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Improved prediction 
and characterization of anticancer 
activities of peptides using a novel 
flexible scoring card method
Phasit Charoenkwan1, Wararat Chiangjong2, Vannajan Sanghiran Lee3, 
Chanin Nantasenamat4, Md. Mehedi Hasan5 & Watshara Shoombuatong4*

As anticancer peptides (ACPs) have attracted great interest for cancer treatment, several approaches 
based on machine learning have been proposed for ACP identification. Although existing methods 
have afforded high prediction accuracies, however such models are using a large number of descriptors 
together with complex ensemble approaches that consequently leads to low interpretability and 
thus poses a challenge for biologists and biochemists. Therefore, it is desirable to develop a simple, 
interpretable and efficient predictor for accurate ACP identification as well as providing the means 
for the rational design of new anticancer peptides with promising potential for clinical application. 
Herein, we propose a novel flexible scoring card method (FSCM) making use of propensity scores 
of local and global sequential information for the development of a sequence-based ACP predictor 
(named iACP-FSCM) for improving the prediction accuracy and model interpretability. To the best 
of our knowledge, iACP-FSCM represents the first sequence-based ACP predictor for rationalizing 
an in-depth understanding into the molecular basis for the enhancement of anticancer activities of 
peptides via the use of FSCM-derived propensity scores. The independent testing results showed 
that the iACP-FSCM provided accuracies of 0.825 and 0.910 as evaluated on the main and alternative 
datasets, respectively. Results from comparative benchmarking demonstrated that iACP-FSCM 
could outperform seven other existing ACP predictors with marked improvements of 7% and 17% for 
accuracy and MCC, respectively, on the main dataset. Furthermore, the iACP-FSCM (0.910) achieved 
very comparable results to that of the state-of-the-art ensemble model AntiCP2.0 (0.920) as evaluated 
on the alternative dataset. Comparative results demonstrated that iACP-FSCM was the most 
suitable choice for ACP identification and characterization considering its simplicity, interpretability 
and generalizability. It is highly anticipated that the iACP-FSCM may be a robust tool for the rapid 
screening and identification of promising ACPs for clinical use.

Anticancer peptides (ACPs) are small peptides exerting selective and toxic properties toward cancer cells. Owing 
to its inherent high penetration, high selectivity and ease of modification, synthetic peptide-based drugs and 
 vaccines1–3 represents a promising class of therapeutic agents. Designed ACPs can improve affinity, selectivity 
and stability for enhancing cancer cell elimination. The influence of amino acid residues towards the anticancer 
activity of ACPs is dependent on cationic, hydrophobic and amphiphilic properties with helical structure to drive 
cell permeability. Particularly, cationic amino acid residues (i.e., lysine, arginine, and histidine) can disrupt and 
penetrate the cancer cell membrane to induce cytotoxicity whereas anionic amino acids (i.e., glutamic and aspar-
tic acids) affords antiproliferative activity against cancer cells. Furthermore, hydrophobic amino acid residues 
(i.e., phenylalanine, tryptophan, and tyrosine) exerts their effect on the cancer cytotoxic  activity1,4,5. Moreover, 
the secondary structure of ACPs that is formed by cationic and hydrophobic amino acids, plays a crucial role in 
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peptide-cancer cell membrane interaction that inherently leads to cancer cell disruption and  death1,6. Therefore, 
it is desirable to develop a simple, interpretable and efficient predictor for achieving accurate ACP identification 
as well as facilitating the rational design of new anticancer peptides with promising clinical applications.

In the past few years, most methods in existence were developed via the use of machine learning (ML) and 
statistical methods as applied on peptide sequence information for discriminating ACPs from non-ACPs7–23. 
More details of those existing methods are summarized in two comprehensive review  papers2,3. Amongst the 
various types of ML approaches, both support vector machine (SVM) (i.e.  AntiCP8, Hajisharifi et al.’s  method9, 
 ACPP24,  iACP10, Li and Wang’s  method11, iACP-GAEnsC12,  TargetACP14 and  ACPred19) and the ensemble 
approach (i.e.  MLACP13,  ACPred19,  PTPD21, ACP-DL22, PEPred-Suite20, ACPred-FL15, ACPred-Fuse18,  PPTPP23 
and AntiCP_2.025) were widely used to develop ACP predictors. As summarized in a recent  review2, we could 
see that TargetACP has been developed by integrating the split amino acid composition and pseudo position-
specific scoring matrix  descriptors14, which was shown to outperform SVM-based  predictors8–12,19,24. In the 
meanwhile, the state-of-the-art ensemble methods comprising PEPred-Suite20 and ACPred-Fuse18 provided 
the highest prediction accuracies as evaluated on the dataset collected by Rao et al.18. In ACPred-Fuse, it was 
developed using random forest (RF) model in conjunction with 114 feature descriptors. And then, a total of 114 
RF models were trained to generate class information and probabilistic information used for developing a final 
model. Most recently, Agrawal et al. proposed an updated version of AntiCP called AntiCP2.0 and also provided 
two high-quality benchmark datasets (i.e. main and alternative datasets) having the largest number of pep-
tides. AntiCP2.0 was developed by extremely randomized trees (ETree) algorithm with amino acid composition 
(AAC) and dipeptide composition (DPC). On the basis of independent test results reported by the prior work of 
AntiCP2.0, it can be noticed that AntiCP2.0 was superior to other existing ACP predictors (e.g.  AntiCP8,  iACP10, 
 ACPred19, ACPred-FL15, ACPred-Fuse18, PEPred-Suite20). All in all, much progress has been achieved in existing 
methods. Nevertheless, two potential drawbacks of existing ACP predictors motivated us to develop a new ACP 
predictor in this study. First, their interpretable mechanisms are not easily understood and implemented by the 
viewpoint of biologists and biochemists. Existing ACP models do not provide a straight-forward explanation 
on the underlying mechanism of the biological activity of what constitute ACPs. Meanwhile, a simple and easily 
interpretable models is more useful in a further analysis of characteristics of anticancer activities of peptides. 
Second, their accuracy and generalizability still require improvement.

In consideration of these problems, we propose herein the development of a novel ML-based predictor 
called the iACP-FSCM for further improving the prediction accuracy as well as shedding light on characteristics 
governing anticancer activities of peptides. The conceptual framework of the iACP-FSCM approach proposed 
herein for predicting and analyzing ACPs is summarized in Fig. 1. The major contributions of iACP-FSCM for 
predicting and characterizing ACPs can be summarized as follows. Firstly, we proposed herein a novel, flexible 
scoring card method (FSCM) for effective and simple prediction and characterization of peptides affording 
anticancer activity using only sequence information. The FSCM method is an updated version of the SCM 
method developed by Huang et al.26 and Charoenkwan et al.27 by making use of propensity scores of both local 
and global sequential information. Secondly, unlike the rather complex classification mechanisms as afforded 

Figure 1.  System flowchart of the proposed iACP-FSCM. There are five main steps are involved in the 
development of proposed iACP-FSCM as follows: (i) preparing the training and independent datasets, (ii) 
calculating the initial propensity score (init-PS) using a statistical approach, (iii) estimating the optimized 
propensity score (opti-PS) using a genetic algorithm (GA), (iv) evaluating the prediction ability of iACP-FSCM, 
(v) ACPs characterization using the propensity scores and docking approach.
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by state-of-the-art ensemble  approaches15,18,20, the iACP-FSCM method proposed herein identifies ACPs using 
only weighted-sum scores between the composition and propensity scores, which is easily understood and imple-
mented by biologists and biochemists. Thirdly, the FSCM-derived propensity scores can be adopted to identify 
informative physicochemical properties (PCPs) that may provide crucial information pertaining to local and 
global properties of ACPs. Finally, comparative results revealed that iACP-FSCM outperformed those of state-
of-the-art ACP predictors for ACP identification and characterization. The iACP-FSCM webserver presented 
herein has been demonstrated to be robust as deduced from its superior prediction accuracy, interpretability 
and publicly availability, which is instrumental in helping biologists in their identification of ACPs with potential 
bioactivities. Furthermore, the proposed FSCM method has great potential for estimating the propensity scores 
of amino acids and dipeptides that can be used to predict and analyze various bioactivities of peptides such as 
haemolytic  peptides28, antihypertensive  peptides29 and antiviral  peptides20,23.

Materials and methods
Benchmark datasets. In order to make a fair comparison with existing methods, the most recent and 
high-quality benchmark datasets (i.e. main and alternative datasets) collected from the work of AntiCP_2.025 
were used in the development and validation of the iACP-FSCM model proposed herein. Both datasets can 
be downloaded from https ://webs.iiitd .edu.in/ragha va/antic p2/downl oad.php. The main dataset consists of 
861 experimentally validated ACPs and 861 AMPs while the alternative dataset consists of 970 experimentally 
validated 970 ACPs and 970 random peptides from protein in SwissProt. All peptides on main and alternative 
datasets were unique. To avoid overestimation in the prediction model, the main and alternative dataset were 
randomly divided as the training (named MAIN-TR and ALTER-TR) and independent sets (named MAIN-TS 
and ALTER-TS) using the 80:20 ratio. Further details regarding the construction of the main and alternative 
datasets is provided in the original work of AntiCP_2.025.

Protein feature representation. In this study, we employed 11 feature classes generated from 3 different 
feature encodings using AAC, DPC and terminus compositions for representing peptide sequences as feature 
vectors with fixed length. Herein, we briefly describe each feature encoding definition in forthcoming subsec-
tions.

Amino acid composition. AAC is the proportion of any amino acid in a given peptide P. AAC descriptor can 
be represented as formulated by:

where  aaci is the normalized composition of the ith amino acid  (aai). The dimension of AAC descriptor is 20.

Dipeptide composition. DPC is the proportion of any two adjacent amino acids  (aai,  aaj) in a given peptide P. 
DPC descriptor can be represented as formulated by:

where  dpci is the normalized composition of the ith dipeptide  (dpi). The dimension of DPC descriptor is 400.

Composition on terminal region. Keeping in mind that the information on N- and C-terminus are important 
in the biological activity of  peptides7,8,19,30–33, we thus calculated the DPC information using the first 5, 10 and 
15 residues from the N (i.e. N5, N10 and N15, respectively) and C terminus (i.e. C5, C10 and C15, respectively). 
In addition, we also joined these terminus sequence and their DPC as follows: N5C5, N10C10 and N15C15. The 
dimension of DPC on terminal region descriptor is 400.

Flexible scoring card method. The original SCM method uses only the global sequential information (i.e. 
20 amino acids (APS) and 400 dipeptides (DPS) propensity scores) for prediction and analysis of  proteins26,27. 
Inspired by this method, we developed and implemented a novel flexible SCM-based method called FSCM 
to further improve the prediction accuracy and interpretability by utilizing both local and global sequential 
information of peptides. DPS was used to provide local sequence information as they were found to yield bet-
ter prediction performance and provide more information than APS. Particularly, the FSCM method estimated 
the propensity scores of 400 dipeptides on N- (N5PS, N10PS and N15PS) and C- (C5PS, C10PS and C15PS) 
terminus as well as their joint terminus sequences (N5C5PS, N10C10PS and N15C15PS). In the proposed iACP-
FSCM, we built 11 FSCM models obtained using different 11 propensity scores of amino acids, dipeptides and 
dipeptide on N- and C-terminus for main and alternative dataset each. Below, we briefly describe the basic con-
cepts and the optimization procedures of C15PS on main dataset, since the other types of propensity scores can 
be estimated in the same procedure without significant modifications.

Phase 1: Preparing the training (MAIN-TR) and independent (MAIN-TS) datasets for the development and 
evaluation of the proposed model as described above.

Phase 2: Calculating the initial propensity score of 400 dipeptides on the first 15 residues from the C terminus 
(init-C15PS). According to Charoenkwan et al.34–37, the init-C15PS is estimated, as follows:

Step 1: Computing the frequency of all 400 dipeptides found in ACP and non-ACP. For example, the frequency 
of KK presented in ACP and non-ACP classes consisted of 280 and 40, respectively.

Step 2: Calculating the ratio between each dipeptide by the total number of dipeptides for ACP and non-ACP 
classes. For example, the total number of dipeptides in ACP and non-ACP classes were 450 and 200, respectively. 

(1)AAC(P) = (aac1, aac2, . . . , aac20)

(2)DPC(P) = (dpc1, dpc2, . . . , dpc400)

https://webs.iiitd.edu.in/raghava/anticp2/download.php
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Therefore, normalized compositions of KK dipeptide in ACP and non-ACP classes (called  NPS+ and  NPS-, 
respectively) were 0.622 and 0.2, respectively.

Step 3: Computing the score of each dipeptide by subtracting  NPS+ from  NPS-. For example, the score of DE 
dipeptide is 0.422 (0.622–0.2).

Step 4: Normalizing the score of each dipeptide into the range of 0–1000.
Phase 3: Estimating the optimized propensity score of 400 dipeptides (opti-C15PS) and the threshold value 

using the GA  algorithm37. More details of the GA algorithm used in this study can be found in the Supplementary 
information S1. To obtain the best opti-C15PS, the corresponding threshold value are subjected to the fitness 
 function26,27 whereby the prediction performance in terms of the AUC ( W1 ) and the Pearson’s correlation coef-
ficient ( W2 ) between init-C15PS and opti-C15PS are linearly combined and assessed by a tenfold cross-validation 
procedure:

where values of W1 and W2 are 0.9 and 0.1, respectively. Furthermore, weights for W1 and W2 were set based on 
our previous  studies27,34–37.

Phase 4: Computing the propensity scores of 20 amino acids using the opti-C15PS from Phase 3. Taking 
Lys as an example, the propensity score for Lys is calculated by averaging the propensity scores of 40 dipeptides 
containing Lys.

Phase 5: Predicting an unknown peptide (P) by using the scoring function S(P) and the opti-C15PS from 
Phase 3. A query peptide P is predicted to be ACP if S(P) is greater than the threshold value, otherwise P is 
predicted to be a non-ACP.

where DPi and PSi represent the occurrence frequency and propensity score of the ith dipeptide from the opti-
C15PS, respectively, where i = 1, 2, 3, …, 400.

Phase 6: Evaluating the prediction ability of the model by using four widely used metrics for binary classifica-
tion problems consisting of accuracy (Ac), sensitivity (Sn), specificity (Sp) and Matthew’s coefficient correlation 
(MCC)38,39. Receiver operating characteristic (ROC) curves were plotted to further investigate the prediction 
performance of the proposed model using threshold-independent parameters. Further details on the definition 
of these metrics can be found in the Supplementary data S1.

Characterization of anticancer activities of peptides. The propensity score of 20 amino acids are 
informative PCPs that were employed for providing an in-depth understanding on the basis and important 
factors governing the anticancer activity. Particularly, propensity scores of each amino acid reflect its influence 
on the biological, functional and structural properties of peptides. It is well-known that PCPs are one of the 
most intuitive feature descriptors associated with biophysical and biochemical reactions. Informative PCPs were 
determined from the iACP-FSCM method according to three main steps. Firstly, PCPs having not applicable 
(NA) as their amino acid indices were excluded and this resulted in a total of 531  PCPs40 that were further used 
in this study. Secondly, the Pearson’s correlation coefficient (R) value between the propensity scores of amino 
acids with those of 531 PCPs were calculated. Finally, PCPs with an absolute R value greater than 0.5 will be 
selected as candidate PCPs for further analysis.

Reproducible research. To ensure the repeatability and reproducibility of proposed models, all codes and 
the benchmark datasets (i.e. main and alternative datasets) are available on GitHub at https ://githu b.com/Shoom 
buato ng/Datas et-Code/tree/maste r/iACP-FSCM.

Results and discussion
Performance evaluation on main dataset. In this study, we employed 11 feature classes generated 
from 3 different feature encodings using AAC, DPC and terminus compositions (i.e. N5, C5, N5C5, N10, C10, 
N10C10, N15, C15 and N15C15). Particularly, this led to the generation of 11 types of propensity scores (i.e. 
APS, DPS, N5PS, C5PS, N5C5PS, N10PS, C10PS, N10C10PS, N15PS, C15PS and N15C15PS). To examine which 
types of propensity scores are beneficial for distinguishing ACPs from non-ACPs, we performed performance 
comparisons of different types of propensity scores via tenfold cross-validation and independent tests on main 
dataset. For each type of propensity scores, 10 sets of propensity scores were generated by the GA algorithm and 
then used in the development of 10 different FSCM classifiers. Tables 1 and 2 lists the best prediction results as 
derived from optimal sets for each type of propensity scores via tenfold cross-validation and independent tests, 
respectively (Fig. 2).

As can be seen from Table 1 and Supplementary Table S1, the best Ac of 0.754 with an MCC of 0.496 and 
AUC of 0.762 was achieved by using C15PS (Fig. 3A). Meanwhile, the use of N5C5PS and N5PS performed 
well with correspondingly second and third highest Ac/MCC of 0.750/0.508 and 0.750/0.504, respectively. As 
noticed in Table 1, the performance of the widely used DPS (affording an Ac of 0.726 and AUC of 0.754) was 
comparable to that of the C15PS with regards to all of the five evaluation indices. In the case of independent test 
results, Table 2 showed that the C15PS also achieved better performance than other types of propensity scores 
and provided an Ac of 0.825 and an MCC of 0.646 (Fig. 3B). In the meanwhile, N15C15PS and N15PS performed 
well with the second and third highest independent test with Ac of 0.796 and 0.783, respectively. Hence, we 

(3)F
(

opti− C15PS
)

= W1 × AUC+W2 × R

(4)S(P) =

400
∑

i=1

DPiPSi

https://github.com/Shoombuatong/Dataset-Code/tree/master/iACP-FSCM
https://github.com/Shoombuatong/Dataset-Code/tree/master/iACP-FSCM
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selected the FSCM-based classifier in conjunction with propensity scores of 400 dipeptides on the C15 terminus 
(C15PS) as the optimal classifier for ACP identification using the main dataset. These results implied that the 
local sequential information plays a crucial role in distinguishing ACPs from non-ACPs than that of the global 
sequential information.

Performance evaluation on alternative dataset. In this section, the same experimental setting as 
those used in the main dataset (from the original work from which it was taken) was utilized to determine which 
types of propensity scores were the most effective for distinguishing ACPs from random peptides in the alter-
native dataset. A series of performance comparison experiments using various types of propensity scores was 
carried out and their results were compared via a tenfold cross-validation and independent test as summarized 
in Tables 3 and 4.

From Table 3, it could be seen that the model affording the highest Ac had a value of 0.884 with a corre-
sponding MCC of 0.770 and an AUC of 0.924 that was achieved using APS (Fig. 3C), while models affording 
the second and third highest Ac had values of 0.872 and 0.867, respectively, which were obtained using DPS and 
N15C15PS, respectively. As for results from the independent test (Table 2), both APS and DPS were amongst the 
2 top-ranked classifiers also having the highest prediction results. Furthermore, it was found that DPS achieved 
slightly better performances than APS (0.910 vs 0.889 for Ac and 0.820 vs 0.779 for MCC). In the meanwhile, APS 
was found to achieve very comparable than that of the DPS feature as deduced from the AUC value (Fig. 3D). 
Hence, we selected the FSCM-based classifier in conjunction with the propensity scores of 20 amino acids from 
the whole sequence (APS) as the optimal classifier for ACP identification on alternative dataset. For convenience, 
the FSCM method in conjunction with the selected propensity scores (C15PS and APS for main and alternative 
datasets, respectively) will be referred to as the iACP-FSCM. Based on the observations described above, it could 
be demonstrated that the iACP-FSCM could provide the satisfied results for both main and alternative datasets 
because the composition information on ACPs influenced the interaction on cancer cell membrane, penetration 
the cell membrane, and then cancer cell cytotoxicity via their physicochemical properties (e.g. amphipathicity, 
hydrophobicity, and secondary structures)1.

Table 1.  Cross-validation results of FSCM models with various types of sequence features as evaluated on the 
main dataset.

Method Threshold Fitness score Ac Sn Sp MCC AUC 

APS 399 0.742 0.668 0.624 0.711 0.338 0.686

DPS 285 0.420 0.726 0.675 0.778 0.456 0.754

N5PS 218 0.660 0.752 0.794 0.710 0.507 0.791

C5PS 266 0.566 0.710 0.715 0.705 0.421 0.729

N5C5PS 224 0.568 0.750 0.831 0.671 0.508 0.794

N10PS 219 0.429 0.736 0.733 0.739 0.473 0.771

C10PS 248 0.444 0.739 0.739 0.739 0.480 0.766

N10C10PS 225 0.482 0.732 0.728 0.736 0.465 0.764

N15PS 394 0.478 0.746 0.638 0.829 0.480 0.755

C15PS 311 0.401 0.754 0.656 0.829 0.496 0.762

N15C15PS 394 0.424 0.743 0.570 0.877 0.478 0.739

Table 2.  Independent test results of FSCM models with various types of sequence features as evaluated on the 
main dataset.

Method Threshold Fitness score Ac Sn Sp MCC AUC 

APS 399 0.742 0.701 0.669 0.733 0.402 0.706

DPS 285 0.420 0.773 0.744 0.802 0.547 0.786

N5PS 218 0.660 0.726 0.763 0.688 0.453 0.791

C5PS 266 0.566 0.740 0.763 0.718 0.481 0.762

N5C5PS 224 0.568 0.752 0.822 0.682 0.510 0.764

N10PS 219 0.429 0.762 0.758 0.766 0.524 0.756

C10PS 248 0.444 0.749 0.770 0.728 0.499 0.769

N10C10PS 225 0.482 0.771 0.764 0.778 0.542 0.744

N15PS 394 0.478 0.783 0.679 0.866 0.559 0.737

C15PS 311 0.401 0.825 0.726 0.903 0.646 0.812

N15C15PS 394 0.424 0.796 0.670 0.896 0.587 0.776
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Comparisons of iACP-FSCM with existing methods. To further assess the predictive efficiency and 
effectiveness of the proposed iACP-FSCM, we compared its performances against existing methods on the same 
benchmark dataset. Table 5 lists performance comparisons of iACP-FSCM with existing methods on main and 
alternative datasets over independent test. The prediction results of existing methods (i.e.  AntiCP8,  iACP10, 
 ACPred19, PEPred-Suite20, ACPred-FL15, ACPred-Fuse18 and AntiCP_2.025) recorded in Table 5 come directly 
from the  work25.

By observing the results listed in Table 5, it is clearly that the performance of iACP-FSCM is superior to that 
of existing methods with the highest Ac (0.825), Sp (0.903) and MCC (0.646). Improvements of 7%, 17% and 
14% for Ac, Sp and MCC on main dataset, respectively, were observed when compared with the state-of-the-art 
method AntiCP_2.0. In addition, iACP-FSCM achieved a greater than 14% increase in Ac compared with the 
existing ensemble methods containing PEPred-Suite, ACPred-FL and ACPred-Fuse. Although, AntiCP and 
ACPred were higher Sn values than the proposed iACP-FSCM, the corresponding Sp and MCC were significantly 
lower. In case of the comparative results on alternative dataset, we noticed that AntiCP_2.0 provided the high-
est accuracy of 0.920 with an MCC of 0.840 (Table S3). Meanwhile, the second- and third-best ACP predictors 
(Ac, MCC) were obtained from AntiCP (0.900, 0.800) and iACP-FSCM (0.889, 0.779), respectively. Although, 
AntiCP_2.0 obtained better prediction results than our proposed iACP-FSCM, AntiCP_2.0 is limited in terms of 
interpretability and practical utility for biologists and biochemists. On the other hand, the iACP-FSCM provides 
the propensity scores that might provide the crucial information relating to local and global properties of ACPs, 
which is easily understood and implemented. Furthermore, the interpretability of the proposed iACP-FSCM 
with impressive prediction performance is a more useful and practical approach. Taken together, these results 
revealed that iACP-FSCM provided more impressive prediction performances on both main and alternative 
datasets in terms of simplicity, interpretability and generalizability.

Characterization of anticancer activities of peptides using propensity scores. Unlike black-box 
modeling methods such as SVM and ensemble methods, the advantage of iACP-FSCM are that the estimated 
propensity scores of amino acids and dipeptides derived from the FSCM method could easily identify informa-
tive PCPs for gaining a more in-depth understanding on the characteristics of anticancer activities peptides. The 
propensity scores of 20 amino acids to be ACPs derived from the DPS (Fig. 2) are recorded in Table 6, which 
were calculated using Matlab (R2020a). The five amino acids with the highest propensity scores contained Tyr, 
Trp, His, Met and Lys (355.55, 328.60, 317.03, 311.58 and 296.78, respectively), whereas the five amino acids with 
the lowest propensity scores contained Gln, Val, Gly, Cys and Arg (198.45, 212.55, 225.08, 226.38 and 229.63, 
respectively). In case of the propensity scores of 400 dipeptides to be ACPs, Fig. 2 shows that the five top-ranked 

Figure 2.  Heatmap of amino acids propensity scores obtained from the proposed iACP-FSCM.
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dipeptides with the highest propensity scores contained KK, LW, GH, HI and MY, whereas the five top-ranked 
dipeptides with the lowest propensity scores contained KG, LD, LV, CR and TT.

In biological process, cancer cell development is mostly caused by free radicals damaged on cells via ionizing 
radiation mechanism, especially DNA  damage5. Meanwhile, reactive oxygen species can promote cancer, growth 
arrest, cytotoxicity and irreversible damage. The amino acid composition on ACPs can act as antioxidant and 
dietary source of the  cells4. Interestingly, the five amino acids with the highest propensity scores were reported as 
the important factor for the antioxidant activity. Because electron-rich aromatic rings in side chains of Tyr and 
Trp, sulfur atoms with two lone electron pairs in side chains of Met, and nitrogen atoms with one lone electron 
in side chain of His are easily  oxidized41. Among anti-oxidative amino acids, Trp is low abundant in natural 
peptides, but, it is crucial role of biomolecule activity and easy chemical  modification42. Although, His is one of 

Figure 3.  ROC curves of top-five types of propensity scores over tenfold cross-validation (A,C) and 
independent test (B,D) on main (A,B) and (C,D) alternative dataset.

Table 3.  Cross-validation results of FSCM models with various types of sequence features as evaluated on the 
alternative dataset.

Method Threshold Fitness score Ac Sn Sp MCC AUC 

APS 418 0.942 0.884 0.870 0.898 0.770 0.924

DPS 198 0.626 0.872 0.852 0.893 0.746 0.921

N5PS 178 0.910 0.823 0.806 0.841 0.649 0.873

C5PS 111 0.947 0.786 0.836 0.736 0.576 0.858

N5C5PS 201 0.943 0.819 0.794 0.845 0.640 0.880

N10PS 199 0.840 0.834 0.858 0.809 0.669 0.885

C10PS 171 0.859 0.795 0.789 0.802 0.592 0.863

N10C10PS 195 0.860 0.831 0.855 0.805 0.662 0.890

N15PS 228 0.853 0.865 0.807 0.912 0.727 0.925

C15PS 161 0.821 0.798 0.777 0.818 0.596 0.864

N15C15PS 234 0.871 0.867 0.815 0.909 0.731 0.917
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Table 4.  Independent test results of FSCM models with various types of sequence features as evaluated on the 
alternative dataset.

Method Threshold Fitness score Ac Sn Sp MCC AUC 

APS 418 0.942 0.889 0.876 0.902 0.779 0.930

DPS 198 0.626 0.910 0.892 0.928 0.820 0.930

N5PS 178 0.910 0.796 0.756 0.838 0.596 0.867

C5PS 111 0.947 0.725 0.756 0.692 0.450 0.807

N5C5PS 201 0.943 0.791 0.751 0.832 0.585 0.858

N10PS 199 0.840 0.829 0.812 0.847 0.658 0.885

C10PS 171 0.859 0.787 0.812 0.759 0.572 0.854

N10C10PS 195 0.860 0.829 0.828 0.829 0.657 0.876

N15PS 228 0.853 0.824 0.769 0.873 0.647 0.877

C15PS 161 0.821 0.807 0.778 0.835 0.614 0.864

N15C15PS 234 0.871 0.827 0.769 0.880 0.655 0.874

Table 5.  Independent test results of the proposed method ACPred-FSCM with state-of-the-art methods as 
evaluated on main and alternative datasets. a Results obtained from the published findings of AntiCP_2.025.

Methodsa

Main dataset Alternative dataset

Ac Sn Sp MCC Ac Sn Sp MCC

AntiCP 0.506 1.000 0.012 0.070 0.900 0.897 0.902 0.800

iACP 0.551 0.779 0.322 0.110 0.776 0.784 0.768 0.550

ACPred 0.535 0.856 0.214 0.090 0.853 0.871 0.835 0.710

PEPred-Suite 0.535 0.331 0.738 0.080 0.575 0.402 0.747 0.160

ACPred-FL 0.448 0.671 0.225 -0.120 0.438 0.602 0.256 -0.150

ACPred-Fuse 0.689 0.692 0.686 0.380 0.789 0.644 0.933 0.600

AntiCP_2.0 0.754 0.775 0.734 0.510 0.920 0.923 0.918 0.840

iACP-FSCM 0.825 0.726 0.903 0.646 0.889 0.876 0.902 0.779

Table 6.  Important physicochemical properties (PCPs) as derived from the iACP-FSCM. 
a MITS020101 = Amphiphilicity index (Mitaku et al., 2002). b QIAN880113 = Weights for alpha-helix at the 
window position of 6 (Qian-Sejnowski, 1988). c JOND750101 = Hydrophobicity (Jones, 1975).

Amino acid PS- DPPVI (rank) MITS020101a (rank) QIAN880113b (rank) JOND750101c (rank)

Y-Tyr 355.55 (1) 5.06 (2) 0 (9) 2.67 (5)

W-Trp 328.60 (2) 6.93 (1) 0.36 (2) 3.77 (1)

H-His 317.03 (3) 1.45 (5) 0.29 (3) 0.87 (12)

M-Met 311.58 (4) 0 (15) 0.11 (5) 1.67 (8)

K-Lys 296.78 (5) 3.67 (3) 0.45 (1) 1.64 (9)

A-Ala 295.15 (6) 0 (8) − 0.08 (11) 0.87 (11)

L-Leu 288.23 (7) 0 (14) 0.28 (4) 2.17 (6)

P-Pro 276.55 (8) 0 (17) − 0.42 (20) 2.77 (4)

E-Glu 272.83 (9) 1.27 (6) − 0.19 (15) 0.67 (14)

S-Ser 268.65 (10) 0 (18) 0.07 (6) 0.07 (18)

I-Ile 247.03 (11) 0 (13) − 0.01 (10) 3.15 (2)

D-Asp 244.80 (12) 0 (10) − 0.24 (16) 0.66 (15)

F-Phe 243.43 (13) 0 (11) 0 (8) 2.87 (3)

T-Thr 242.05 (14) 0 (19) − 0.33 (19) 0.07 (19)

N-Asn 232.70 (15) 0 (16) − 0.08 (12) 0.09 (17)

R-Arg 229.63 (16) 2.45 (4) 0.05 (7) 0.85 (13)

C-Cys 226.38 (17) 0 (9) − 0.25 (17) 1.52 (10)

G-Gly 225.08 (18) 0 (12) − 0.1 (13) 0.1 (16)

V-Val 212.55 (19) 0 (20) − 0.13 (14) 1.87 (7)

Q-Gln 198.45 (20) 1.25 (7) − 0.28 (18) 0 (20)

Correlation (R) 1.000 0.577 0.569 0.541
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the five top-ranked amino acids, His-containing dipeptides such as GH and HI, had no anticancer activity in 
in vitro study. Furthermore, AH and LH showed antiangiogenic activity without great anticancer potential in 
zebrafish embryo  model43.

It is well recognized that cancer metabolism has focused on glycolysis and tricarboxylic acid (TCA) cycle. 
Many cancer cells are highly dependent on Gln and Ser uptake for a proliferation and these two amino acids are 
the most highly consumed  nutrients44. Choi and Coloff proposed that Gln serves as anaplerosis metabolite and 
plays a crucial role in the TCA cycle to maintain mitochondrial ATP  production45. Meanwhile, the tumor’s evolu-
tion utilizes Gln, as alternative fuels to optimize a nutrient utilization. Similarly, Val, which is one of branched-
chain amino acid, can fuel in the TCA  cycle46. Gln and Gly, which provide essential carbon and nitrogen sources 
for the nucleobase synthesis, are beneficial in the energy-consuming process via DNA/RNA synthesis in  cells47. 
Although, Gly is one of the five top-ranked amino acids having lowest propensity scores, dipeptide containing 
Gly or Pro performed good cytotoxicity in vitro tumor human cell lines such as A549 lung cancer cell  line48. After 
analyzing the FSCM-derived propensity scores, these results suggest that amino acids having high propensity 
scores could be important in exhibiting the anticancer activity via the oxidation protection process, while amino 
acids having low propensity scores could be important in serving as dietary source of the cancer cells as well as 
provide a contradictory effect on anticancer activity.

Characterization of anticancer activities using informative physicochemical properties. In 
this section, the iACP-FSCM method was utilized to provide a more in-depth understanding of the basis 
and important factors for the anticancer activity. In the previous studies, the physicochemical properties (i.e. 
amino acid sequence, length, net charge, secondary structure, amphipathicity, and hydrophobicity) of peptides 
play crucial role in their hemolytic activity, penetration ability and anticancer/antitumor  activity1,19,49–52. The 
three importantly selected PCPs derived from iACP-FSCM consist of MITS020101 (Amphiphilicity index), 
QIAN88011 (Weights for alpha-helix at the window position of 6) and JOND750101 (Hydrophobicity) were 
showed in Table 6. In addition, Supplementary Table S4 presents further details of the top-twenty informative 
PCPs.

It is well-known that Trp with a propensity score of 328.20 is a common amino acid in amphiphilicity, alpha-
helix, and hydrophobicity. Lee et al. investigated the relationship between the anticancer activities of Pep27 
analogues and their hemolytic activity and hydrophobicity. They found that Pep27 analogue peptides substituting 
with Trp was increased hydrophobicity based on the RP-HPLC retention time. The substitutions of (11Ser → Trp) 
and (13Qln → Trp) in Pep27anal2 had the greatest hydrophobicity with a RP-HPLC retention time of 22.50 min 
as well as exhibited the most anticancer activity with the  IC50 (10–28 μM) and  IC90 (35–55 μM) in five cancer 
cell  lines41. This observation was quite consistent with the previous work  of53,54, implying that end-capping and 
cyclization of hexameric peptide sequences of RRWQWR and RRWWRF or end-tagging of short peptides KNK10 
(KNKGKKNGKH) and GKH17 (GKHKNKGKKNGKHNGWK) with hydrophobic Trp or Phe stretches could 
enhance the stability of ACPs and against proteolytic degradation.

Table 6 shows that Lys, His and Arg (i.e. the cationic amino acids) provide acceptable propensity scores for 
both amphiphilicity index (MITS020101) and alpha-helix (QIAN88011) properties. These three amino acids are 
described by the amphipathic alpha-helical structure transformation that segregates Lys on one face and Ile on the 
opposite side to interact with the negatively-charged membrane that consequently gives rise to high anticancer 
 activity53,55. Furthermore, the octahistidine-octaarginine  (H8R8) peptide is a common cationic cell penetrating 
peptide with endosomal escape capabilities. The modified  H8R8 as a lipid-modified cationic peptide (i.e. stearyl-
H8R8 and vitamin E succinate-H8R8) with the functions of amphiphilic, biodegradable and lipid structure, can 
increase reactive oxygen species production, reduce cell bioenergetics and drug efflux, trigger apoptosis and 
G1 cell cycle arrest, and mitochondria depolarization thereby leading to cancer cell toxicity and  death56. Owing 
to the fact that the indole side chains of Trp exhibits a preference to interact with the interfacial region of lipid 
bilayers while Lys and Arg side chains on peptides provide positive charges and hydrogen bonding capabilities 
to attract negatively-charged phospholipid headgroups of cell  membranes54,57,58. Furthermore, side chains of 
aromatic residues (i.e. Trp and Phe) in which one side of the backbone ring forms a hydrophobic face to engage 
in interaction with the  micelle6. Such interaction between ACPs containing Trp, Phe, Lys, His, or Arg and cancer 
cell membranes are often found in situations of cancer cell eradication. The aforementioned results as obtained 
from iACP-FSCM are in accordance with previous  studies6,53–59 in which physicochemical properties of ACPs 
(i.e. amphiphilicity, helical structure and hydrophobicity) pertains to the interaction between ACPs and the cell 
surface. This interaction causes ACPs to transform into a helical structure to confer the spatial arrangement of 
aliphatic side chains for membrane insertion. The turn stabilization of the helical conformation promotes the 
intra-chain hydrogen-bonding and mediates the backbone hydrophobicity thereby causing a deeper insertion 
of peptides into the lipid  bilayer59.

Case study. A key advantage of iACP-FSCM is its interpretability to biologists in which mechanistic insights 
into the origin of anticancer activity of investigated ACPs as deduced from the scoring function S(P) for ACPs 
that have not yet been experimentally  verified26,27,37. The top 20 peptides with the highest and lowest scores 
are reported in Supplementary Tables S5 and S6, respectively. We noticed that scores for the top 20 ACPs with 
the highest ACP scores (S(P)) were in ranges of 636.59–700.64 whereby the threshold value was 311 (Table 1). 
Interestingly, the peptide sequence of KAKLF having an ACP score of 645 was found in the top 9 peptides hav-
ing a high docking score of -29.75 kJ/mol towards the hypoxia inducible factor 1α (HIF-1α) as reported in the 
previous  study60.

Inspired by this  study60, the top 20 ACPs (ID: 1–20) derived from the iACP-FSCM were then docked with 
the predicted binding sites of HIF-1α in order to estimate their interaction energies (kcal/mol) for finding a new 
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potential peptide-based drug for HIF-1α. In order to make a fair comparison, the same experimental setup was 
used for estimating interaction energies of the top 9 ACPs as proposed by the previous  study60. In this study, 
HIF-1α was prepared for docking using the protein preparation features in the Chimera software, which was 
performed using the default protocol for PDB2PQR and Dock Prep. Protonation states were assigned using 
PROPKA at a pH of 7.0 and Gasteiger charges were assigned to the  protein61. Protein-peptide similarity-based 
docking was performed using the GalaxyPepDock web server (http://galax y.seokl ab.org/pepdo ck) by utilizing 
the information provided by the database to perform the docking procedure that entails the search for suitable 
templates from a database of experimentally determined structures and building models using the energy-based 
optimization method that allows for structural flexibility. The calculation of protein-peptide binding and interac-
tion energy were performed using the NOVA force  field62 while the visualization of the structures was carried 
out using YASARA (Yet Another Scientific Artificial Reality Application; http://www.yasar a.org/index .html) .

The three-dimensional complexed structure for the top 5 potential ACPs is provided in Fig. 4 while the inter-
action energy scores are listed in Table 7 and it was found that values ranged from -9.39 kcal/mol to -6.53 kcal/
mol (i.e. consisting of peptides ID 10, 7, 20, 9 and 16). Particularly, the peptide sequence, ACP score and their 
corresponding interaction energy (i.e. as reported in parenthesis) for peptides ID 10, 7, 20, 9 and 16 are as follows: 
(FAKKLAKKLKKLAKKLAKKWKL, 655.29, − 9.39), (FAKKLKKLAKLAKKL, 663.93, − 8.71), (FALAAKALK-
KLAKKLKKLAKKAL, 636.59, − 7.21), (FAKKLAKKLKKLAKLALAK, 657.22, − 6.73) and (FAKKLAKKLK-
KLAKKLAKLALAL, 646.64, − 6.53), respectively. A visualization of the molecular surface of peptide ID: 10 
(peptide sequence FAKKLAKKLKKLAKKLAKKWKL) that was found to exhibit maximal interaction energy 
of − 9.39 kcal/mol (i.e. and within 3 Å distance) with the HIF-1α receptor is depicted in Fig. 5. As seen from 
Table 5, the interaction energies of ACPs ID: 21–29 are ranging from − 4.81 kcal/mol to 11.98 kcal/mol. Amongst 
the 9 ACPs as reported by a previous  study60, peptide ID: 25 (i.e. having a peptide sequence KAKLF) displayed 
the highest interaction energy score of − 4.81 kcal/mol with the HIF-1α receptor. These results indicated that 
peptide ID: 10 as derived from this study is a promising ACP with promising potential against breast cancer 
when compared to peptide ID: 10 as proposed by the previous  study60. However, additional in vitro and in vivo 
approaches will be needed for further development of novel ACPs against breast cancer. It is highly anticipated 
that iACP-FSCM can serve as an important tool for the rapid screening of promising ACPs against breast cancer 
as well as other types of cancer cell prior to their synthesis.

Conclusions
In this study, we have proposed for the first time a computational model called the iACP-FSCM for ACP iden-
tification and characterization via the use of propensity scores of local and global sequential information as 
obtained using the novel FSCM method. It was demonstrated that the iACP-FSCM could easily identify ACPs 
using only a weighted-sum score and a single threshold value. This was compared with the complex ensemble 
classifiers as developed using a large number of ML classifiers and feature descriptor schemes. Furthermore, the 
FSCM-derived propensity scores can be adopted to identify informative physicochemical properties that might 
provide crucial information relating to local and global properties of ACPs. Results from the benchmarked com-
parison validated the effectiveness and robustness of the proposed iACP-FSCM approach. We further applied the 
iACP-FSCM to identify potential peptide-based drugs against HIF-1α and obtained a list of potential peptides 
against HIF-1α. With these promising results, it is highly anticipated that iACP-FSCM can serve as an important 
tool for the rapid screening of promising ACPs against various types of cancer cells prior to their synthesis. In 
order to develop a convenient bioinformatics tool, the proposed model is deployed as a web server that is made 
publicly available at http://camt.pytho nanyw here.com/iACP-FSCM. Owing to the high potential of the FSCM 
method as proposed in this study, the method could be easily applied for predicting and characterizing other 
therapeutic peptides without any major modifications, such as cell-penetrating  peptides63, antiviral  peptides20,23 
and predicting  antihypertensive20,23, hemolytic  peptide31.

Figure 4.  Three-dimensional complex structure of the top 5 ACPs having maximum interaction energies. The 
binding pocket was colored according to residue type by YASARA coloring scheme, where grey, green, blue, red 
and cyan colors represent non-polar, amidic, basic, acidic hydroxylic amino acids, respectively.

http://galaxy.seoklab.org/pepdock
http://www.yasara.org/index.html
http://camt.pythonanywhere.com/iACP-FSCM
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Table 7.  Top 20 ACPs having high score derived from iACP-FSCM and top 9 ACPs having maximum 
docking scores derived from the  work53 along with their ACP scores and interaction energies. a The peptide 
sequences are the top 20 ACPs having high score derived from iACP-FSCM derived from this study. b The 
peptide sequences are the top 9 ACPs having maximum docking interactions scores derived from the  work53. 
c ACP scores are calculated using the scoring function S(P) and N/A means that the peptide is not found in the 
benchmark dataset. d Interaction Energy is Interaction Energy Yasara Nova Force Field (kcal/mol).

ID Peptide sequence ACP  Scorec Interaction Energy d

1 FALAKKALKKAKKALa 700.64 − 3.69

2 FAKKLAKKLKKLAKKLAKa 692.71 3.94

3 FAKKLAKKLAKALa 682.17 2.10

4 FAKKLAKKLKKLAKKLAKLAKKLa 679.14 − 1.95

5 FAKKLAKLAKKLa 673.36 − 2.04

6 FAKKLAKLAKKLAKALa 667.27 0.21

7 FAKKLKKLAKLAKKLa 663.93 − 8.71

8 FAKKLAKLAKKALALa 660.00 − 2.58

9 FAKKLAKKLKKLAKLALAKa 657.22 − 6.73

10 FAKKLAKKLKKLAKKLAKKWKLa 655.29 − 9.39

11 FAKLWAKLAKKLa 653.91 − 5.58

12 FALAKLAKKAKAKLKKALKALa 653.40 − 2.58

13 FAKKLAKKLAKLLa 652.75 1.59

14 FAKKLAKKLAKLALa 650.85 − 2.75

15 FAKLLAKLAKKa 649.10 − 4.52

16 FAKKLAKKLKKLAKKLAKLALALa 646.64 − 6.53

17 KAKLFa 645.00 − 4.81

18 FAKKALKALKKLa 645.00 0.00

19 FAKKLAKLAKKLAKLALa 642.75 − 4.92

20 FALAAKALKKLAKKLKKLAKKALa 636.59 − 7.21

21 FALALKAb 530.50 − 2.96

22 RYLGYLb 314.40 − 2.01

23 FALAb N/A 0.17

24 FAKLAb 571.25 3.29

25 KAKLFb 645.00 − 4.81

26 ERRPb 269.00 11.98

27 WALALb 473.75 − 1.69

28 MTLTGb 349.75 − 0.44

31 KWKLFb N/A − 4.60

Figure 5.  Molecular surface of docking complex between the HIF-1α receptor (left) and the peptide ID: 10 
(right), in stick model, where amino acids in 3 Å binding, where Phe, Ala, Leu and Trp are non-polar residues 
(grey) and Lysis basic residue (blue).
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