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The hidden waves in the ECG 
uncovered revealing a sound 
automated interpretation method
Cristina Rueda*, Yolanda Larriba & Adrian Lamela

A novel approach for analysing cardiac rhythm data is presented in this paper. Heartbeats are 
decomposed into the five fundamental P, Q, R, S and T waves plus an error term to account for 
artifacts in the data which provides a meaningful, physical interpretation of the heart’s electric 
system. The morphology of each wave is concisely described using four parameters that allow all 
the different patterns in heartbeats to be characterized and thus differentiated This multi-purpose 
approach solves such questions as the extraction of interpretable features, the detection of the 
fiducial marks of the fundamental waves, or the generation of synthetic data and the denoising of 
signals. Yet the greatest benefit from this new discovery will be the automatic diagnosis of heart 
anomalies as well as other clinical uses with great advantages compared to the rigid, vulnerable 
and black box machine learning procedures, widely used in medical devices. The paper shows the 
enormous potential of the method in practice; specifically, the capability to discriminate subjects, 
characterize morphologies and detect the fiducial marks (reference points) are validated numerically 
using simulated and real data, thus proving that it outperforms its competitors.

The importance of the ECG signal in diagnosis and prediction of cardiovascular diseases is worth noting. The 
process recorded in the ECG is the periodic electrical activity of the heart. This activity represents the contrac-
tion and relaxation of the atria and ventricle, processes related to the crests and troughs of the ECG waveform, 
labelled P, Q, R, S and T (see Fig. 1(a)). The main features used in the medical practice are related to the location 
and amplitudes of these waves. A standard ECG signal is registered using twelve leads calculated from different 
electrodes being lead II the reference one.

The mere visual observation of the ECG signals, although made by a consolidated expert, is not enough to 
discover the diversity of abnormalities and the specific characteristics of the morphology of each ECG. Moreo-
ver, it requires an enormous amount of human expertise resources. Therefore, a rigorous automatic analysis of 
digitalized ECG signals can be of great help. However, although it has been a question that has received a lot of 
attention in the literature over the last decades, there is still no suitable mathematical model or computational 
approach, that accurately describes the spectrum of morphologies in ECG signals, as is noted in recent references 
on this topic, such  as1–4  or5 among others.

The literature addressing the problem of the automatic interpretation of the ECG is so extensive that it is dif-
ficult to include a complete review here. The most widely used model-based approach describes the main waves 
with a combination of basic functions, the Gaussians being the preferred ones, for a single or average beat. A 
precursor model was proposed  by6 and was more recently considered  by7  or8 among others, whom proposed 
improvements in the formulation and estimation  algorithms9. Also recently uses this approach for the predictive 
modelling of drug effects on ECG signals. These approaches have important shortcomings. In particular, the 
Gaussian functions fail to reproduce the morphology of the waves in a simple way, especially for atypical and 
noisy ECGs, where the complexity as well as the risk of overfitting increase. Moreover, most of the parameters do 
not have a specific morphological meaning. Other examples of model-based proposals are those  by10–13  or14. These 
approaches may be suitable to study some specific questions, but, they are far from being multi-purpose methods.

However, many of the recent papers are contributions to computational and machine learning approaches. 
Some of the large list of references are:15–19  or20. Also, the papers  by4,21–23  and24 extended the list of procedures and 
their pros and cons for the automatic analysis of ECGs. In general, machine learning approaches success is very 
dependent on the training set, the selection of diagnostic groups, the preprocessing and the database,  see25,26  or27 
among others. Furthermore, they are rigid and black-box procedures that are susceptible to adversial  attacks28.

The approach, called FMMecg , presented in this paper is just the opposite.
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This novel approach combines a physically meaningful formulation with good statistical and computational 
properties. FMMecg is a multicomponent model, where each component is a single FMM (Frequency Modulate 
Möbius) oscillator and specific ECG parameter restrictions are included. Single FMM models are recently pro-
posed  by29 to predict oscillatory signals in several different fields from biology to astrophysics. The distinguish-
ing feature of the FMM model is that it is formulated in terms of the phase, which is the angular variable that 
represents the periodic movement of the oscillation. Specifically, the FMMecg model is defined as the combina-
tion of exactly five oscillatory components referred to as waves: WJ (), J = P,Q,R, S,T , which correspond to the 
fundamental waves in a heartbeat; plus an error term that accounts for artifacts in the data. Four parameters 
characterize each wave and, a Maximization-Identification (MI) algorithm is designed to estimate them. This 
algorithm alternates, iteratively, between a maximization M-step and a wave-identification I-step. While the 
model proposal is valid for signals registered elsewhere, the I-step is lead-specific. Nevertheless, the I-step can 
be easily adapted to signals registered in other regions.

The main virtues of the novel approach can be summarized in five points which are validated in the paper. 
Firstly, the FMMecg model is physically meaningful representing the conduction of the electrical signal by the 
combination of five main waves presented in a normal heartbeat. Therefore, alterations in a specific wave identify 
the part of the heart responsible. Secondly, for each wave, four parameters are extracted, measuring, ampli-
tude, location, scale and shape. These parameters are able to characterize, reproduce and identify the variety of 

Figure 1.  (a) The five waves: P, Q, R, S, T derived from the FMMecg model and some of the main features that 
are derived from the parameters of the model in a simple way. (b) Observed signal (black points) and FMMecg 
fit (blue). Data from patient sel106 from MIT-BIT Arrhythmia Database from Physionet (http://www.physi onet.
org).

http://www.physionet.org
http://www.physionet.org
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morphologies observed in real ECG signals. In addition, other interesting features are easily derived from these 
main parameters. Thirdly, the MI algorithm provides accurate and robust estimates of the model parameters 
discarding overfitting problems. Fourthly, the approach is not dependent on a training set and is valid for any 
ECG registered signal, independently of the preprocessing, frequency or scale. Finally, the approach has strong 
theoretical properties: is maximum likelihood based while assuming Gaussian errors, the parameters are iden-
tifiable and the estimators are consistent.

The most exciting questions shown in the paper are that FMMecg model describes a wide variety of ECG 
signals with high accuracy, eliminating noise artifacts and that the FMMecg parameters are interpretable features 
describing the morphology of ECG signals and solve specific questions such as the detection of fiducial marks 
or discrimination among patterns. The important question of biometric identification is also partially addressed 
in this paper.

The validation of the FMMecg approach is not simple as there is no multi-purpose approach in the litera-
ture similar to FMMecg . Therefore, the main properties of FMMecg are validated considering diverse alternative 
approaches. On the one hand, for global goodness of fit consistency, robustness and discriminative power, the 
FMMecg is compared with a model-based approach, which considers a combination of Gaussian components, 
similar to that proposed  by8. On the other hand, the ability to detect fiducial marks is compared with several 
recent machine learning approaches, in particular, those considered  by18. In this paper, we deal with signals 
from lead II and close to it. Simulated and publicly available data from databases in Physionet (www.physi onet.
org)30 are used. Very promising results have been obtained from real data. For example, Figure 1 shows the 
result of applying the FMMecg to data from patient sel106 in MIT-BIT database, a representative, typical pattern 
used by many authors. The waves drawn in Figure 1 (a) have not been artificially generated, but are simply the 
estimators provided by the MI algorithm for the five waves: WJ (), J = P,Q,R, S,T . While panel (b) shows the 
combined FMMecg fit.

Results
Overview of the FMMecg model. Data from one heartbeat are analysed as a sum of five waves plus an 
intercept parameter, M, and an error term.

Each of the individual wave is described with four parameters: (A,α,β ,ω) . The parameter A measures the 
wave amplitude; a zero value indicating that the corresponding wave is not present. The parameter α is a location 
parameter. In addition, β and ω measure skewness and kurtosis, respectively; and they are useful to describe the 
shape of the waves, in particular if they are crest or troughs. More specifically, assuming α = 0 , the values for 
parameter β close to π (or 2π ) represent a unimodal symmetric wave (or an inverse unimodal symmetric wave); 
as β moves away from these values, the patterns are more asymmetric and the values of β equal to π/2 or 3π/2 
describe a wave with both crest and trough with completely asymmetric patterns. The parameter ω measures the 
sharpness of the peak, ω = 1 corresponds to an exact sinusoidal shape and, as ω approaches zero, the sharpness 
becomes more pronounced  (see29 for more detail in parameter interpretation).

Other wave features extracted from the main parameters are the crest and trough times, these marks denoted 
by tU and tL respectively.

Moreover, measurements of inter-wave intervals, as those in Fig. 1a are calculated using distances between 
these marks, and other features, such as those used in the literature of ECG interpretation, can be easily derived 
from the main parameters. However, while the estimation of features proposed in the literature often depends 
on the algorithm and voltage  measurements4, FMMecg provides systematic and reliable measurements.

In the estimation process, to improve the waves identification when atypical patterns are observed, additional 
conditions are imposed.

Validation. Three different validation analyses have been performed. The first two refer to the QT  database31 
and the third is a simulation experiment, which is deferred to Supplementary Information. In particular, six 
characteristic patterns of different pathologies plus one typical pattern, have been simulated (Figure S1). The 
analysis of simulated beats validates the global fit of the model (Table S1), the accuracy and consistency of the 
parameters’ estimators (Table S2 and Figure S2) and, the potential to detect fiducial marks (Table S3). Finally, the 
potential of FMMecg features to discriminate among patterns is revealed as a Fisher linear discriminant analysis 
(LDA) with the one-leave-out rule which perfectly discriminates the seven simulated patterns (Subsection 1.4.1 
in the Supplementary Information).

On the other hand, the QT database’s election for the patient identification analysis is because it includes 
patients from MIT BIH Arrhythmia database, which is a benchmark, and many others from different sources. 
Moreover, it has been recently used by several authors and provides a wide range of morphologies associated 
with healthy and pathological ECGs. The database contains signals from two leads. We analyse the segment for 
each patient for whom the T or P waves have been manually annotated, as well as the data corresponding to 
the signal closest to lead II (in most cases it corresponds to the first signal). For patient sel42, data from the first 
signal are not reliable, instead, the inverse of the second one is analysed as it represents a signal closer to lead II.

A total of 3,623 single beats signals have been analysed.

Analysis of QT database signals: graphical and analytical results. For each single beat, the value of a coefficient 
of determination, R2 , that measures the proportion of the variance explained by the model, out of the total vari-
ance, is calculated.

The R2 values are very high across patients, being R2 global mean (SD) equal to 0.98(0.02).
Figure 2 illustrates the model performance on six ECG segments from different patients. The first five corre-

spond to the most frequent patterns according to Physionet’s classification of the heartbeats by their morphology. 

http://www.physionet.org
http://www.physionet.org
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They are labelled as NORMAL (patient sel100, typical pattern), PACE (patient sel233, Paced beat), RBBB (patient 
sel231, Right bundle branch block beat), APC (patient sel232, Atrial premature beat), and PVC (patient sel213, 
Premature ventricular contraction); besides a NOISY pattern (patient sel39) is also considered. The NOISY seg-
ment exhibits both, low and high frequency noise as the zoom in the corresponding plot shows.

It is interesting to observe how the specific shapes of the five main waves contribute to draw the observed pat-
tern of the different morphologies as it is shown in Fig. 3. The estimated values of the parameters, recorded on the 
right side of the plots, quantify and describe the patterns, and explain the differences between the morphologies.

The accuracy of FMMecg to extract ECG local waves can be measured with the percentile interval amplitudes 
given, for the main parameters of each of the 105 QT patients, in Table S4.

On the other hand, the potential of the FMMecg parameters to solve the problem of subject identification is 
also shown. A Fisher LDA is applied, using as predictors: AJ ,ωJ ,βj; J = P,Q,R, S,T (where missing values are 

Figure 2.  Observed ECG segments (black lines), FMMecg fits (blue lines) and fiducial marks for R wave ( • ), T 
wave ( ⋆ ), P wave ( + ); for (a) NORMAL, (b) PACE, (c) RBBB, (d) APC, (e) PVC and (f) NOISY patterns.
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replaced with the median value of the corresponding patient) and the one-leave-out rule to estimate the error 
rate which is 8.6%. Considering the difficulty of the task to discriminate among 105 classes, some of them with 
apparently very similar ECG patterns, an error rate of 8.6% is quite good. The comparison with other studies 
in the literature is not feasible since the selection of heartbeats, patients, or the classes to discriminate differs 
from one paper to another, in many of them, the choice seems to be made ad hoc. As far as we know, this is the 
first time that this milestone has been achieved for the QT database, since other authors consider specifically 
selected sets of patients of a much smaller size  (see27,32 and references therein). Moreover, a complete analysis is 
provided in the Supplementary Information including, specific-patient plots and statistics for the main FMMecg 
parameters. Separately, by QT subgroups defined by the source of the data, Fisher LDA analyses have been per-
formed. Confusion matrices are shown.

The results reveal the consistency and reliability of estimators and great potential for individual identifica-
tion tasks.

Figure 3.  FMMecg waves and corresponding parameters, for representative beats from (a) NORMAL, (b) 
PACE, (c) RBBB, (d) APC, (e) PVC and (f) NOISY patterns. P (green), Q (yellow), R (red), S (violet), and T 
(blue).
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Analysis of QT database signals: P and T wave annotations. This question is still a challenge  as33–35  or36, among 
others, confirm.

Let tFIJ  , J = T , P be the fiducial FMMecg marks. Where if wave J is positive ( tFIJ = tUJ  ) or negative ( tFIJ = tLJ  ) 
is determined by the parameters of the model.

In order to perform a fair comparison with alternatives approaches, we follow the analysis  in18. There are 
several reasons to consider this as the reference paper. First, the aim of the paper is specifically the detection of 
P and T waves; second, the same 105 QT patients are analysed; third, it clearly specifies how the false positives 
and false negatives are determined, which facilitates a fair comparison; and finally, it includes the results of 
many previous studies and combination of approaches, which allow us to compare FMMecg approach against an 
important collection of alternative proposals.

Several measures are calculated to assess the wave detection that are described in the Methods Section, sen-
sitivity (Se), positive predictive value (PPV), detection error rate DER and the F1 score.

Table 1 shows the results, along with the four best methods  in18, i.e., Martinez PT, Martinez WT+templates, 
Martinez WT+PT and Martinez PT + templates.

FMMecg gives the best results for all the validation measures and for both P and T mark detection. It is espe-
cially striking that DER is less than halved in comparison to other methods for both T and P wave detection. 
The accurate detection of waves provided by FMMecg is more valuable as the algorithm has not been specifically 
designed for this task, as it also serves other purposes.

Specific patient measures are given in Tables S5 and S6. Besides, Figures S11–S16 show cases where the 
FMMecg annotation is correct but is annotated mistaken as FN or FP. In some of those cases, what happens is 
that Physionet annotation uses the information from the second signal or from a close beat. In other cases, what 
happens is the FMMecg annotation is more reasonable than, or as least as reasonable as, the Physionet annota-
tion, although different. These cases indicate that the good FMMecg results from Table 1 could even be improved.

Discussion
From the methodological point of view, two novel contributions are proposed in this paper. On the one hand, 
a regression model with multiple oscillatory components, which is formulated in terms of angular variables 
that represent the periodic movement of the waves, and that incorporates restrictions among the parameters, is 
considered. And, on the other hand, an MI original algorithm of estimation is designed. These methodological 
contributions have been proved here to be very relevant for their applications in the description of the cardiac 
rhythm, but the potential is higher as they will likely be able to solve problems in other fields.

As for the contributions to the automatic diagnosis of cardiovascular diseases and other clinical uses, the 
highlight of our approach is that it provides a set of new parameters and features with high descriptive potential 
which provides a concise analytical description of the morphology of the five main waves; specifically, its high 
capacity in human recognition has been demonstrated. Moreover, it is also very reliable, even in abnormal and 
poor quality ECGs; it does not use training data and it works independently of preprocessing, scale and frequency.

The FMMecg parameters can be very useful to generate an automatic diagnostic by imitating the recognition 
skills of human beings, because estimated values under a given condition can be compared with reference values. 
In addition, the influence of such factors as age, gender, physical condition, medication, anatomic or genetic 
differences can be taken into account. In fact, actual automatic diagnosis proposals fail due to two main causes; 
firstly, because different and unreliable measurements are used; secondly, because different problems in origin 
generate partially similar morphologies and, conversely, a certain anomaly is not associated with a single pat-
tern. Using personalized reference ranges avoids false positives in diagnosis and subscribes to the global trend 
towards personalized medicine.

Moreover, the new parameters can be used in experimental assays to test medical and preventive strategies, 
to study the evolution of the heart’s functioning and could even allow inferring personal identity, as well as 

Table 1.  Summary of performance measures P and T waves detection from QT first signal data. Bold values 
indicate the highest values for the measures.

Method No. beats

P Wave

TP FP FN Se (%) PPV (%) DER (%) F1 (%)

FMMecg 3194 3085 212 109 96.59 93.57 10.05 95.05

Martinez PT 3194 2859 342 335 89.51 89.32 21.20 89.41

Martinez WT+templates 3194 2751 395 443 86.13 87.44 26.23 86.78

Martinez WT+PT 3194 2932 416 262 91.80 87.57 21.23 89.64

Martinez PT+templates 3194 2816 320 378 88.15 89.90 21.85 89.41

Method No. beats

T Wave

TP FP FN Se (%) PPV (%) DER (%) F1 (%)

FMMecg 3542 3542 415 0 100 89.51 11.72 94.47

Martinez PT 3542 2985 559 557 84.27 84.22 31.50 84.25

Martinez WT+templates 3542 3115 464 427 87.94 87.03 25.15 87.49

Martinez WT+PT 3542 3030 558 512 85.54 84.44 30.20 84.99

Martinez PT+templates 3542 3035 505 507 85.68 85.73 28.57 85.71
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circumstances as the emotional state at the time of data collection. The important question of biometric identi-
fication using ECG features has received attention recently in the literature  (see17,25,26,32,37,38 among others). The 
reduced error rate when the 105 QT patients are discriminated is a piece of evidence of the potential of FMMecg 
parameters in biometric identification. Nevertheless, ECG morphology changes over time and circumstances 
and, FMMecg parameter estimators change consequently. It would be interesting and will be part of the future 
work, to characterize parameter changes due to time and circumstances and differentiate from random artifacts. 
Hopefully, in many situations where electrode noise, electronic noise and, other artifact deriving in random 
noise are being recorded in the ECG signal, the FMMecg parameters do not change significantly as is shown in 
the simulation analysis.

The limitations of the approach, which are also challenges and extensions for future research, are sketched 
out next.

Firstly, a catalog of interesting patterns together with their parametric characterization must be elaborated 
in collaboration with an expert. This question is partially addressed here, but a much more precise and detailed 
study is needed. This task should be done by the incorporation of identification algorithms from other leads.

Secondly, there are a few patterns, such as the Atrial Flutter, that do not fit well into the five main wave 
paradigm, but for which it is possible to design a specific algorithm. The analysis of multiple leads would also 
facilitate the wave identification task and provide more accurate results.

Finally, the incorporation of covariates, the definition of multivariate models and dynamic models, are statisti-
cal extensions to be studied that have several applications in the clinic. Specifically, the covariates would serve 
to assess the influence of medication or the effect of interventions and multivariate and dynamic models would 
serve to describe spatio-temporal behaviors and model relationships between biological processes.

Methods
Suppose X(ti), t1 < · · · < tn are observations from one beat. Without loss of generality, we assume that ti ∈ [0, 2π] 
(in any other case, transform the observed time points as  in29).

For J ∈ {P,Q,R, S,T} , let υJ = (AJ ,αJ ,βJ ,ωJ )
′ be the four-dimensional parameters describing the waveforms 

in such a way that

Then, the FMMecg model, is defined as a parametric additive signal plus error model as follows:

Definition 1. FMMecg model . For i = 1, . . . , n:

where,

and

• θ = (M, υP , υQ .υR , υS , υT ) verifying: 

1. M ∈ R

2. υJ ∈ R
+ × [0, 2π ] × [0, 2π ] × [0, 1] , J ∈ {P,Q,R, S,T}

3. αP ≤ αQ ≤ αR ≤ αS ≤ αT ≤ αP

• (e(t1), . . . , e(tn))
′ ∼ Nn(0, σ

2I)

The incorporation of circular order restrictions among the α ’s represent the ordered movement of the stimulus 
from the sinus node to the ventricles, passing through the atria, this giving the model physical interpretability. 
The restrictions guarantee the identifiability of the parameters once main wave R is located.

The fiducial marks are defined for J ∈ {P,Q,R, S,T} as follows:

In the estimation process, to improve the waves identification when atypical patterns are observed, additional 
conditions are imposed.

Despite the four specific FMMecg parameters for each wave, the information about the distance between waves 
is easily derived using the distance between the α’s, by instances, d(αQ ,αS) = 1− cos(αQ − αS) is a measure of 
the QRS duration. Distance measures between any pair of waves can also be defined in a similar way. In fact, the 
α parameters are used to identify each of the P, Q, R, S and T waves in the algorithm. Alternatively, the fiducial 
marks associated with the waves can be considered to derive Euclidean distance measurements. Other interest-
ing theoretical properties and applications of the FMMm model, a generalization of FMMecg , are described  in39.

WJ (t, υJ ) = AJ cos(βJ + 2 arctan(ωJ tan(
t − αJ

2
)))

X(ti) = µ(ti , θ)+ e(ti);

µ(t, θ) = M +
∑

J∈{P,Q,R,S,T}

WJ (t, υJ );

tUJ = αJ + 2 arctan(
1

ωJ
tan(

−βJ

2
)); tLJ = αJ + 2 arctan(

1

ωJ
tan(

π − βJ

2
))
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Estimation algorithm. The application of our method for the QT database analysis and simulations 
assumes that QRS annotations are provided. The detection of the QRS complex is a highly researched problem 
and well solved; interesting references on the subject  are40–43  and44, among others. The QRS annotations and RR 
values (distances between consecutive QRS annotations), provided by Physionet, are used to select the specific 
segment corresponding to a single beat in our data analysis. For a given QRS annotation, tQRS , let RR− and RR+ 
be the RR obtained from the previous and the next QRS annotation, respectively. Therefore, periodicity changes 
are detected with changes in RR values and, the algorithm is adapted to that in such a way that the morphological 
characteristics of local waves are described regardless of the beat length. Then, the input for the analysis of a sin-
gle beat are the observations, X(ti) , where ti ∈ [tQRS − 40%RR−, t

QRS + 60%RR+], i = 1, . . . , n , which before 
entering the algorithm, pass a trend removal step to reduce the influence of the low frequency noise, if necessary.

The MI algorithm, described below, uses these input data to derive predicted values for the voltage and 
features.

Consider the model in Definition 1. The estimation problem reduces to solving the following optimization 
problem:

where � is the parametric space. For a typical ECG pattern � is simply defined as in Definition 1 through the 
restrictions among the α’s. However, in order to arrive to a right identification of letters in atypical patterns in 
real practice, additional restrictions are needed. Mathematically, it means that � is reduced and are incorporated 
as thresholds in the algorithm.

The optimization problem above is computationally intensive and it is solved using an iterative algorithm 
which alternates M and I steps that provide successive estimators for WJ , J = P,Q,R, S,T . The M step provides 
K ≥ 5 oscillatory components using a backfitting algorithm and the I step assigns K ≤ 5 letters to, at most, five 
of these components. Typically, K = 5 , however, in the presence of significant noise or when the morphology is 
pathological, sometimes, the interesting waves may be null or be hidden between the sixth or seventh component 
(very exceptionally in others). For each component, the FMM parameter values and percentage of explained 
variance, PV  , are computed. The latter defined as follows,

where R2
1,...,k , defined in (1), refers to a multicomponent FMM model with K = k components. For atypical 

patterns, the identification is done using thresholds which have been checked over many previous fits to a wide 
variety of ECG patterns in Physionet.

The initial values for the components to start the backfitting are those of the waves assigned so far and zero for 
the rest. The algorithm finishes when there is no significant increase in the percentage of variance explained or 
when a maximum number of iterations is attained. An increase of less than 0.01% in the percentage of variance 
explained and a maximum of 10 iterations has been used in the analysis of the QT database.

M step: The backfitting algorithm is designed by fitting a single FMM component succesively to the residuals. 
To fit a single component, an adapted algorithm from that  in29 is developed. The numbers of backfitting passes 
depend on the initialization. In the first M step up to 5 full turns of the backfitting are made.

I step: The R is assigned in the first place. R wave corresponds to the component, in the top five, with high-
est PV between components close to tQRS , π/2 < β < 5π/3 (with a crest not a trough), ω < 0.12 (sharp) and 
maximum µ(tUJ ) (exceptionally the second maximum). Next, preassignation of P, Q, S and T to the free compo-
nents among the first five is done using αP ≤ αQ ≤ αR ≤ αS ≤ αT . This preassigment corresponds to the final 
assignment in typical patterns. Successive steps are needed when the preassignation components do not exhibit 
the expected wave morphology features, known from literature; it can be due to the absence of a wave or to the 
presence of noisy components. New assignations of letter to components are conducted using thresholds on the 
FMM parameters that represent the previous knowledge. For instance, thresholds to decide between P or Q, are 
derived assuming that Q is between P and R ( αP ≤ αQ ≤ αR ), Q is often sharper ( ωQ < ωP ), and Q has a trough, 
while P has a crest. Noisy components are detected with small PV’s and ω values.

The outputs will be considered satisfactory (OK) only when the five letters are assigned and the parameters 
of the corresponding components describe the expected morphology.

Figure 4 shows a flowchart of the algorithm where different colors are used for M and I steps. The R code to 
implement the algorithm is available from corresponding author on reasonable request.

Statistical methods and validation measures. Next, we briefly describe the statistical methods con-
ducted and the validation measures used in the paper.

On the one hand, Fisher LDA has been considered as the method to discriminate among patterns and patients, 
a basic reference for learning about LDA  is45. It is applied together with the one-leave-out approach which gives 
an unbiased estimate of the error rate.

On the other hand, the coefficient of determination used to measure the global goodness of fit is given by:

For the analysis of simulation results, several mean squared error (MSE) measurements are considered to quan-
tify the goodness of fit. Besides, the coefficient of variation measures are defined for Euclidean and angular 

Minθ∈�

n∑

i=1

[X(ti)− µ(ti , θ)]
2

PVk = R2
1,...,k − R2

1,...,k−1,

(1)R2 = 1−

∑n
i=1(X(ti)− µ̂(ti))

2

∑n
i=1(X(ti)− X)2

.
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parameters to measure consistency and accuracy. All these measures are defined throughout the Supplementary 
Information.

The measures to assess the wave detection of fiducial marks are: sensitivity ( Se = TP
TP+FN  ), positive predictive 

value ( PPV = TP
TP+FP ), detection error rate ( DER = FP+FN

TP+FN  ) and F1 score ( F1 = 2TP
2TP+FP+FN  ), where TP is the 

number of true positive detections, FN stands for the number of negative detections and FP stands for the number 
of false positive detections, that is, when the fiducial mark is outside the range of ±75ms from the annotated mark.
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