threshold (or a combination of all three). Thus, from choice data alone (which has been the 
main focus of the explore–exploit literature up to now), it is impossible to determine which of these processes 
controls random exploration.

In contrast to choices alone, it is possible to separate two of these processes (although unfortunately not all 
 three19) using response times. In particular, we can distinguish a change in threshold from a change in the ratio 
of the signal to the noise. However, we cannot go further and attribute a signal-to-noise ratio (SNR) change to a 
change in signal, noise or both. For this reason, it is common to fix the variance of the noise, c2 = 1 , and interpret 
the drift parameter as a signal-to-noise ratio.

In this work, we fit a drift-diffusion model to choices and response times in a popular explore–exploit task (the 
Horizon  Task4). Using this approach we find evidence that random exploration is primarily driven by changes 
in the signal-to-noise ratio, not the threshold.

Results
Before presenting the results of our analysis modeling response times, we briefly describe the behavioral task as 
well as the previous findings relating to choice in this task.

The Horizon Task. In the Horizon  Task4 participants play a series of games, lasting 5 or 10 trials each cor-
responding to free response horizons of 1 and 6 (Fig. 2). During these games they make choices between two 
slot machines (also known as ‘one-armed bandits’). When chosen, a slot machine pays out a probabilistic reward 
sampled from a Gaussian distribution that is truncated and rounded so that the rewards are integers between 1 
and 100 points. The means of the Gaussians are different for each option, such that one option is always better on 
average, but the standard deviation is the same for both options (8 points). The participants’ goal is to maximize 
their reward by exploiting the best option, but they are not told the means of the Gaussians, and thus they must 
explore both options to find out which one is best.

Critically, the first four trials of each game are ‘instructed’ trials (Fig. 2A). On these trials participants are 
told which option to play and forbidden from choosing the other option. This instruction allows us to control 
the information participants have before they make a free choice. In some games, participants are instructed 
to play one option once and the other three times. This sets up an ‘unequal’ information condition, in which 
participants are more uncertain about the option played once. In these ‘[1 3]’ games choosing this more uncertain 
option is more informative and we refer to this as the ‘high information’ choice. In other games, participants 
play both options twice to set up an equal (or [2 2]) information condition, in which both options are equally 
informative to play.

After the four instructed trials, participants make either 1 (short horizon condition) or 6 (long horizon con-
dition) free choices (Fig. 2B,C). This horizon manipulation allows us to change the relative value of exploration 
and exploitation. When the horizon is short, participants should favor exploitation, because there is no time in 
the future to use any information gained by exploration. Conversely, in the long horizon condition, participants 
should favor exploration, at least at first. Thus, by contrasting behavior between horizon conditions on the first 
free choice of the game, the Horizon Task allows us to quantify directed and random exploration as changes in 
information seeking and behavioral variability with horizon (Fig. 2D).

Information seeking and behavioral variability increase with horizon. Choice behavior on the 
first free-choice trial of the Horizon Task shows clear evidence of directed and random exploration. Consistent 
with directed exploration, in the [1 3] condition participants are more likely to choose the more informative 
option in horizon 6 than horizon 1, as indicated by a shift in the indifference point of the choice curves (Fig. 3A). 

Figure 1.  Schematic of the drift diffusion model showing the parameterization used in this paper.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3077  | https://doi.org/10.1038/s41598-021-82530-8

www.nature.com/scientificreports/

Consistent with random exploration, people’s behavior is less predictable (more random) in horizon 6 than hori-
zon 1, as indicated by a lower slope of the choice curves in the horizon 6 condition (Fig. 3B).

In4 we quantified the choice curves using a simple logistic model. In this model, we write the choice probabili-
ties in terms of the difference in observed mean reward of the two options, �R = Rleft − Rright , and the difference 
in information between the two options, �I = Ileft − Iright (with information defined such that �I = +1 when 
the left choice is more informative in the [1 3] condition, �I = −1 when the right choice is more informative 
in the [1 3] condition, and �I = 0 when neither option is more informative in the [2 2] condition). That is, we 
write the probability of choosing the left option as

where the free parameters are: the information bonus, A, the spatial bias in favor of choosing left, B, and the 
standard deviation of the decision noise, σ . The spatial bias and noise parameters, B and σ , are fit separately in 
each of the information and horizon conditions. The information bonus A is fit in the two horizon conditions of 

(1)p( choose left) =
1

1+ exp
(

−�R+A�I+B√
2σ

)

A

D

B C

Figure 2.  The Horizon Task. (A) Each game begins with four instructed trials in which participants are forced 
to pick the bandit with the green square. Note that the instructed trials are identical across horizon conditions 
except for the length of the bandits. (B,C) After the instructed trials, participants make free choices to the end of 
the game. In the short horizon condition, the game ends after one free choice (B). In the long horizon condition, 
participants make six free choices to complete the game (C). (D) The focus of analysis is the first free choice 
trial. On this trial, behavior is compared between two uncertainty conditions (unequal and equal) and two 
horizon conditions (short and long).
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the unequal information condition, which is the only condition in which it applies (there is no directed explora-
tion when both options are equally uncertain).

Fit values of the information bonus and decision noise for each participant are plotted in Fig. 3C–E. As the 
horizon increases from 1 to 6, people exhibit both a larger information bonus, consistent with directed explora-
tion (i.e. A increases, t(45) = 6.53, p < 0.001 ), and more decision noise, consistent with random exploration 
(i.e. σ increases t(45) = 7.66, p < 0.001 for [1 3] condition; t(45) = 5.78, p < 0.001 for [2 2] condition). Thus 
we have previously concluded that humans use both directed and random exploration in the Horizon  Task4.

Response times suggest the decision is made on the first free‑choice trial. Response times in 
the Horizon Task vary considerably with trial number (Fig. 4A,B). In the instructed trials, participants respond 
slowly on the first trial of each game (RT ≈ 0.6s), before speeding up for the remaining instructed trials (RT ≈ 
0.4s). They then slow down on the first free-choice trial (RT ≈ 0.7s), before speeding up again on later trials. 
This pattern of response times suggests that people may be playing through the instructed trials as quickly as 
possible (at least once they decide to initiate the game on the first trial), and saving their deliberation for the first 
free-choice trial.

A

C D E

B

Figure 3.  Choice behavior in the Horizon Task. (A,B) Choice curves showing the choice probability as a 
function of the difference in observed mean reward. (A) The probability of choosing the more informative 
option (i.e. the option played once during the instructed trials) as a function of the difference in observed 
reward between the more informative, R( high info) and less informative R( low info) bandits. (B) The 
probability of choosing the left bandit as a function of the difference in observed mean reward between the 
left and right options. (C,D,E) Fit parameter values, in units of points, from the logistic model showing the 
information bonus (C), as well as the standard deviation of the decision in the unequal (D) and equal (E) 
conditions. *** denotes a significant difference at p < 0.001.
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In line with the idea that people are deciding on the first free-choice trial, we find that response times on this 
trial are modulated by the difference in observed mean reward between the two options. In particular, people 
respond more slowly when the difference in reward is closer to zero (Fig. 4C,D). Such a pattern of response times 
is similar to that observed in value-based drift diffusion models of  behavior16,17. In addition, the modulation of 
response time by reward seems to change between the two horizon conditions, with a weaker dependence of 
response time on �R in horizon 6 than horizon 1.

To quantify these effects we fit a linear regression model to the response times. In this model we assume that 
on each trial the response time is given by

(2)RT = β0 + βRa�R + βI a�I

A B

C

E F G

D

Figure 4.  Response times in the Horizon Task. (A,B) Average response time as a function of trial number for 
the unequal (A) and equal (B) information conditions. Instructed trials are labeled i1-4, free-choice trials 1–6. 
(C,D) Response time as a function of difference in mean observed reward in the unequal (C) and equal (D) 
information conditions. (E,F G) Linear regression analysis showing the baseline response time (E), and the 
effects of a�R (F), and a�I (G) on response times.
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where a corresponds to the choice, or action, on the trial, coded as +1 for left and −1 for right. The regression 
coefficients β0 , βR , and βI capture the baseline response time, the effect of reward on response time, and the effect 
of information on response time respectively.

Results from this regression model are shown in Fig. 4E–G. Both the baseline response time, β0 (panel E), and 
the modulation of response time by reward, βR (panel F), change with horizon. In particular, people’s baseline 
response time becomes faster in the horizon 6 condition, while the dependence on reward gets weaker (i.e. less 
negative).

Taken together, this pattern of response times suggests that (1) people make their decision on the first free-
choice trial, (2) modulate their response times according to reward, and (3) modulate their response times 
according to horizon. In the following sections we show how a value-based drift-diffusion model can account 
for these effects and shed light on the mechanisms underlying random exploration.

Drift‑diffusion model of the first free‑choice trial. We model choice and response time on the first 
free choice of the Horizon Task using a value-based drift-diffusion model (e.g.16–18). In this model, we assume 
that the drift rate, bias, and threshold can all vary with the difference in reward �R and difference in information 
�I . Thus we write

where the bias α relates to the starting point, as x0 = αβ , and we use a logistic link function

to ensure that α ∈ [−1, 1].
The free parameters of this model are the 9 coefficients, cij (i ∈ {µ,β ,α}; j ∈ {0,R, I}) , and an additional 

non-decision time, T0 , in which the integration process does not occur. We further assume that each of these 10 
parameters can change with horizon giving us 20 free parameters in total, per subject, as summarized in Table 1.

Note that there are two limitations to this model that arise from the linear dependence of the threshold on �R 
and �I in Eq. 4. First is the mathematical concern that the threshold, β , could become negative for certain values 
of �R or �I , a situation for which the drift diffusion model’s behavior is undefined. Second is the psychological 
concern that the effects of �R and �I are asymmetric. That is, simply switching the locations of left and right 
bandits in Fig. 2D, without otherwise changing the decision, would lead to different thresholds (and different 
behavior) because the signs of �R and �I have changed. In the Supplementary Material, we fit a model in which 
threshold can vary as a function of the absolute value of �R and �I . As shown there, repeating our analysis with 
this modified model does not change our scientific conclusions. In the main text, however, we persist with the 
linear dependence on �R and �I because of the stronger mathematical connection to the logistic choice model 
and the insights this connection provides.

The logistic choice model is a special case of the drift‑diffusion model. The form of the model 
described in Eqs. 3, 4, and 5can be mapped exactly to the logistic choice model (Eq. 1) in two special cases. While 
the full model is more general than either of these special cases, working through this mapping helps shed light 
on how random exploration could be controlled in the drift-diffusion model and provides a hint at what the pat-
tern of response times in Fig. 4 might mean.

(3)µ = c
µ
0 + c

µ
R�R + c

µ
I �I

(4)β = c
β
0 + c

β
R�R + c

β
I �I

(5)α = 2L(cα0 + cαR�R + cαI �I)− 1

(6)L(x) =
1

1+ exp(−x)

Table 1.  Free parameters in the drift diffusion model. Note that all parameters are horizon dependent giving a 
total of 20 free parameters overall, per subject.

Variable Description

c
µ
0

Baseline value of drift

c
µ
R Effect of �R on drift

c
µ
I Effect of �I on drift

c
β
0

Baseline value of threshold

c
β
R

Effect of �R on threshold

c
β
I

Effect of �I on threshold

cα
0

Baseline value of bias

cαR Effect of �R on bias

cαI Effect of �I on bias

T0 Non-decision time
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To make the mapping to the logistic model, we make use of the standard expression for choice probability in 
drift-diffusion  models19. This allows us to write the choice probability as

If we assume that the initial condition is zero, i.e. α = 0 , then the second term on the right hand side goes to zero 
and the choice probabilities are logistic in β and µ . If we further assume that either cβR = c

β
I = 0 or cµR = c

µ
I = 0 , 

then this logistic function maps exactly onto the logistic choice function in Eq. 1.
In the case where cβR = c

β
I = 0 , the threshold does not depend on either reward or information. In this case 

the choice probability becomes

By comparing Eq. 8 with the logistic choice function (Eq. 1), we can make the identification that the noise 
parameter in the logistic choice function is given by

Thus, if threshold is independent of reward and information, random exploration can be controlled by adjusting 
either the baseline threshold cβ0  , or the extent to which drift is modulated by reward cµR . We refer to this latter 
quantity as the signal-to-noise ratio (SNR), because it reflects the extent to which the value signal modulates 
the drift rate.

In the case where cµR = c
µ
I = 0 , the drift rate is independent of the reward and information. Setting the 

drift-rate to be independent of reward is certainly not standard practice for value-based drift-diffusion models, 
however we include this possibility for completeness and let the data rule it in or out. In this case, the equation 
for choice probabilities becomes

with the identification

Note that Eq. 11 involves different parameters to Eq. 9, suggesting that, in this case, random exploration can be 
controlled by either the baseline drift rate, cµ0  or the effect of reward on threshold, cβR.

Thus, at the level of choice, the drift-diffusion model suggests there are four different parameters by which 
random exploration could be controlled: (1) the baseline threshold, cβ0  , (2) the effect of �R on drift rate, cµR or 
SNR, (3) the effect of �R on threshold, cβR , and (4) the baseline drift rate cµ0  . However, because all four of these 
mechanisms lead to identical logistic choice curves (Fig. 5A), it is impossible to distinguish between these 
mechanisms using choice data alone. For that we need response times.

Different mechanisms for random exploration lead to different patterns of response 
times. While the different mechanisms for random exploration lead to identical choices, they lead to mark-
edly different patterns of response times. In particular, using the standard equation for the response times in 
drift-diffusion  models19 we can write the response time as

When α = 0 , this reduces to

In the case where threshold does not depend on reward or information, i.e. cβR = c
β
I = 0 , this expression for 

response times becomes

Conversely, when drift does not depend on reward or information, i.e. cµR = c
µ
I = 0 , the response times are 

given by

(7)p( choose left) =
1

1+ exp(2βµ)
−

1− exp (−2αβµ)

exp(2βµ)− exp(−2βµ)

(8)p( choose left) =
1

1+ exp
(

2c
β
0

(

c
µ
0 + c

µ
R�R + c

µ
I �I

)

)

(9)σ =
1

2
√
2c

µ
R c

β
0

(10)p( choose left) =
1

1+ exp
(

2c
µ
0

(

c
β
0 + c

β
R�R + c

β
I �I

))

(11)σ =
1

2
√
2c

µ
0 c

β
R

(12)RT = T0 +
β

µ
tanh(βµ)+

β

µ

2
(

1− exp (−2αβµ)
)

exp(2βµ)− exp(−2βµ)
− αβµ

(13)RT = T0 +
β

µ
tanh(βµ)

(14)RT = T0 +

(

c
β
0

c
µ
0 + c

µ
R�R + c

µ
I �I

)

tanh
(

c
β
0

(

c
µ
0 + c

µ
R�R + c

µ
I �I

)

)
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Note the different dependence on �R in Eqs. 14 and 15. In Eq. 14, RT has a global maximum at

, and decreases as �R moves away from this point (Fig. 5B,C). In Eq. 15, RT has a global minimum at

, and increases as �R moves away from this point (Fig. 5D,E). Comparison with human behavior in Fig. 4 already 
suggests that the models where cµR = c

µ
I = 0 are not a good description of behavior.

How the response times change with horizon allows us to further distinguish between the two remaining 
models when cβR = c

β
I = 0 . If random exploration is controlled by the effect of �R on drift, cµR , then response 

times in horizon 6 will be slower than horizon 1 because behavioral variability is increased by reducing cµR in hori-
zon 6 (Fig. 5B). Conversely, if random exploration is controlled by the baseline threshold, cβ0  , then response times 
in horizon 6 will be faster than horizon 1 because behavioral variability is increased by reducing cβ0  (Fig. 5C).

Comparison with human behavior in Fig. 4 suggests that response times are slower in horizon 6 (except for 
�R = 0 in the unequal condition), suggesting a drift mechanism for random exploration in which cβR , the signal-
to-noise ratio, is reduced in horizon 6. Of course, this qualitative analysis of response times can only take us so 
far, to be sure that behavioral variability is controlled by SNR we need to explicitly fit the full model.

(15)RT = T0 +

(

c
β
0 + c

β
R�R + c

β
I �I

c
µ
0

)

tanh
(

c
µ
0

(

c
β
0 + c

β
R�R + c

β
I �I

))

(16)�R∗ = −
c
µ
I �I + c

µ
0

c
µ
R

(17)�R∗ = −
c
β
I �I + c

β
0

c
β
R

Figure 5.  Qualitative predictions for the logistic versions of the drift-diffusion model using manually chosen 
parameters. Blue and red lines correspond to horizon 1 and 6, respectively. (A) With appropriately chosen 
parameter values, there are four ways in which the diffusion model reduces to the logistic choice model. All 
four models have identical choice behavior. However, they differ in the patterns of response times that they 
produce (B,C,D,E). (B,C) In the case where threshold is independent of reward and information, cβR = c

β
I = 0 , 

there is a maximum response time. A change in drift with horizon leads to slower response times in horizon 
6 than horizon 1 (B), while a change in threshold with horizon leads to faster response times in horizon 6 
than horizon 1 (C). (D,E) When drift rate is independent of reward and information, cµR = c

µ
I = 0 , there is a 

minimum response time. A change in baseline drift with horizon leads to (mostly) an increase in response times 
in horizon 6, while a change in threshold leads to a decrease in response times in horizon 6. See section 3 of the 
Supplementary Material for parameter values.
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Model fitting suggests that both signal‑to‑noise ratio and threshold change with hori‑
zon. While the qualitative analysis of response times presented above suggests a drift mechanism for random 
exploration controlled by the signal-to-noise ratio, cµR , it does not rule out the possibility that the other param-
eters also play a role in random exploration. To test this possibility, and to relax the assumption that the starting 
point is always zero, we fit the full 20-parameter model to the behavior.

For each subject in each horizon condition, we fit parameters using the a maximum likelihood approach 
(see Methods). In the Supplement we show that this method leads to excellent parameter recovery in this task 
(Supplementary Figure S2) and that the parameters estimated with this approach almost exactly match those 
computed using the Bayesian HDDM python  toolbox20 (Supplementary Figure S1).

In Fig. 6 we plot the fit parameter values from the maximum likelihood procedure for each subject in the 
two horizon conditions, as well as the difference in parameter value (e.g. T0( horizon 6 )− T0( horizon 1 ) ). 
Consistent with directed exploration, adding an information bonus to the drift rate, cµI  increases with horizon 
( t(45) = 6.55 , p < 0.001 ). That is, participants show greater drift towards the more informative option in horizon 
6 than they do in horizon 1.

Consistent with random exploration making behavior more variable in horizon 6, both cµR  ( t(45) = 6.65 , 
p < 0.001 ) and cβ0  decrease with horizon ( t(45) = 3.55 , p < 0.001 ). Unlike the qualitative analysis, this suggests 
that both drift changes, cµR , and threshold changes, cβ0  , may underlie random exploration.

In addition to these effects on drift rate and threshold, we also see an effect of horizon on the bias. In par-
ticular, the effect of reward on bias, cαR is reduced in horizon 6 relative to horizon 1. This could reflect processing 
of reward before the first free-choice trial, which is entirely possible given that participants gain information 
throughout the instructed trials.

Beyond the parameters that change with horizon, there were several parameters that were not significantly 
different from zero in either horizon condition: the baseline drift rate, cµ0  , the baseline starting point, cα0  , the effect 
of �R on threshold, cβR , the effect of �I on threshold, cβI  , and the effect of �I on bias, cαI .

Finally, comparing the theoretical choice and response time curves (Eqs. 7 and 12using the fit parameter 
values) shows that the drift-diffusion model captures the main qualitative features of the choice and response 
time curves (Fig. 7).

Sensitivity analysis suggests that random exploration is dominated by changes in SNR. The 
results of model fitting suggest that both signal-to-noise ratio, cµR , and threshold, cβ0  , change with horizon and 
thus may be behind the changes in behavioral variability associated with random exploration. However, a hori-
zon-based change in parameter value does not, in and of itself, indicate how large the effect on behavioral vari-
ability will be. Thus we next examine the extent to which each process (SNR change or threshold change) con-
tributes to the change in variability with horizon.

To do this we make use of the relationship between the drift-diffusion model and the logistic choice model. 
In particular, we note that in the diffusion model fits (Fig. 6), the baseline bias, cα0  is approximately zero, as are 
c
β
R , cβI  . This suggests that for the fit parameter values, the drift-diffusion model approximates the logistic model 

with noise given by Eq. 9; i.e.

To test this relationship between σ , cµR , and cβ0  , we computed the predicted noise parameter from the fit drift-
diffusion model parameters (RHS of Eq. 9) and compared it to the noise parameter σ from the logistic model 
(LHS Eq. 9). These quantities were tightly coupled ( r > 0.76 , p < 0.001 for both horizon conditions, Supple-
mentary Figure S3) implying that the approximations required to derive Eq. 9 hold.

If Eq. 9 does hold, then this implies that the relative change in random exploration between horizon 1 and 
6 can be written as

and therefore that the relative contribution of cµR  and cβ0  to random exploration is determined by the relative 
amount by which each parameter changes from horizon 1 to horizon 6. Computing these ratios for the fit 
parameters, we find that cµR  changes by a larger amount ( cµR ( horizon 6 )/c

µ
R ( horizon 1 ) ∼ 0.645 ) than cβ0  

( cβ0 ( horizon 6 )/c
β
0 ( horizon 1 ) ∼ 0.933 , Fig. 8). This is to be compared with a change in logistic decision noise 

of around 0.4 ( σ( horizon 1 )/σ ( horizon 6 ) = 0.456 in the [1 3] condition and 0.426 in the [2 2] condition). 
This suggests that random exploration is primarily driven by the change in signal-to-noise ratio, cµR , and not the 
change in baseline threshold.

Discussion
In this paper we developed a drift-diffusion model of explore–exploit decision making to investigate the mecha-
nisms underlying random exploration. This model includes the logistic model of exploration used in previous 
work as a special case, and suggests four different mechanisms by which the control of behavioral variability 
for random exploration could be achieved. While it is impossible to distinguish between these mechanisms 
using choice data alone, they lead to qualitatively different patterns of response times. Thus, by fitting the 
model to response time data in a popular explore–exploit task, we found evidence that random exploration was 
driven by two of these mechanisms: changes in drift rate, specifically how strongly reward modulated drift, the 
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signal-to-noise ratio cµR , and baseline threshold, cβ0  . Further analysis suggested that the change in drift dominates, 
accounting for most of the change in variability associated with random exploration.

Taken together, our findings suggest that random exploration is primarily driven by a change in the signal-
to-noise ratio with which reward information is encoded in the brain. That is, when it valuable to explore, the 
representation of reward cues—or at least the extent to which these cues are incorporated into the decision—is 
reduced, leading to weaker drift rates, slower response times, and more random exploration overall. Such a 
mechanism is consistent with recent reports that neural variability is increased when monkeys are in an explora-
tory ‘state’7 and that fMRI signal variability is increased in motor cortex when participants randomly  explore21. 

Figure 6.  Fit drift-diffusion model parameters in the Horizon Task. Each row corresponds to a different 
parameter in the drift-diffusion model (drift rate, threshold, bias and non-decision time). Each column 
corresponds to a different component of each parameter (its baseline value, how it changes with reward, and 
how it changes with information). Parameters that change significantly between horizon 1 and horizon 6 are 
highlighted with a yellow background. * denotes a significant horizon difference at p < 0.01 , *** at p < 0.001 . 
All significance checks were Bonferroni corrected for 10 multiple comparisons.
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This SNR mechanism is also consistent with older findings from the bird song literature, in which increased 
variability in song during practice, is associated with increased neural  variability22–25. More generally, such a 
signal-to-noise ratio mechanism also gives a point of contact with other theories of how environmental noise 
supports information processing in the brain and other physical  systems26–30.

A natural next step will be to leverage the model reductions suggested by our results. Indeed, our analysis 
fits 20 parameters per subject (10 per horizon condition), and in order to obtain robust fits we needed at least 
130 games per horizon condition per subject (which limited our final sample size). Moving forward, however, 
we can make assumptions that decrease this total number of parameters per subject (e.g. assume that cβI  is the 
same for both horizon conditions), which opens the door for fitting participants with fewer trails. In addition 
to replicating our findings, such improvements would open the door to future studies in populations limited to 
low numbers of trials (e.g. aging or mentally disordered subjects).

Future investigation may also seek an explanation for the behavior on the rest of the Horizon Task, as opposed 
to the first free response trial analyzed here. In other words, how are the various parameters of the DDM 
“learned” in the Horizon task? This would require modeling both the learning and decision processes at work. 
Ongoing research in this area aims to link reinforcement learning models with sequential sampling models that 
are mathematically equivalent to the DDM used in this study  (see31,32 for recent reviews). Assuming that human 

Figure 7.  The drift-diffusion model (solid lines) captures the main qualitative effects of human choice and 
response time data (dots) in all conditions of the experiment.

A B

Figure 8.  Sensitivity analysis. (A) The ratio of decision noise in horizon 6 compared to decision noise in 
horizon 1 computed using the σ parameter from the logistic model for the equal and unequal conditions. In 
both cases the median ratio is just over 2. (B) The ratios of drift-diffusion parameters, cµR and cβ0  , in horizon 1 to 
those in horizon 6. Note that for comparison with panel (A), the ratios are reversed (i.e. horizon 1:horizon 6 for 
(B) instead of horizon 6:horizon 1 for (A), see Eq. 18). *** indicates a significant difference at p < 0.001.
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agents exert control over their DDM parameters, future work could take a similar reinforcement learning and 
DDM approach to understand the dynamics that give rise to the signal-to-noise mechanism revealed in the 
current study.

Another key question is whether the change in signal-to-noise ratio is driven by a change in the signal, a 
change in the noise, or a change in both. Because of a scaling condition in the equations of the drift-diffusion 
model, signal and noise are confounded in behavior, and this question is impossible to address with our data. 
However, with neuroimaging and electrophysiology it should be possible to separately measure signal and noise 
in the brain and resolve this question. If increased variability is caused by reduced signal, then the strength of 
reward signals in the brain should be reduced when exploration is valuable. Conversely, if increased variability 
is due to increased noise, then the average reward signal will be the same, but the variability in the signal (from 
trial to trial and within a single trial) will be larger.

Lastly, we ask what exactly is the ‘evidence’ that is being integrated over time in the explore–exploit choice? 
While evidence has a relatively clear meaning for perceptual decisions in classic drift-diffusion  models19, it is less 
clear for their value-based cousins. One intriguing possibility for explore–exploit choices, is that the evidence 
that is being integrated corresponds to mental simulations of possible futures. Indeed, we have recently pro-
posed such a mental simulation model of explore–exploit choices in a different  task33. In this ‘Deep Exploration’ 
model of explore–exploit behavior, decisions are made by mental simulation of plausible future outcomes (e.g. 
what outcome might I receive if I explore first, what would I do then, etc ...). Each simulation generates a sample 
from the expected value of exploring or exploiting, and the decision is made by accumulating these samples to 
pick the option with the highest average simulated value. In our previous work, we considered the case where 
the number of simulations was fixed, but the model, at least in principle, is readily extended to the case where 
the decision is made by a threshold crossing process instead. A major goal for future work will therefore be to 
explicitly connect the drift-diffusion model presented here with the Deep Exploration account  in33 to create a 
complete theory of the dynamics of explore–exploit choice.

Methods
Participants. Data used in this paper come from two previous published data sets: 30 participants (11 male, 
20 female, ages 18–24, mean 19.7) from the original Horizon Task  paper4 and an additional 30 participants (9 
male, 20 female, ages 18–50, mean 22.7) who made up additional young adults  in34. Both data sets were acquired 
at Princeton University. In both cases participants gave informed consent and the studies were approved by the 
Princeton Institutional Review Board. All experiments were performed in accordance with relevant guidelines 
and regulations.

Exclusion criteria. In order to obtain meaningful parameters from the drift-diffusion model, we excluded 
trials in which participants responded to quickly (response time less than 0.1 seconds) or too slowly (response 
time less than 3 seconds). After this exclusion of trials, we then excluded participants who had less than 131 
remaining trials for either horizon condition. This left 46 participants (10 male, 36 female, ages 18–28, mean 
20.7) for the main analysis.

The horizon task. In the Horizon Task (Fig. 2), participants choose between two slot machines, or one-
armed bandits. When chosen, the slot machines pay out rewards, sampled from Gaussian distributions that are 
truncated (to lie between 1 and 100 points) and rounded (to be integers). The means of the Gaussians are differ-
ent for each machine such that one machine is always better on average. In particular, the mean of one machine, 
randomly assigned to be on the left or right, is always set to either 40 or 60 points, while the mean of the other 
machine is set to be one of 4, 8, 12, 20, or 30 points higher or lower. The standard deviation of the Gaussians 
is the same for both options and is set to 8 points. In the instructions, participants are told that one option is 
always better and that the variability of the bandits (i.e. the standard deviation) remains the same over the entire 
experiment.

Trials in the Horizon Task are lumped together into ‘games’ lasting either 5 or 10 trials each. For each game 
the means of the Gaussians are selected using the process described above, but then remain constant for the 
remainder of the game before changing again for the next game. The duration of each game is indicated by the 
length of the bandits, which contain ‘slots’ that record the outcome of each trial. Short bandits, with 5 slots for 
the outcomes indicate short games. Long bandits, with 10 slots for the outcomes indicate long games.

Each game begins with four instructed trials, during these trials participants are instructed to play one 
option and are unable to play the other. By controlling which options participants play on these trials, we use 
the instructed trials to setup one of two information conditions: an unequal condition, in which one option is 
played once and the other three times (also known as the [1 3] condition), and an equal condition, in which both 
options are played twice (aka the [2 2] condition).

After the instructed trials, depending on the length of the game, participants have either 1 (5-trial games, 
short horizon condition) or 6 (10-trial games, long horizon condition) free choices between the two bandits. 
This horizon manipulation is the critical component of the Horizon Task. When the horizon is long, explora-
tion is valuable, but when the horizon is short participants should always exploit. Thus by contrasting behavior 
between horizon conditions on the first free-choice trial of each game, we can quantify the directed and random 
exploration as the change in information seeking and behavioral variability with horizon.

Logistic model of choice. In the logistic model of choice, we assume that choices are generated according 
to
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where �R = Rleft − Rright is the difference in the mean of the observed rewards for the left and right options, and 
�I is the difference in information. �I is defined categorically such that �I = +1 when left is the more informa-
tive option in the [1 3] condition, i.e. when left has been played once during the instructed trials, �I = −1 when 
right is the more informative option in the [1 3] condition, and �I = 0 in the [2 2] condition.

The parameters of the logistic model are: the information bonus, A, the side bias, B, and the standard deviation 
of the decision noise σ . These parameters are fit to separately to the choices on the first free-choice trial for each 
horizon condition (A) and each horizon × uncertainty condition (B and σ ). Together this gives 6 free parameters.

Fitting the logistic model. Following4, we fit the logistic model using a maximum a posteriori approach. 
In particular, to avoid excessively large parameter values, we used the following exponential prior on σ (with 
length scale 20), and a Gaussian prior on A, with mean 0 and standard deviation 20. Maximization was per-
formed using the fmincon function in Matlab.

Linear model of response times. In the linear model of response times we assume that the response is 
given by

where a corresponds to the choice, or action, on the trial, coded as +1 for left and −1 for right. The regression 
coefficients β0 , βR , and βI capture the baseline response time, the effect of reward on response time, and the 
effect of information on response time respectively. This model was fit to participant data using the glmfit func-
tion in Matlab.

Drift diffusion model. We model the response times using a model based on the well-known drift-
diffusion model (DDM, Fig. 1), originally introduced  by15, which has been used to model a variety of 2AFC 
 paradigms19,35–37. More recently, such models have been successfully employed in studying value based decisions 
more similar to those in the present task e.g.16–18. Our model is an adaptation of what is commonly called the 
‘simple’ or ‘pure’  DDM16,19.

At every instant, the model encodes a relative value signal ( X ) representing the accumulated ‘evidence’ 
favoring the hypothesis that the left bandit has a higher value ( X > 0 ) than the bandit on the right ( X < 0 ). 
This relative value signal evolves according to a simple stochastic differential equation, written in Itô form as:

where µdt is a drift rate representing the average change in evidence supporting a left ( µ > 0 ) or right ( µ < 0 ) 
response and cdW(t) is Gaussian distributed ‘white noise’ with mean 0 and variance c2dt.

A choice is made when the relative value crosses a threshold at +β for left and −β for right. We also include 
a fixed nondecision time T0 , an initial period of the response time when there is no accumulation happening 
(i.e. X(t) does not change for t ∈ [0,T0]).

Finally, the accumulation starts at some initial state of evidence: X(0) = X0 which we usually write as X0 = αβ 
where −1 ≤ α ≤ 1 . In this context, we call α the ‘bias’. It is commonly known that one of µ,β , c can be fixed 
without changing the model’s response time  distributions19, we thus fix c = 1 . Our formulation of the simple/
pure DDM then has 4 parameters: µ,β ,α,T0 . Our modeling effort, then, is to incorporate the elements of the 
Horizon Task into these key parameters.

To model behavior on the first free-choice of each game, we assume that the drift rate, threshold, and bias, 
can all vary with difference in reward �R and difference in information �I . Thus we write

where L is a logistic link function (main text, Eq. 6). This yields 9 free parameters to describe the baseline value, 
effect of reward, and effect of information on each of drift, threshold and bias. Combined with the non-decision 
time, T0 , this gives us 10 free parameters that we fit each each horizon condition, giving 20 free parameters overall.

Fitting the drift diffusion model. We fit the drift-diffusion model to participant choices and response 
times using a maximum likelihood approach. This approach centered on the method  of38 for fast and accurate 
computation of the first passage time distribution of the drift-diffusion process. Fits were performed in Matlab 
using the fmincon function. All codes and data used to reproduce the figures and analysis are available at https 
://githu b.com/sffen g/horiz on_ddm.

(20)p( choose left) =
1

1+ exp
(

−�R+A�I+B√
2σ

)

(21)RT = β0 + βRa�R + βI a�I

(22)dX(t) = µdt + cdW(t)

(23)

µ = c
µ
0 + c

µ
R�R + c

µ
I �I

β = c
β
0 + c

β
R�R + c

β
I �I

α = 2L(cα0 + cαR�R + cαI �I)− 1

https://github.com/sffeng/horizon_ddm
https://github.com/sffeng/horizon_ddm
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