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Assessing spatio‑temporal patterns 
and driving force of ecosystem 
service value in the main urban 
area of Guangzhou
Yi He1,2,3, Wenhui Wang1,2,3, Youdong Chen1,2,3 & Haowen Yan1,2,3*

Increasing human activity around the world has greatly changed the natural ecosystem and the 
services it provides. In the past few decades, a series of significant changes have taken place in land 
use/land cover (LULC) in China due to the rapid growth in population, particularly in the cities of the 
Zhujiang Deita. However, there have been few attempts to study the co-evolution of land use/land 
cover change and ecosystem service value (ESV) in the main urban area of Guangzhou. Therefore, 
based on Landsat TM/OLI images from 1987, 1993, 1999, 2005, 2011 and 2017, the weight vector 
AdaBoost (WV AdaBoost) multi-classification algorithm was utilized to extract LULC data sets, and 
the spatiotemporal patterns of LULC over these periods were studied. The ESV was estimated and 
the driving force was analysed. The effect of LULC dynamics on the ESV was evaluated. The results 
showed that great changes have taken place in LULC in the main urban area of Guangzhou from 1987 
to 2017, of which the most significant was the large-scale expansion of the built-up area that occurred 
through degradation of the forest and cultivated land. The proportion of forest and cultivated land 
decreased from 43.12% and 34.23% to 25.88% and 12.59%, respectively. The results between periods 
revealed a decrease in total ESVs from 5.63 × 109 yuan in 1987 to 5.27, 4.16, 4.62, 3.76 and 4.47 × 109 
yuan in 1993, 1999, 2005, 2011 and 2017, respectively. In total, ESVs decreased by 1.16 billion yuan 
(20.61%) from 1987 to 2017. Water supply, food production, nutrient cycling and gas regulation 
were the four principal ecosystem service functions that affected the total ESVs. Forest, water body 
and cultivated land areas played a key role in ecosystem services. Therefore, we advocate that when 
protecting natural ecosystems in the future land use management in Guangzhou should be prioritized.

Ecosystem services refer to the continuous provision of ecosystem goods and services by ecosystems and their 
ecological processes. These services comprise and maintain the environmental conditions and material basis 
upon which human beings depend for survival1,2. There are four types of ecosystem services—provisioning ser-
vices, regulating services, cultural services and supporting services. These are necessary for maintaining other 
services3,4. However, with the constant growth in the global population, industrialization and urbanization, the 
ecosystem is constantly being encroached upon5,6. With the increasing scarcity of ecosystem services, how to 
protect the ecosystem and improve the supply of ecosystem services has become a common challenge facing the 
whole world2. Therefore, many scholars have devoted themselves to quantifying the value of ecosystem services 
and evaluating and estimating these services on a global scale4,7,8. Based on the evaluation model proposed by 
Costanza, Xie et al.4 proposed an equivalent scale of ecosystem service value (ESV) per unit area of different 
terrestrial ecosystems in China. This has been widely used in China because of its simplicity and reliability9.

Land use/land cover change (LUCC) is a main driving factor in global environmental change10–12and ecosys-
tem services change9. LUCC leads to changes in ecosystem services by changing the structure and function of the 
ecosystem13. Therefore, as a direct driver of changes in ecosystem service functions, LUCC plays an important role 
in maintaining and regulating ESV14. Land use/land cover (LULC) has changed significantly due to population 
growth, economic development and urban expansion. Globally, the transformation of natural ecosystems into 
farmland and urban areas has resulted in an increase in food production, timber, housing and other commodities. 
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These changes have in turn affected numerous ecosystem services15. However, the main challenge is that many 
of the services offered by these ecosystems are public goods not captured by the market. Therefore, they have no 
monetary value7,16. Thus, quantifying LUCC and ESV and analysing their relationship is an essential decision 
support tool for sustainable use and development.

Cities are the most intensive areas of human activity, and the natural ecosystem is significantly transformed 
by such activity. Cities also have the most significant impact on the ecosystem service function. Therefore, there 
is a close relationship between urban land use change and the ecosystem service function17. China is undergoing 
unprecedented urbanization, with the urbanization rate rising from 17.92% in 1978 to 58.52% in 201718. This 
rapid urbanization process will continue to evolve in the coming decades, and it is expected that by 2035–2040 
urbanization in China will reach 70%19. In the process of promoting the construction of ecological civilization, 
such as capitalization management of natural resources and ecological compensation, it is imperative to evaluate 
ESV. The Zhujiang Delta is the region with the most developed economy, the densest population and the fastest 
urbanization. At present, the level of urbanization has reached about 70%, which is obviously higher than the 
national average16,20. This rapid urbanization not only promotes rapid social and economic development but also 
weakens the vital ecological services provided by the natural ecosystem for the city21. As one of the rapidly urban-
ized areas in the Zhujiang Delta, the main urban area of Guangzhou is facing increasing pressure on resources 
and the environment due to the rapid development of the social economy in recent years.

Guangzhou has seen massive changes in LULC in recent years22,23. For example, Li and Cui22 analyzed spa-
tiotemporal patterns based on thematic mapper (TM) images from 1990 to 2006 and found that the growth of 
construction land was most significant, as a large amount of cultivated land, forest, grassland and water-covered 
areas were converted into construction land. He et al.23 studied LUCC in the main urban area of Guangzhou 
based on Landsat images. Since 1987, cultivated land has disappeared, vegetation has decreased and urban land 
areas have doubled. In addition, there were some studies on LUCC and ESV in Guangzhou, Ye et al.24 quanti-
fied land-use change and valued the impact on ecosystem services from 1990 to 2010 in the rapidly urbanizing 
Guangzhou-Foshan Metropolitan Area, southern China. Gao et al.25 studyied urban land-use planning under 
multi-uncertainty and multiobjective considering ecosystem service value and economic benefit in Guang-
zhou, China. Hu et al.26 studied spatio-temporal changes in ecosystem service value in response to land-use/
cover changes in the Pearl River Delta from 1995 to 2015. Ye et al.27 analyzed the landscape pattern changes, 
the dynamics of the ESVs and the spatial distribution of ESVs from 1995 to 2005 in Guangzhou, which is the 
capital of Guangdong Province and a regional central city in South China. It is well known that the progress 
of urbanization will lead to the change of land use types, this transformation will bring about changes of ESV, 
which will affect the urban ecological structure and indirectly regulate the types of ecological services13,15. It 
will eventually lead to the deterioration of the ecological environment in the urban area. Although some studies 
have been conducted on LULC change in this region, it did not further reveal the positive and negative effects of 
LUCC from the perspective of ESV. In addition, few attempts addressed the dynamics of LULC and ESV with the 
detailed characteristics in the main urban area of Guangzhou from a long time scale and a short time interval. 
Further, a quantitative assessment to reveal the impact of LULC changes on ESV is seldom attempted. Thus, we 
aim at closing the gaps of the previous LULC change studies in the main urban area of Guangzhou by estimat-
ing changes in the economic value of ecosystem services. A quantitative analysis is urgently needed in the main 
urban area of Guangzhou, where the increasing population pressure and the corresponding increasing impact 
of human activities on the land have resulted in dramatic changes in LULC.

In 2017, the population of Guangzhou’s main urban area was estimated to have increased by 5.31 million28. 
Unprecedented population growth will cause further pressure on limited land resources and the environment. 
Therefore, it is crucial to systematically monitor the response relationship between LUCC and ESV in the past 
30 years. This paper addresses two major questions: (1) What are the dynamic spatiotemporal patterns of LULC 
in the main urban area of Guangzhou from 1987 to 2017 (2) How does the spatiotemporal patterns of the ESV 
change and respond to the LULC? To calculate ESV in the main urban area of Guangzhou in the past 30 years, a 
quantitative evaluation is helpful to provide a scientific basis for the efficient allocation of land resources, rational 
regional planning and sustainable development, the scientific management of the ecosystem and the scientific 
formulation of ecological compensation policy.

Materials and methods
This paper uses Landsat TM/OLI images from 1987, 1993, 1999, 2005, 2011 and 2017 by the weight vector 
AdaBoost (WV AdaBoost) multi-classification algorithm extracting LULC data sets, and the spatiotemporal 
patterns of LULC over these periods were analysed. The spatiotemporal change patterns and driving force of 
ESV was estimated. The effect of LULC dynamics on the ESV was evaluated. The flow chart is shown in Fig. 1.

Study area.  Guangzhou is located at 112° 57′ ~ 114° 3′ E, 22° 26′ ~ 23° 56′ N in the southeast part of Guang-
dong Province in the northern margin of the Pearl River Delta. It has a total land area of 7434.40 km2. The 
topography is high in the northeast and low in the southwest, with low mountains and hills in the north and 
plains in the south and a rich geomorphology. The level of urbanization is high, the land use structure is com-
plex and the land use pattern is changing rapidly. Regional public infrastructure, commercial service land and 
external transportation land is increasing. Export-oriented industrial agglomeration areas are developing con-
tinuously, and the characteristics of export-oriented land use are obvious. Guangzhou has a subtropical oceanic 
monsoon climate, with an annual average temperature of 20–22 °C and an annual rainfall of about 1720 mm. 
Guangzhou includes eleven districts (Fig. 2a). This paper focuses on the main urban area of Guangzhou as the 
research object, a decision based on the city government’s overall urban development strategy for Guangzhou 
(2010–2020), the main urban area of Guangzhou includes five districts—Liwan, Yuexiu, Haizhu, Baiyun and 
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Tianhe (Fig. 2a). In 2017, the per capita GDP will exceed 136,100 yuan for the first time (Fig. 2b). The popula-
tion density is large, and the intensity of development is extraordinary. The population has increased from 2.73 
million in 1987 to 8.05 million in 2017 (Fig. 2c). The industrial structure has been constantly optimized and 
improved. The proportion of secondary industries decreased from 31.46% in 1987 to 11.28% in 2017, while the 
proportion of tertiary industries increased from 61.9% in 1987 to 89.61% in 2017.
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Figure 1.   The framework of this paper.

Figure 2.   Location of study area and GDP and population. (a) location, (b) GDP, (c) population. (Software: Arc 
Map 10.5.0, http://www.esri.com. OriginPro 2017C SR2, https​://www.origi​nlab.com/).

http://www.esri.com
https://www.originlab.com/
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Data and data processing.  Data.  The data used include Landsat series images, an administrative zon-
ing map of Guangzhou, a local historical land use map and social and economic statistics from 1987 to 2017. To 
explore the socio-economic and natural factors driving the ESV change for different land use types, we exam-
ined ten factors—the normalized vegetation index (NDVI), year-end population, elevation, slope, distance from 
roads, distance from railways, land cover types, GDP, secondary industry GDP and investment in fixed assets.

The Landsat images were taken from the United States Geological Survey website (http://glovi​s.usgs.gov/), 
and we downloaded cloud-free Landsat 5 TM and Landsat 8 OLI images (path 122, row 44). Images taken in the 
dry season (October, November and December) were selected because there was less cloud cover, the change in 
surface reflectance was much smaller than in other seasons and the image quality was higher. The spatial resolu-
tion of imaging is 30 m, and the data of Landsat 5 TM (8 December 1987, 24 December 1993, 25 December 1999, 
23 November 2005, 19 November 2011) and Landsat 8 OLI (23 October 2017) were collected.

The elevation data are provided by the Japan Aerospace Exploration Agency (http://www.eorc.jaxa.jp/ALOS/
en/aw3d3​0/data/index​.htm); the horizontal resolution is 30 m, and the elevation accuracy is 5 m. The road and 
railway data are provided by Openstreetmap (download.geofabrik.de/), and the distance between roads and 
railways were calculated. The land use types are provided by Tsinghua University (http://data.ess.tsing​hua.edu.
cn/) with a resolution of 10 m. GDP, secondary industry GDP and investment in fixed assets were provided by 
Guangzhou Statistics Bureau28.

Considering the size of the study area and the resolution of the data, we used Fishnet in ArcGIS10.5 to 
establish a 500 × 500 m grid covering the study area. The values of ten factors were extracted to the grid centre 
points, and 3915 points were obtained.

Remote sensing extraction of LULC types.  To obtain high-precision LULC data, the surface features based on 
the original remote sensing image were enhanced using the index model (the Index-based Built-up Index (IBI)29, 
the modified normalized difference water index (MNDWI)30 and the soil-adjusted vegetation index (SAVI)). 
The humidity, brightness and green chroma indices were transformed using the tasselled-cap method23. Using 
the six indices, six images were calculated and superposed into a new multi-band image in the order of IBI, 
SAVI, MNDWI, brightness, green chroma and humidity (referred to as the six-index image). This was super-
posed with the original image (band 1, 2, 3, 4, 5, 7) to create an enhanced 12-band image as the data source for 
LULC classification. The image stretching function was then used to stretch the composite image to better dis-
tinguish the characteristics of land use types. After feature enhancement, the LULC types in the main urban area 
of Guangzhou could be divided into seven types—forest, water body, grassland, cultivated land, high reflectivity 
building, low reflectivity building and bare land. Of these, high reflectance buildings and low reflectance build-
ings are sub-categories of the built-up area category. The spectrum of high reflectivity buildings is similar to that 
of bare land; therefore, they are classified separately to avoid erroneous classification31. Based on Google Earth 
and TM/OLI images, the interpretation marks of LULC types were established (Table 1). To obtain pure and rep-
resentative samples, the K-means method of unsupervised classification was utilized to cluster the pixels of the 
ISM image into seven unlabelled classes and to eliminate abnormal clustering. We then selected uniform points 
and drew polygons on them. Each polygon contains more than 100 pixels, and each class contains between five 
and seven polygons. All polygons were saved in a shape file as a mask file, which is utilized to extract pure pixels 
as training samples.

Dou and Chen31 suggest using the weight vector AdaBoost (WV AdaBoost) multi-classification algorithm 
for LULC classification. Compared with AdaBoost, it provides higher classification accuracy and stability. WV 
AdaBoost includes a C4.5 decision tree, a Naïve Bayes neural network and an artificial neural network. In this 
study, we use Naïve Bayes-based WV AdaBoost to classify LULC based on Landsat-enhanced images. To obtain 
a highly accurate LULC classification, it is necessary to post-process the image after classification, overlay the 
early land use map during the research period, check the incorrectly classified area, and filter and correct some 
segments. After image classification, the random selection of 200 pixels in each class was checked, and the cor-
rectness of the classification and the evaluated accuracy were confirmed.

The average classification accuracy of WV AdaBoost based on Naïve Bayes on the original image is 85.02%, 
and the kappa coefficient is 0.839. The WV AdaBoost algorithm is based on Naïve Bayes processes for the 12-band 
images of the new combination (enhanced 12-band image). The average classification accuracy is 88.86%, and 
the kappa coefficient is 0.871. The classification results still need to be strengthened by post-processing, which 
achieves good classification accuracy. The final average classification accuracy is 91.97%. The kappa coefficient 
is 0.907. These classification results agree with the ensuing analysis of LULC.

Methods.  Based on Landsat TM/OLI data from 1987 to 2017, a transfer matrix, a land use change index, an 
ESV evaluation index, a sensitivity model (CS) and a geo-detector (P) were used to analyze the response of ESVs 
to LULC evolution.

Transfer matrix.  The transfer matrix reflects the dynamic process information about mutual transformation 
LULC types at the beginning (T) and the end (T + 1) of a specified period of time in a certain region (Fig. 3). The 
general form is:

where S stands for area, and i,j (i,j = 1,2,…, n) represents LULC types before and after the transfer.

(1)Sij =







s11s12 . . . s1n
s21s22 . . . s2n
. . . . . . . . . . . .

sn1sn2 . . . snn







http://glovis.usgs.gov/
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
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The LULC analyzing indices. 

(1)	 Land use dynamics (RS)
	   Land use dynamics describe the rate and magnitude of LUCC. The general form is:

(2)RS =
Ub − Ua

Ua
×

1

T
× 100%,

Table 1.   Interpretation mark of land cover types.

Land cover types Description Thumbnail

Forest Single green and dark green, fine texture

Grassland Green or light green, smooth texture

Cultivated land Green or greyish green, with Textured geometry and clear borders

Built-up area Subclass high reflectivity buildings, mainly white, distributed and scattered

Built-up area Subclass low reflectivity building, mainly grey, rough texture

Water body Dark blue, blue and light blue are often shown as curved bands of different widths

Bare land Purple or pink, rough texture, multi-block distribution

Figure 3.   Land use transfer process. T the beginning of land use types, T + 1 the end of land use types; A, B, C, 
D, E, F: different land use types.
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where Ua is the area of a certain land class at the beginning (km2), Ub is the area of a certain land class at 
the end (km2), and T is the study period.

(2)	 Spatial dynamics of land use (RSS)
	   Spatial dynamics of land use describe the degree of spatial change in a certain land use type. The general 

form is:

where Uin is the sum area of other types converted to this type in study period T, and  Uout is the sum area 
of a certain type converted to other types in study period T. Ua is the area of a certain type at the beginning.

(3)	 Land use change state index (PS)

The land use change state index represents the trend and state of LUCC. The general form is:

where Uin is the sum area of other types converted to this type in study period T, and Uout is the sum area of a 
certain type converted to other types in study period T.

Calculation of ecosystem service value.  In this paper, the improved ecosystem services valuation method based 
on the unit area value equivalent factor proposed by Xie et  al.2 is employed to evaluate ESV. Therefore, the 
LULC types of the main urban area of Guangzhou were associated to the corresponding representative biomes 
(Table 2). The most representative biomes used as a proxy for each LULC type are: (1) cropland for cultivated 
land, (2) tropical forest for forest, (3) grassland for grassland, and (4) water system and wetland for water body. 
(5) bare land for bare land.

The LULC types are not exactly identical with the representative biomes. For example, cultivated land in this 
study accounts areas used for paddy fields and dry land. Therefore, the ESV index of cultivated land is calculated 
by weighting the area ratio of paddy field and dry land in the statistical yearbook. The average value of the ESV 
index of the water system and wetland is adopted for water body. The ESV index of build-up area is 0. the ESV 
index of land use types is shown in Table 2. The value of the universal equivalent factor ESV (D value) of the 
improved ESV method is 340.65 thousand yuan/km2.

In this study, the ESV of each land use unit area is based on the research methods of Costanza3 and Xie et al.2. 
The calculation formula is:

where ESV is the total value (yuan) of ecosystem services, Ai (km2) is the area of class i, and VCi is the ESV 
coefficient (yuan/km· year) corresponding to class i. ESVf is the single ESV, and VCfi is the value coefficient of 
the single service function.

Sensitivity analysis model.  The sensitivity model is used to calculate the response of ESV to the change of value 
coefficient (VC)14 by adjusting the 50% of the ESV coefficient of each land use type up and down and determin-
ing the change in ESV over time and the degree of dependence on the value coefficient. The calculation formula 
is as follows:

(3)RSS =
Uin − Uout

Ua
×

1

T
× 100%,

(4)PS =
Uin − Uout

Uin + Uout
,

(5)ESV =

∑

Ai × VCi

(6)ESVf =

∑

Ai × VCfi,

Table 2.   Parameters of ESV for different land use types in the main urban area of Guangzhou.

Primary types ESV calculation index Forest Grass land Cultivated land Water body Bare land

Provisioning services

Food production 9.88 3.41 43.94 22.14 0.00

Raw material 22.48 4.77 4.09 12.26 0.00

Water supply 11.58 2.73 − 78.01 185.31 0.00

Regulating services

Gas regulation 73.92 17.37 35.77 45.31 0.68

Climate regulation 221.42 45.65 18.40 100.15 0.00

Purify environment 65.75 14.99 5.45 155.68 3.41

Water regulation 161.47 33.38 82.10 2153.93 1.02

Supporting services

Soil conservation 90.27 21.12 4.43 55.19 0.68

Nutrient cycling 6.81 1.70 6.13 4.09 0.00

Biodiversity 82.10 19.08 6.81 177.48 0.68

Cultural services Aesthetic landscape 36.11 8.52 2.73 112.76 0.34
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where ESV is the estimated ESV, VC is the value coefficient, i and j are the initial value and adjusted value (50% 
up and down adjustment) and K is the land use type. When CS ≥ 1, ESV is elastic relative to VC; when CS ≤ 1, 
ESV is inelastic. The larger the CS value is, the more critical the accuracy of the ESV index.

Grid analysis method.  Grid analysis method is used to divided the study area into regular grid matrixes with 
the same size and no overlap, and takes grid as the research object to express and statistical unit in geospatial 
space9. It uses regular square grid as ESV’s spatial statistical unit instead of irregular land-use map spots to 
ensure the capacity invariance within the unit, which not only highlights the spatial distribution characteristics 
of ESV, but also facilitates the spatial quantitative statistics of ESV.

The premise of calculating ESV spatial differentiation is to determine the size of grid cell. In this study, based 
on ArcGIS10.5 software, the area of each land use type in four grid units with side length of 0.5 km, 1 km, 2 km 
and 3 km was extracted respectively, and then compare the degree of area change, namely the coefficient of vari-
ation. The grid of this scale is the optimal grid unit size for the spatial differentiation of ESV in the study area. 
Finally, the grid analysis method is introduced to construct a (0.5 × 0.5) km square grid as a geospatial statistical 
unit. By using the equal spacing system sampling method, the study area is divided into 2024 square grids that do 
not overlap each other (0.5 × 0.5) km, and the grid matrix is composed of these grids. Through the intersection 
operation of grid matrix and land use data of each research year, the area of various land use types in each grid 
is counted, and the spatial heterogeneity of land use types and ESV is analyzed.

Geo‑detector.  Combined with GIS spatial superposition technology and set theory, a statistical method pro-
posed by Wang et al.32 can detect spatial heterogeneity and reveal the driving force to identify the interaction 
between multiple factors. This model is widely used to analyze the influence mechanism of social economic fac-
tors and natural environmental factors. The geo-detector consists of four detectors—a differentiation and factor 
detector, an interaction detector, a risk area detector and an ecological detector. In this paper, factor detection 
and interaction detection are utilized to detect and analyze the driving force of ESVs in the main urban area of 
Guangzhou.

(1) Factor detector: Factor detection can identify the explanatory power of each spatial driving factor in 
landscape type change, and its model is as follows:

where P is the explanatory power index of ESV influencing factors; ni is the number of samples in the secondary 
area; n is the total number of samples; m is the number of samples in the secondary area; δ2 is the variance in 
land use type change in the whole area; and δ2i is the variance in land use type in the secondary area. Thus, the 
model is established, assuming δ2i ≠ 0.

The range of values for P is [0,1]. When P = 0, it shows that the spatial distribution of ESV changes is random. 
The larger the P value is, the greater the impact of longitudinal driving factors on ESV changes.

(2) Interactive detector: Interaction detection can be used to identify the interaction between different spatial 
drivers. When detecting the interaction of X1 and X2, the explanatory power of the dependent variable Y will 
increase or decrease. The evaluation method is used to calculate the q value of two factors, X1 and X2, for Y, 
respectively, q (X1) and q (X2); to calculate the q value of their interaction, q (X1 ∩ X2); and to compare q (X1), 
q (X2) and q (X1 ∩ X2). The five results of the interactive detector are given in Table 3.

Results and analysis
LULC patterns.  The overall change in LULC.  From 1987 to 2017, LULC types changed considerably in 
the main urban areas of Guangzhou, with forest, cultivated land and built-up areas accounting for the major 
types (Fig. 4). In the past 31 years, the LULC types that changed most dramatically were cultivated land and 
built-up areas. The cultivated land area declined significantly from 34.23% in 1987 to 12.59% in 2017, while the 
built-up areas increased remarkably from 11.44% in 1987 to 50.53% in 2017.The proportion of built-up areas 
is decreasing from the central area to the nearby suburbs and the outer suburbs. Grassland showed the change 
trend of “increase–decrease–increase–decrease–decrease” between 1987 and 2017, and water body showed the 

(7)CS =
(ESVj − ESVi)/ESVi

(VCjk − VCik)/VCik
,

(8)P = 1−
1

nδ2

m
∑

i=1

niδ
2
i ,

Table 3.   Types of interactions between two covariates.

Criterion Interaction

q(X1 ∩ X2) < Min(q(X1), q(X2)) Nonlinear weakening

Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1)), q(X2)) Single-factor nonlinear weakening

q(X1 ∩ X2) > Max(q(X1), q(X2)) Two-factor enhancement

q (X1 ∩ X2) = q(X1) + q(X2) Independence from each other

q(X1 ∩ X2) > q(X1) + q(X2) Nonlinear enhancement
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change trend of “increase–decrease–increase–decrease–increase”. Forest showed the trend of gradual decrease. 
Bare land showed the trend of fluctuation, but the change range was not large and the overall proportion of bare 
land was small in the study area. In general, the variation in built-up area was the largest and the variation in bare 
land was the smallest among the LULC types. The continuous decrease in forest and cultivated land and the rapid 
increase in built-up areas are caused by the rapid economic development of the main urban area of Guangzhou.

LULC change between 1987 and 2017.  The transfer matrix is utilized to further analyse the change character-
istics of each type of LULC in the main urban area of Guangzhou (Table 4). Built-up areas and water body areas 
increased, while other LULC types decreased between 1987 and 2017. The expanded built-up areas grew rapidly 
at the rate of 2.41% per year, and the total increased areas equalled 335.90 km2, which was 1.59% higher than the 
water body area growth rate. Grassland decreased by 90.67%, followed by bare land with a decrease of 68.83%, 
cultivated land with a decrease of 45.26% and forest with a decrease of 37.54%. The proportion of grassland to 
built-up areas was as high as 77.76%, followed by the proportion of bare land and cultivated land to built-up 
areas of 65.36% and 51.16%, respectively.

Forest, cultivated land and built-up areas were frequently converted (Fig. 5). The forest transferred 160.26 km2 
of forest became built-up areas, mainly distributed in the five districts of the main urban area. Most of that forest 
area was cultivated land mainly distributed in the Baiyun district and had an area of about 39.19 km2 (Fig. 5a). A 

Figure 4.   LULC types in the main urban area of Guangzhou from 1987 to 2017. (a) 1987, (b) 1993, (c) 1999, 
(d) 2005, (e) 2011, (f) 2017. (Software: Arc Map 10.5.0, http://www.esri.com. OriginPro 2017C SR2, https​://
www.origi​nlab.com/).

Table 4.   Conversion matrix of LULC change (km2) between 1987 and 2017. FS, GL, CL, WB, BU and BL refer 
to forests, grassland, cultivated land, water bodies, built-up area and bare land, respectively.

2017

1987

Total area 2017FS GL CL BU WB BL

Forest 247.47 1.432 11.445 1.598 1.415 3.271 266.632

Grassland 0.972 0.702 0.746 0.077 0.051 0.286 2.835

Cultivated land 39.193 3.342 130.804 7.080 2.947 2.203 185.568

Build-up area 129.987 23.616 173.437 98.065 10.152 13.977 449.234

Water body 7.177 1.042 19.363 6.167 44.290 1.083 79.122

Bare land 2.096 0.237 3.234 0.344 0.191 0.564 6.666

Total area 1987 426.895 30.371 339.029 113.332 59.046 21.384 990.057

Direction of change ↓ ↓ ↓ ↑ ↑ ↓

http://www.esri.com
https://www.originlab.com/
https://www.originlab.com/
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total area of 27.54 km2 was transferred from grassland, of which the areas that became build-up area measured 
23.62 km2 and were distributed in the Tianhe district, the southeast part of the Zhuhai district and the Liwan 
district (Fig. 5b). Cultivated land is a landscape type with significant changes in the study area. It is mainly 
located in the northwest part of the Baiyun district and the southeast part of the Haizhu district. The cultivated 
land was mostly converted into built-up areas, reaching 173.44 km2 (Fig. 5c). Built-up areas comprised the most 
transferred landscape type with a land area increase from 113.33 km2 in 2017 to 449.23 km2 in 2017. Built-up 
areas mainly occupied forest land, cultivated land, grassland and other ecological land to achieve space expansion. 
Change areas were concentrated in the northwest part of the Baiyun district, the Tianhe district, the southeast 
part of the Zhuhai district and the southern part of the Liwan district, and the landscape space aggregation 
became increasingly obvious (Fig. 5d). The increase in water body areas was transferred from cultivated land 
and forest, and the decrease was transferred into built-up areas. The change process was mainly concentrated in 
the Baiyun district (Fig. 5e). In addition, bare land was primarily converted into built-up areas (Fig. 5f).

Dynamic change of LULC.  According to the LULC dynamic change index from 1987 to 2017 in the study area 
(Fig. 6), the dynamic degree (RS was 9.88%, RSS was 1.13%) and change status index (PS was 91.67%, 40.49%) of 
the built-up and water body areas were relatively high in the last 30 years, indicating that they had a large change 
range, a fast growth rate and a trend of continuous increase in area. During the period from 1999 to 2005, the 
dynamic degree and change state index of cultivated land were lower than in other periods, while the RSS and 
PS values of the built-up and water body areas were higher, indicating that the growth rate of cultivated land 
area was decreasing and the growth rate was slowing down, while the growth rate of built-up and water body 
areas was accelerating. The RS of forest increased from − 3.51% between 1987 and 1993 to 0.27% between 2011 
and 2017, indicating that the growth and increase rates of forest areas were small between 1987 and 1993 but 
increased between 2011 and 2017 and that the change was drastic in the study time series. In the past 30 years, 
the spatial dynamic degree of built-up and water body areas was noticeable, indicating that the transfer area of 
built-up and water body areas was larger and that the space transfer was frequent. However, the dynamic degree 
of grassland and bare land was less, indicating that the spatial change frequency of these two land use types is 

Figure 5.   Spatial conversion change of LULC types in the main urban area of Guangzhou between 1987 and 
2017. (a) forest, (b) grassland, (c) cultivated land, (d) built-up area, (e) water body, (f) bare land. (Software: 
Arc Map 10.5.0, http://www.esri.com). 1, 2, 3, 4, 5 and 6 refer to forest, grassland, cultivated land, built-up area, 
water body and bare land, respectively.

http://www.esri.com
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trivial. The change in dynamic degree and in the state index for forest areas both showed the trend of “increase–
increase–decrease–increase”, indicating that the fluctuation in forest area in the study period had a trend of 
slowing down. The RSS of cultivated land increased from -0.48% between 1987 and 1993 to 3.18% between 2011 
and 2017, indicating that cultivated land conversion was frequent and that the longitudinal change frequency 
was high between 2011 and 2017 and was stable between 1987 and 1993. The decrease in area of cultivated land 
was related to the gradual increase in the population’s demand for cultivated land, the low awareness of rational 
exploitation of resources and the modest awareness of the protection of cultivated land in recent years. From 
2011 to 2017, the RSS and PS values of water body areas both increased significantly, indicating the frequent 
spatial changes in water body areas. This was significantly related to the gradual improvement of the ecological 
water supply system in the main urban area of Guangzhou, the increasing awareness of water resource conserva-
tion and protection and the strong water resource management system. To sum up, these characteristics were in 
good agreement with the above phenomenon (Fig. 5).

Spatial change of LULC based on grids.  To clearly show the spatial changes of different LULC types from 1987 
to 2017, the ArcGIS spatial statistics tool was used to calculate the grid-based change intensity. Here, the change 
map of each LULC type was subdivided into non-overlapping blocks of 0.5  km × 0.5  km, and the statistical 
information of land use change information in each grid was calculated (Fig. 7). The forest area in the Tianhe 
district and the Baiyun district decreased significantly (Fig. 7a), while the grassland change was not remarkable 
(Fig. 7b) and the cultivated land area in the northwest part of the Baiyun district showed a significant decrease 
(Fig. 7c). According to the change intensity chart, the main process of LULC change was the conversion between 
cultivated land, forest area and built-up area. Hotspots with shrinking forest and cultivated land were seriously 
threatened by the expansion of built-up areas (Fig. 7d). Water body and bare land areas did not change signifi-
cantly (Fig. 7c,d). During the study period, the serious decrease in natural vegetation coupled with the decrease 
in the cultivated land ecosystem highlighted the serious decrease in important ecological categories of LUCC 
and the corresponding increase in production-oriented land use in the main urban area of Guangzhou. This 
means that human encroachment into the natural ecosystem increased.

ESV change pattern.  Change of total ESV.  In 1987, the total ESV in the main urban area of Guangzhou 
was estimated to be 5.63 × 109 yuan (Fig. 8), and the ESV contribution of built-up areas was very weak. There-
fore, an analysis was not carried out in this paper. The contribution of forest areas was the most important thing 
(about 59.29%), followed by water body areas (31.82%). The contribution of cultivated land was also larger 
(24.93%). The contribution of grassland ESV accounted for 0.93% of the total ESV, while the contribution of bare 
land to the total ESV was the smallest at only 0.03%.

The ESV decreased from 5.63 × 109 yuan to 4.47 × 109 yuan (Fig. 8) between 1987 and 2017. The total loss of 
ESV was mainly brought about by forest and cultivated land. The change in forest ESV accounted for 115.02%, 
followed by cultivated land, which accounted for 24.34%. In contrast, the total ESV of water body areas increased 
by 26.81% from 1.79 × 109 yuan to 2.27 × 109 yuan. In general, there was heterogeneity in ESV changes in dif-
ferent periods from 1987 to 2017 (Fig. 8). During the four periods of 1987–1993, 1993–1999, 1999–2005 and 
2005–2011, the ESV of forest areas showed a decreasing trend. The largest percentage was 21.05% between 1987 
and 1993, while from 2011 to 2017 the ESV of forest showed an increasing trend. The ESV of grassland showed 
the tend of “increase–decrease–increase–decrease–decrease”. The ESV of cultivated land continued to show a 
decreasing trend, while water body areas showed the trend of “increase–decrease–increase–decrease–increase”. 
The ESV of bare land fluctuated and increased significantly from 1993 to 1999. For the main urban area of 

Figure 6.   Change of each land cover type in different periods. FS, GL, CL, BU, WB and BL refer to forests, 
grassland, cultivated land, water bodies, built-up area and bare land, respectively.
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Guangzhou, although water body areas were small, they contributed a lot to the ecosystem service function, the 
key factor in improving the regional ecological environment and the ecosystem service function.

Spatial change in ESV based on grids.  By analysing the spatial change in ESV based on grids (Fig. 9), it can be 
seen that from 1987 to 2017 ESV changed to varying degrees. Between 1987 and 2017, the areas with higher 
ESVs decreased gradually, the areas with lower ESVs increased gradually and the areas with medium ESVs 

Figure 7.   Spatial change of land cover types in the study area between 1987 and 2017. (a) forest, (b) grassland, 
(c) cultivated land, (d) built-up area (e), water body and (f) bare land. (Software: Arc Map 10.5.0, http://www.
esri.com).

Figure 8.   Changes in the total ESV for different land cover types in different periods.

http://www.esri.com
http://www.esri.com
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decreased gradually. The areas with higher ESVs were mainly distributed in the hilly area of the Baiyun district 
(mainly forest), the areas with lower ESVs were mainly distributed in the flat area of the main urban area and 
the areas with medium ESVs, including cultivated land, bare land and other ecosystem types (Fig. 9a,b). Based 
on Fig. 8c, from 1987 to 2017 the areas with decreased ESVs mainly consisted of areas with forest and grassland 
degradation. The total reduction areas of ESV were 787.25  km2, accounting for 74.46% from 1987 to 2017. 
Areas with increased ESV were concentrated and mainly distributed in the areas where bare land was converted 
into cultivated land or grassland, with an increase in area of 102.25 km2, accounting for 9.67%. The areas with 
unchanged ESVs were mainly found in the built-up areas of the Yuexiu, Haizhu and Liwan districts, with a total 
area of 167.75 km2, accounting for 15.87%.

Changes in the value of ecosystem service functions.  We quantified the contribution of the ESV of each ecosystem 
function (Table 5). Based on the total amount of ESV from 1987 to 2017, the most important components were 
food production, climate regulation and water regulation. From 1987 to 2017, all ecosystem service functions 
(except water regulation) showed a downward trend. During the study period, the ESV of water supply declined 
faster than that of any other ecosystem service (− 179.33%); this was followed by food production (− 5.10%), 
nutrient cycling (− 1.86%), gas regulation (− 1.66%), raw materials (− 1.47%), climate regulation (− 4.30%) and 
soil conservation (− 1.33%). The ESVf of aesthetic landscape had the lowest rate of change (− 0.59%). Of the 
reduced values, the reduction in water supply was the largest, followed by food production. In recent years, due 
to the large reduction in cultivated land area most cultivated land in the main urban area of Guangzhou con-
sisted of paddy fields, resulting in a decline in the water supply value and food production value.

From the perspective of ecosystem service functions, water supply, food production, nutrient cycling and 
gas regulation rank at the top. These four major ecological functions affected the total ESV the most in the main 
urban area of Guangzhou. The contribution rate of raw materials, food production and aesthetic landscape were 
quite low at only 13.06%. For this reason, this study considered the production function of the study area more 
important than the service function. It showed that the supply function (food production, raw materials and 
water supply) was the main driving force of ESV changes in the main urban area of Guangzhou.

Figure 9.   Changes in ESV based on a 0.5 km × 0.5 km grid between 1987 and 2017. (Software: Arc Map 10.5.0, 
http://www.esri.com).

Table 5.   Estimated values for different ecosystem functions (ESVf) between 1987 and 2017.

Service project 1987 1993 1999 2005 2011 2017 Rate of interannual change Level Trend

Food production 52.737 1.942 1.806 1.291 1.067 0.974 − 5.10% 2 ↓

Raw material 1.186 1.011 0.900 0.838 0.723 0.728 − 1.47% 5 ↓

Water supply − 1.044 − 0.858 − 1.342 0.098 − 0.014 0.722 − 179.33% 1 ↓

Gas regulation 4.694 4.099 3.697 3.228 2.763 2.713 − 1.66% 4 ↓

Climate regulation 10.817 9.093 8.077 7.691 6.668 6.737 − 1.42% 6 ↓

Purifying environment 3.970 3.579 2.935 3.139 2.604 2.955 − 0.79% 9 ↓

Water regulation 22.556 23.163 16.580 20.714 16.003 21.414 0.33% 11 ↑

Soil conservation 4.400 3.725 3.270 3.194 2.758 2.822 − 1.33% 7 ↓

Nutrient cycling 0.528 0.470 0.430 0.351 0.299 0.285 − 1.86% 3 ↓

Biodiversity 4.850 4.352 3.582 3.801 3.167 3.558 − 0.85% 8 ↓

Aesthetic landscape 2.330 2.145 1.710 1.898 1.557 1.822 − 0.59% 10 ↓

http://www.esri.com
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Spatial change patterns in the value of ecosystem service functions.  The rate of change in the value of ecosystem 
service functions (ESVf) was different in different areas (Fig. 10). The ESVf of food production, gas regulation, 
climate regulation, nutrient cycling and aesthetic landscape declined significantly in the northwest part of the 
Baiyun district. On the contrary, the ESVf of water supply increased considerably in the study area. The ESVf for 
climate regulation increased significantly in the northeast part of the Baiyun district, while the ESVf for purify-
ing the environment decreased significantly. In the north part of the Tianhe district, the ESVf of gas regulation, 
purifying the environment, soil conservation, nutrient cycle maintenance, biodiversity and aesthetic landscape 
was significantly reduced.

Sensitivity analysis of ESV to value coefficient.  As can be seen in Table 6, from 1987 to 2017 the sensitivity coef-
ficient of the value coefficient of each land use type ranged from 0 to 0.6, all being less than 1. The sensitivity 

Figure 10.   Value change for ecosystem service functions of (a) food production, (b) raw materials, (c) water 
supply, (d) gas regulation, (e) climate regulation, (f) purifying the environment, (g) water regulation, (h) soil 
conservation, (i) nutrient cycling, (j) biodiversity and (k) aesthetic landscape. (Software: Arc Map 10.5.0, http://
www.esri.com).

Table 6.   Sensitivity index of ESV coefficients.

Change of value 
coefficients

1987 1993 1999 2005 2011 2017

% CS % CS % CS % CS % CS % CS

Forest 50%  ± 11.79  ± 0.5929  ± 11.36  ± 0.5002  ± 11.73  ± 0.5813  ± 11.28  ± 0.4820  ± 11.48  ± 0.5246  ± 11.13  ± 0.4482

Grassland  ± 50%  ± 9.13  ± 0.0093  ± 9.20  ± 0.0242  ± 9.18  ± 0.0207  ± 9.23  ± 0.0298  ± 9.23  ± 0.0312  ± 9.12  ± 0.0066

Cultivated land ± 50%  ± 9.45  ± 0.0794  ± 9.46  ± 0.0815 ± 9.55  ± 0.1003  ± 9.34  ± 0.054  ± 9.34  ± 0.054  ± 9.26  ± 0.0368

Water body ± 50%  ± 10.54  ± 0.3182  ± 10.8  ± 0.394  ± 10.4  ± 0.2970  ± 11.6  ± 0.4336  ± 10.86  ± 0.3890  ± 11.40  ± 0.5083

Bare land ± 50%  ± 9.09  ± 0.0003  ± 9.09  ± 0.0002  ± 9.09  ± 0.0007  ± 9.09  ± 0.0004  ± 9.09  ± 0.0003  ± 9.09  ± 0.0003

http://www.esri.com
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coefficient of forest areas was the highest at 0.59. That is, when the ESV of forest areas increased or decreased 
by 1%, the total ESV increased or decreased by 59%. Setting the value coefficient of built-up land and bare land 
did not affect ESV, and the sensitivity coefficient was 0. Accordingly, the sensitivity coefficient of grassland, cul-
tivated land and water body areas increased from 0.02 to 0.51. The analysis showed that forest, water body areas 
and cultivated land played a vital role in ecosystem services. Regarding the accuracy of ESV from 1987 to 2017, 
the value coefficient was significant, indicating that the ESV index used in the study area was good, the ESV 
aggregate index was inelastic and the study results were reliable.

Driving force analysis of ecosystem service value.  The ESV change was not only the result of land use transfer but 
also of other natural and socio-economic factors33,34. Therefore, it is necessary to analyse the influence of natural 
and socio-economic factors on the spatial differentiation of ESV change in the main urban area of Guangzhou.

Taking the ESV variable as the geo-detector dependent variable and ten natural and socio-economic indica-
tors as independent variables, the single-factor contribution and factor interaction were quantitatively analysed 
using a geo-detector tool to explore the dominant factors of the spatial differentiation of ESV change in LULC 
types (Tables 7 and 8). The results of the single-factor driving force analysis showed that the ESV change for 
forest, water body and bare land areas was mainly restricted by natural and socio-economic factors (Table 7)35. 
The significance test of each factor of grassland and cultivated land is greater than 0.05, and these factors had 
no significant effect on the change in ESV. Single-factor analysis can reveal the dominant factors of the spatial 
differentiation of the ESV for LULC types in the main urban area of Guangzhou, but the spatial differentiation 
of the ESV was influenced by the interaction of multiple factors.

Table 7.   Geographic detection results of ESV for each land use type.

ESV types Driving forces q p ESV types Driving forces q p

Forest

NDVI 0.2147 0.0000

Cultivated land

NDVI 0.0038 0.0937

Population 0.0547 0.0000 Population 0.0022 0.0625

Elevation 0.6923 0.0000 Elevation 0.0004 0.9888

Slope 0.3862 0.0000 Slope 0.0020 0.5138

Distance from road 0.0473 0.0000 Distance from road 0.0018 0.5008

Distance from 
railway 0.4258 0.0000 Distance from 

railway 0.0007 0.9270

Land cover type 0.6167 0.0000 Land cover type 0.0036 0.0499

GDP 0.0547 0.0000 GDP 0.0002 0.6250

Secondary industry 
GDP 0.0519 0.0000 Secondary industry 

GDP 0.0005 0.5921

Investment in fixed 
assets 0.0520 0.0000 Investment in fixed 

assets 0.0001 0.5921

Grassland

NDVI 0.0012 0.8421

Water body

NDVI 0.0306 0.0000

Population 0.0076 0.0000 Population 0.1045 0.0000

Elevation 0.0011 0.8221 Elevation 0.1393 0.0000

Slope 0.0036 0.1647 Slope 0.1497 0.0000

Distance from road 0.0006 0.9654 Distance from road 0.0126 0.0000

Distance from 
railway 0.0053 0.0077 Distance from 

railway 0.0671 0.0000

Land cover type 0.0020 0.3252 Land cover type 0.1211 0.0000

GDP 0.0077 0.0000 GDP 0.1045 0.0000

Secondary industry 
GDP 0.0015 0.1143 Secondary industry 

GDP 0.0462 0.0000

Investment in fixed 
assets 0.0015 0.1143 Investment in fixed 

assets 0.0462 0.0000

Bare land

NDVI 0.3905 0.0000

Population 0.0356 0.0000

Elevation 0.0333 0.0000

Slope 0.0270 0.0000

Distance from road 0.0108 0.0000

Distance from 
railway 0.0053 0.0071

Land cover type 0.3398 0.0000

GDP 0.0356 0.0000

Secondary industry 
GDP 0.0356 0.0000

Investment in fixed 
assets 0.0356 0.0000
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A geo-detector (“interaction detector”) was used to analyse the interaction of driving factors in the spatial 
distribution of ESV (Table 8)34. The results of interactive detection showed that the interaction of any two fac-
tors was greater than any single factor, indicating that the ESV change in the main urban area of Guangzhou 
was the result of the comprehensive action of multiple factors. The interaction between elevation and land use 
types made the greatest contribution to the change in forest ESV, and the interaction of distance from railway 
and slope had the greatest influence on the change in grassland ESV. The interaction between distance from road 
and population was the biggest reason for the change in cultivated land ESV, and the interaction between GDP 
and elevation was the most important factor in the change in water body ESV.

Discussion
The ESV in response to LULC dynamics.  Previous studies have shown that LUCC affects the main eco-
logical processes of the ecosystem, such as energy exchange; the water cycle; soil erosion and accumulation; and 
the biogeochemical cycle, thus influencing ecosystem services36–40. Based on previous studies and this study, in 
the Zhujiang Delta we can see that the reduction in cultivated land and the expansion of built-up areas were the 
main characteristics of LULC changes23,33, rapid industrialization, urbanization and population growth were a 
major driver of LULC changes in the Guangzhou24,37. As one of the regions furthest advanced in implementing 
the Reform and Open Policy in China, the main urban area of Guangzhou experienced large-scale economic 
development, population growth and urban sprawl. In this study, based on the value equivalent factor per unit 
area improved by Xie2, we calculated the ESV of each land cover type from 1987 to 2017 and found that the total 
ESV decreased by 20.61% (1.162 billion yuan). These changes were primarily due to the reduction in ecosystem 
services caused by the reduction in forest area and cultivated land (Figs. 7 and 8)41. Although the water body 
areas were very small, they made a notable contribution to the ecosystem service function that was the key fac-
tor in improving the regional ecological environment and the ecosystem service function (Fig. 8)40. During the 
study period, most of the cultivated land and part of the forest areas were converted into built-up areas, resulting 
in a 63.23% decrease in the cultivated land ESV and a 39.99% decrease in forest area ESV (Fig. 7). This showed 
that the loss of forest area and cultivated land led directly to the decline in the ESVs in the main urban area of 
Guangzhou. This is consistent with the results of Ayanlade42, who found that the degradation of forests contrib-
uted the most to the reduction in ESV.

Our research revealed that the decline in ESV was mainly related to the huge decrease in forest area and cul-
tivated land. Forests are considered to be the foremost providers of ecosystem services43. Studies in other regions 
of the world that reported a decrease in forest areas and that had an ESV assessment procedure similar to ours 
have reported a decrease in total ESV6,14. For example, Hu et al.44 pointed out that the decrease in forest area in 
southwest China led to a sharp decrease in ESV. Leh et al.45 also reported a decrease in ESVs between 2000 and 
2009 as a result of altered forest ecosystems in West Africa. All these studies further confirm the finding of this 
study, which is that changes in LULC types have led to a significant loss of ESV.

The conversion of cultivated land to built-up areas has largely led to a reduction in food production and raw 
materials15 and a reduction in soil formation, biological control and water supply services. Among the 11 specific 
ecosystem services considered in this study, 90% of the services decreased with the decrease in revenue, and 
most of these services were supplied by natural ecosystems. This is in keeping with the findings of many studies 
around the world showing that urban expansion has negatively impacted the provision of other key ecosystem 
services, such as nutrient cycling; climate and water regulation6; food production and biological control46 and 
erosion control and water treatment14. In addition, urban expansion can also lead to environmental hazards46.

Table 8.   Influence of interaction of spatial driving forces on ESV for each land use type.

ESV types qmax(C = A + B) Relationship Interaction

Forest Elevation ∩ Land cover type = 0.7935 C < A + B Two-factor enhancement

Grassland Distance from railway ∩ Slope = 0.0489 C > A + B Nonlinear enhancement

Cultivated land Distance from road ∩ Population = 0.0333 C > A + B Nonlinear enhancement

Water body GDP ∩ Elevation = 0.3222 C > A + B Nonlinear enhancement

Bare land Land cover type ∩ NDVI = 0.4959 C < A + B Two-factor enhancement

Table 9.   The impact of LUCC on the ecosystem service value (1987–2017).

Types Forest Grassland Cultivated land Water body Bare land

Provisioning service 0.8675 − 0.4437 0.4875 − 0.0016 − 0.0785

Regulating service 0.8365 − 0.1692 0.6233 0.4992 − 0.3084

Supporting service 0.9759 − 0.1343 0.8102 0.1527 − 0.0925

Cultural service 0.8741 − 0.1790 0.6359 0.4469 − 0.2897

Total value 0.9216 − 0.3978 0.5636 0.1121 − 0.1328



16

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3027  | https://doi.org/10.1038/s41598-021-82497-6

www.nature.com/scientificreports/

In order to more clearly explore the impact of LUCC on ESV value, this study applied correlation analysis to 
quantify the relationship between LUCC and ESVf. Land ecosystem services were classified into four types—pro-
visioning services, regulating services, cultural services and supporting services (Table 9). The results revealed 
that there was a significant positive correlation between forest and cultivated land and ESV, while there was a 
positive correlation between water body areas and ESV (except supply services). Grassland and bare land were 
negatively correlated with ESV, mainly due to the small area of grassland and bare land in the main urban area 
of Guangzhou. Therefore, the changes in forest, cultivated land and water body areas had the greatest influence 
on the ESV. The classical sensitivity analysis also showed that LULC types such as forest, water body and cul-
tivated land, played an important part in ecosystem services (Table 6). For the study of various land use types, 
the estimated ESV was inelastic relative to the value coefficient. Despite the fact that the value coefficient was 
uncertain, our estimation was relatively robust. Therefore, our assessment was applicable for calculating the 
value of long-term ecosystem services.

Limitations of the study.  In this study, the co-evolution of LULC and ESV was quantified, and the impact 
of land use evolution on the change in ESV was analysed in detail in the main urban area of Guangzhou. The 
conclusion was helpful to provide a scientific basis for the efficient allocation of land resources; rational regional 
planning and sustainable development; the scientific management of ecosystems; and the scientific formulation 
of ecological compensation policies in Guangzhou. However, there are several limitations of the methodology of 
benefit transfers which we have adopted here. For example, a major error is that by generalizing the unit values 
derived from 2011 year for a specific good as average unit values in all different years, the approach assumes 
homogeneity of ecosystems services value within the entire biome/LULC types in different years13,14,45,47. Due to 
the limitations of remote sensing images, LULC was not classified in enough detail. For example, in the data set, 
there was no difference between dry land and paddy land. Therefore, we used cultivated land as a representative 
and estimated the ESV of cultivated land rather than using separate calculations based on dry land and paddy 
land14,48. In addition, the ESV in built-up areas was not considered in this study because there was no suitable 
equivalent factor. In this paper, the coefficient of evaluating ESV was based on the equivalent value of the Chi-
nese terrestrial ecosystem service proposed by Xie2, and combined with the characteristics of the research area, 
it was adjusted. However, the accuracy of estimating ESV in the research area still needs to be strengthened in 
the future.

Conclusion
This study serves as a much-needed first assessment of the impact of LULC dynamics on ESV in the main urban 
area of Guangzhou. Our results showed that LULC significantly changed; there was significant expansion of 
built-up areas and a decrease in forest and cultivated land areas between 1987 and 2017. The proportion of for-
est and cultivated land decreased from 43.12% and 34.23% to 25.88% and 12.59%, respectively. Hotspots with 
shrinking forest and cultivated land were seriously threatened by the expansion of built-up areas. All LULC 
types were frequently converted in the study area. The total ESV decreased by 1.16 billion yuan (20.61%) from 
1987 to 2017, the total loss of ESV was mainly brought about by forest and cultivated land. Water body contrib-
uted a lot to the ecosystem service function, the key factor in improving the regional ecological environment 
and the ecosystem service function. The effects of LULC changes on the specific ecosystem services are equally 
significant. Water supply, food production, nutrient cycle maintenance and gas regulation were the four major 
ecological functions that affected the total ESV in the main urban area of Guangzhou. Forest, water body and 
cultivated land types played a crucial role in ecosystem services. The ESV change was also restricted by natural 
factors and socio-economic factors, the interaction between elevation and land use types made the greatest 
contribution to the change in forest ESV, and the interaction between distance from road and population was 
the biggest reason for the change in cultivated land ESV, and the interaction between GDP and elevation was 
the most important factor in the change in water body ESV. During the study period, the serious decrease in 
natural vegetation coupled with the decrease in cultivated land highlighted the serious decrease in land use in the 
main urban area of Guangzhou, the important ecological categories of land use change and the corresponding 
increase in production-oriented land use. All this signifies that human encroachment on the natural ecosystem 
increased. Therefore, great attention should be paid to the protection of forest, cultivated land and water body. 
Moreover, proper land development and the maximum use of existing land resources can slow down the great 
changes in land and maintain the local ecological structure. At the same time, we should make full use of water 
resources, prevent soil erosion, stabilize food production, maintain a healthy nutrition cycle, reduce polluting 
gas emissions, ensure normal gas supply, and issue relevant regulations to slow down artificial intervention in 
the natural ecological environment, so as to alleviate the reduction of local ESV and promote the green devel-
opment of Guangzhou. Last but not least, the government should facilitate payment for ecosystem services as a 
conservation strategy. The study can also help identify where and what LUCC are required to meet ecosystem 
services sustainability targets and minimize future risk to ESV.
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