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Unique scales preserve self‑similar 
integrate‑and‑fire functionality 
of neuronal clusters
Anar Amgalan1,2,7, Patrick Taylor3,7, Lilianne R. Mujica‑Parodi1,2,4* & 
Hava T. Siegelmann3,5,6*

Brains demonstrate varying spatial scales of nested hierarchical clustering. Identifying the 
brain’s neuronal cluster size to be presented as nodes in a network computation is critical to both 
neuroscience and artificial intelligence, as these define the cognitive blocks capable of building 
intelligent computation. Experiments support various forms and sizes of neural clustering, from 
handfuls of dendrites to thousands of neurons, and hint at their behavior. Here, we use computational 
simulations with a brain‑derived fMRI network to show that not only do brain networks remain 
structurally self‑similar across scales but also neuron‑like signal integration functionality (“integrate 
and fire”) is preserved at particular clustering scales. As such, we propose a coarse‑graining of 
neuronal networks to ensemble‑nodes, with multiple spikes making up its ensemble‑spike and 
time re‑scaling factor defining its ensemble‑time step. This fractal‑like spatiotemporal property, 
observed in both structure and function, permits strategic choice in bridging across experimental 
scales for computational modeling while also suggesting regulatory constraints on developmental 
and evolutionary “growth spurts” in brain size, as per punctuated equilibrium theories in evolutionary 
biology.

Neuronal clustering is observed far more frequently than by  chance1. The most common types of neuronal clus-
tering believed to play a role in neuronal activity, development, and  modularity2,3 are dendritic bundles (neurons 
clustered together at their apical ends, with axons terminating at the same  target4), minicolumns (radially clus-
tered cell bodies, often around 80–100 neurons), columns (radially grouped minicolumns, often around 60–80 
 minicolumns5,6), cluster-columns (single minicolumn surrounded by one circular layer of columns, often seven 
or eight columns  total7, also defined by their functional role: e.g. color processing), as well as small lego blocks 
(of one order of magnitude only)1,8–10. Similarly, temporal clustering of spikes is observed more frequently than 
predicted by spiking rates  alone11–13. Yet the brain’s “least functional unit” above the neuron, or monad is still 
undefined. The potential utility of defining a monad is that the “least functional unit” may actually be a “suf-
ficient functional unit.” In practical terms, identifying neural monads tells us which modules are cognitive or 
constitute computational functions worth modeling. This is of direct relevance for choosing the most strategic 
scales to measure and model in computational neuroscience, as well as for building intelligent  computation14.

The diverse experimental modalities utilized in brain sciences probe scales that can overlap little and obtain 
information through different physiological aspects of brain. Microscopic techniques resolve individual neurons, 
but lack coverage; fMRI captures an image of the entire cortex, but at a resolution of million or so neurons per 
voxel; EEG and NIRS are limited by depth and coarse spatial resolution, electrode readings can reach spatial 
extent of  > 1 mm of tissue, but miss on the biophysical details of individual neurons. Here, through our com-
putational coarse-graining of spiking network activity data, we provide justification for a procedure of joining 
distinct scales, and therefore information from some of the distinct imaging modalities available for a fuller 
picture of brain’s workings. We establish an instance of scale-invariance of spiking network’s functionality at the 
transition from a single neuron to an ensemble of handful of neurons and suggest that a similar procedure can 
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detect a pair of experimental scales and techniques (e.g. calcium imaging combined with multi-electrode array 
recording) that are amenable to simultaneous modeling by virtue of sharing functional organizing principle. 
Such an estimate of paired similarly-behaving scales would guide the choice of imaging modalities to inform 
multi-scale modeling efforts aimed at maximal coverage of brain’s dynamical repertoire.

Some understanding of the dynamical repertoire of brain’s larger than neuron structures, and particularly 
their repetitive and self-similar nature has been obtained: synfire  chain11,12 describes the sequentially wired 
sub-assemblies propagating synchronous activities; avalanche models describe the power-law statistics of 
sizes of events in multielectrode  recordings15; power-law noise statistics in brain signals have been robustly 
 characterized16–18. Also reliably documented is the scale-free structural properties of brain  network19. Yet the 
rules unifying structures and processes in brain at distinct scales are not fully described. Existing computational 
methods for re-scaling the neuronal network focus on enforcing known first and second order statistics of a fine-
scale simulation to its coarse-grained  version20,21. These approaches provide insight into statistical conditions 
that need to be satisfied for improved simulation runtime complexity.

The most basic functionality of brain is that of spiking neurons. Neurons, however variable, act as non-linear 
summing integrators, with a decay in potential and a threshold for firing; they spike when excited frequently and 
strongly enough. Here, we propose a scale-invariant dynamic, where a pair of similar views of the same object 
are separated by a specific re-scaling factor that transforms one into another. A simple analogy is provided by 
Sierpinski  triangle22, where a finer stage is obtained from the previous coarser stage by halving the spatial dimen-
sion of each triangle and tripling the number of triangles, thereby characterizing each stage of re-scaling of the 
fractal object by two integers: (2, 3). Here, we propose a functional scale-invariance or “fractality,” such that a 
redefinition of the spiking network’s basic primitives: node, edge, and spike as a particular multiple of themselves 
allows one to observe the neuron-like signal-integration functionality re-emerge in the coarser structure, albeit 
only at unique re-scaling. The consequence of this proposition is that multi-scale models can coarse-grain for 
computational expediency while strategically choosing a unique set of scales specifically determined to per-
mit translation. Thus, we expand on previous studies, which have demonstrated the feasibility of hierarchical 
 clustering23 and networks’ scale-free  features24–26 with regard to brain structure to introduce self-similarity of 
dynamics of clusters of neurons, replicating integrate-and-fire-like functionality across scales.

To computationally test whether dynamics of signal transmission are preserved in a manner akin to “func-
tional harmonics” of the original scale, we construct a spiking network that follows actual brain connectivity. 
The starting point of our study is an all-to-all resting-state human fMRI-derived functional connectivity matrix, 
extracted from 91,282 voxels, and providing full coverage of the human  cortex27,28. The fMRI data describe the 
temporal correlation of each of these voxels with every other voxel, allowing an inference about the degree to 
which they are functionally connected. Such inferences have been externally validated by comparison to struc-
tural and DTI  data29. Each voxel of this matrix is (2 mm)3, and thus measures a compensatory hemodynamic 
(blood oxygen level dependent, or BOLD) response across ~ 1000 cortical minicolumns, or about ~ 1 M neurons. 
Each voxel is represented as a node in our initial network, and in our computational experiment it follows the 
functionality of a leaky integrate-and-fire neuron. We start our computational experiment from an already 
non-neuronal scale of data acquisition, as we suggest that the observations made on fMRI scale may be close to 
one of the stages of the potential network re-scalings, along which the signal integration property is preserved.

The initial fine-grain network is reduced into clusters using a streaming hierarchical clustering  algorithm30. 
We chose a streaming clustering algorithm for its computational expediency and reduced memory requirement. 
In deciding which nodes combine to form a cluster, we chose full-linkage clustering, requiring that only sets of 
nodes that have all-to-all connection weights higher than the cut-off c become a cluster of nodes (an ensemble-
node). All pairs of neurons i, j belonging to the same cluster satisfy: wij ≥ c , where wij is the connection weight 
between nodes i and j . By adjusting cut-off c one can flexibly control the average number of neurons in an ensem-
ble-node. This clustering procedure allows re-scaling to a continuous spectrum of size of networks (Fig. 1A–C).

The set of edges running between two neighboring ensemble-nodes aggregate to give the ensemble-edge 
connecting these ensemble-nodes. The weight of the ensemble-edge is given by the mean weight of the edges 
defining it: wcoarse

kl = mean(wij) where i runs over all neurons in cluster k and j runs over all neurons in cluster 
l  . For each ensemble-node we now define the node strength as the sum of weights of edges connecting to it: 
scoarsek =

∑
l w

coarse
kl  , where superscript "coarse" indicates that the quantity pertains to the coarse-grained network.

We next redefine the activity of the coarse-grained network by temporally clustering firings of an ensemble-
node into an ensemble-spike. An ensemble-node consisting of NN nodes produces an ensemble-spike if its nodes 
produce a combined burst of above-threshold ( NS ) number of spikes in the time-step, and no ensemble-spike 
occurs otherwise. This characterizes the number of ensemble-spikes required to arrive in rapid succession into 
an ensemble-node prior to activation of its own ensemble-spike. Intuitively, only areas dense enough in spikes in 
fine level spike raster (Fig. 1D) become ensemble-spikes in the coarse network’s ensemble-spike raster (Fig. 1E) 
in the corresponding ensemble-node and time step. A spiking neuron’s refractory period also re-emerges in the 
coarse-grain network, and concomitantly guides our choice of ensemble-step: the time step re-scaling param-
eter. Further details are provided in the Methods section. The terms “cluster” and “ensemble-node” will be used 
interchangeably as well as the terms “burst and “ensemble-spike.”

Results
Coarse‑grained structure is self‑similar. Coarse-graining at various cutoffs produces networks with 
a range of ensemble-node sizes and number of ensemble-nodes (Fig. 2A). Importantly, cutoff has little impact 
on the tail of ensemble-nodes’ size distribution, which is invariant with respect to mean count and power-
law behavior, suggesting self-similarity in agreement with a body of previous  work19,31,32 (Fig. 2B). The original 
functional brain network exhibits a self-similar property when it comes to its new coarsened structure: the 
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Figure 1.  Re-scaling procedure for neuronal clusters and spike clusters demonstrates how proximate regions 
cluster together, reproducing organ-scale brain morphology. (A) We depict a fine-grain network of neurons 
(left) and its coarser, re-scaled version (right). Each ensemble-node, at a coarser level, is a collection of nodes 
from finer resolution level, clustered based on their connection weights (thin lines, left panel) with all edges 
between a pair of clusters averaged (thick lines, right panel). (B) Axial view of coarse-grained brain, after the 
procedure, at a cutoff of 0.98, re-scaling the original network of 91,282 nodes down to 7784 clusters. Each 
ensemble-node is located at the mean of coordinates of nodes comprising it. (C) Similarly, a coronal view. (D) 
The spike-train of fine-grain network is re-scaled into (E) ensemble-spike-train of coarser network.
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connectivity network preserves the geometry of its node strength distribution after the coarse-graining pro-
cedure (Fig. 2C). We also provide a comparison to the coarse-graining of a randomly re-wired network (while 
preserving the strengths/degrees of nodes), and note a major difference: the distribution of cluster sizes as the 
randomly re-wired version of the original network is coarsened quickly loses the heavy tail of the power-law 
distribution within half an order of magnitude (Fig. 2E). See Methods, Re-wired Controls section for details of 
the randomization. The strength distribution of the network, on the other hand preserves its shape (Fig. 2F) in 
agreement with the original network’s behavior under coarse-graining. The dependencies of the mean cluster 
size and the number of clusters as a function of the cut-off threshold (Fig. 2D) are included for validation and 
comparison with Fig. 2A.

Figure 2.  The brain network naturally clusters into a spectrum of system sizes while preserving its degree 
distribution shape. (A) Cutoffs are imposed on intra-cluster connection weights. (B) The network of 91,282 
nodes is coarse-grained to obtain number of clusters ranging from ~ 1300 to ~ 23,000, yet it retains a non-
trivial most frequent cluster size and a power-law drop off in distribution of cluster sizes. (C) Node strength 
distribution of the network stays largely invariant when it is clustered to well-connected clusters (inset) and 
inter-cluster edge weights are averaged. We define node strength as sum of all edges of a node and treat as 
weighted network’s version of “degree” in unweighted network. (D) The same as (A), but for a network that 
was randomized while preserving the strength (degree)-sequence of the nodes. (E) The same as (B), but with 
a similarly randomized network: tail of the cluster size distribution is sensitive to the size of system, suggesting 
departure from scale-invariance. (F) The same as (C), but for a randomized network: the cluster strength 
distribution is invariant under re-scaling.
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Coarse‑grained dynamics is self‑similar. Re-scaling our network to a spectrum of average ensemble-
node sizes ( NN ) reveals signature of an integrate-and-fire property to a varying degree depending on the re-scaling 
factors ( NN and NS ) (Fig. 3A, solid lines), but with three key features. First, leading up to an outgoing ensemble-
spike, the cross-correlogram of ensemble-spiking activity weighted by the ensemble-edge weights (see Methods 
for full description) displays integration of a faster-than-exponentially rising amount of inputs from neighbors. 
Second, the incoming inputs peak at the time-step immediately preceding ensemble-spike output. Finally, incom-
ing activity from a given ensemble-node’s neighbors abruptly drops at the time of an outgoing ensemble-spike.

Self‑similar dynamics is preserved only at specific scaling factors displaying “functional har‑
monics” of the original scale. This scale invariant dynamics results from the brain’s organizational struc-
ture. Comparing the sharp increase in signal integration preceding the ensemble-spike observed in the clustered 

Figure 3.  Ensemble-edge-weighted cross-correlogram P(τ ) of cluster-spiking behavior identifies discrete 
scaling factors, at which integrate-and-fire behavior re-emerges in actual brains. (A) The intuition for integration 
coefficient (IC)—the degree, to which cross-correlogram of well-clustered brain’s ensemble-spiking activity P(τ ) 
exceeds that of randomly clustered brain Prandom(τ ) is indicated (shaded area) and acts to quantify the neuron-
like behavior of ensemble-nodes (neuronal clusters). See Methods for definition of IC and cross-correlograms. 
Shown for ensemble-spikes defined as  Ns = 2 spikes (top sub-panel) and  Ns = 4 spikes (bottom sub-panel). (B) 
(Left) Heatmap of the Integration coefficient (IC) determines the ensemble-neuron size NN and ensemble-
spike size NS used in re-scaling that best reproduces neuron-like behavior when clustered starting from a brain 
network. (Right) As a control, we show that the same signal integration behavior is lost when brain network 
is coarse-grained after a random shuffling (see “Methods” for procedure) that preserves strengths of all nodes 
(strength—sum of node’s edge weights). This rules out the node strength sequence of brain network as the driver 
of its neuron-like behavior at the coarse scale. (C) The temporal re-scaling factor Nt is obtained by calculating 
the auto-correlogram Pauto(τ ) (see Methods for definition) and maximizing the ratio Pauto(−2)/Pauto(−1) 
to reveal refractory period in coarse-grained network. (D) Local clustering coefficient among nodes within 
an ensemble-node corresponds with its integrate-and-fire behavior. Positive dependence indicates that highly 
interconnected set of nodes can join into an ensemble-node with more neuron-like integration of input.
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network to that of a control network that was coarse grained to an identical average size of ensemble-nodes 
but through random clustering (ignoring the edge weights), we see a control behavior that is only exponential 
(Fig.  3A, dashed lines), indicating its weak input integration. Shaded areas in panels of Fig. 3A indicate the 
extent of the coarse network’s input integration beyond that of an equivalently sized randomly clustered net-
work. The top panel (ensemble-spike requiring ≥ 2 spikes) shows little difference from the random case, while 
the bottom panel (ensemble-spike requiring ≥ 4 spikes) shows that inputs of ≥ 4 spikes are integrated much more 
rapidly leading up to an ensemble-spike (solid line) than in a randomly clustered network (dashed line). From 
the starting network of 7784 nodes, by searching the space of re-scaling factors and maximizing the integration 
coefficient (see “Methods” section for details), we find ensemble-node size of ~ 10 nodes and ensemble-spike 
size of ~ 5 spikes to maximally recover integration of inputs leading up to ensemble-spikes (Fig. 3B left). Inte-
gration coefficient measures the degree to which the cross-correlogram of the coarse network exceeds what is 
randomly expected. We take the integral of the ratio P(τ )/Prandom(τ ) weighted by the inverse of absolute value 
of time delay τ integrated over the range of delays where the ratio exceeds 1. Here P(τ ) and Prandom(τ ) are the 
burst cross-correlogram of the coarse-grained network for well clustered (full-linkage clustered) and randomly 
clustered cases, respectively. In searching for the scale, to which the network coarse-grains to while preserving 
the most integrate-and-fire behavior, we sought to establish the triplet of re-scaling factors that maximize our 
measure of similarity to the integrate-and-fire functionality: (number of nodes in a cluster, number of spikes in 
a burst and the time rescaling factor). We establish the time-axis re-scaling factor, or ensemble-step, of ~ 4 by 
maximizing the refractoriness present in auto-correlogram (Fig. 3C). The refractoriness is defined as the ratio 
Pauto(−2)/Pauto(−1) of the auto-correlogram of the coarse-grained network at two time-steps prior to the burst, 
to that at one time-step prior to the burst. Thus, the network coarse-graining procedure returns a triplet of values 
extracted by maximizing the integration coefficient and the refractoriness, consisting of (i) ensemble-node = 10 
nodes ( NN = 10 ), (ii) ensemble-spike = 5 spikes ( NS = 5 ), and (iii) ensemble-step = 4 time steps ( NT = 4 ) that 
recovers properties of spiking nodes in a network of ensemble-nodes. Searching for the culprit of the integrate-
and-fire behavior in the coarse-grained network, we extracted for each cluster after re-scaling i) the clustering 
coefficient of the fine-grain neuron-level network and ii) the integration coefficient from the neurons in the clus-
ter. We observe that the within-cluster clustering coefficient is positively correlated with the signal integration 
behavior of the clusters (Fig. 3D). Thus, ensemble-nodes with greater local clustering coefficient display greater 
signal-integration behavior, and the dependence does not deviate from a linear trend.

Discussion
We started the research looking for the cluster size that acts as a minimal cognitive building block, and our 
fMRI-driven interrogation of simulated spiking network data suggests that brain organization has a dense multi-
scale property in structure and functionality. Neurons naturally cluster across many scales, and such clusters 
create new networks with fewer functional units, but similar algorithmic features. This suggests a more complex 
answer. Our coarse-graining procedure attempts to capture only one such transition between a pair of scales 
by detecting similarity of dynamics, but suggests that the brain potentially preserves its dynamics across scales 
at many distinct levels, recycling already existing functional building blocks. It is therefore feasible that brain’s 
least functional unit larger than a single neuron might be a cluster of neurons (an “ensemble-neuron” in our 
terminology) displaying a neuron-like integrate-and-fire behavior.

Testing whether neuronal clusters act as integrating neurons and, if so, at what re-scaling factor, can be 
established by a targeted experiment of large-scale calcium imaging and other optical recording modalities. 
Such an experiment would, having simultaneously recorded from large number of neurons, apply the machin-
ery we describe, identifying a pairs of coarse and fine scales that display the most self-similar behavior. Such a 
constraint on the similarly behaving pair of scales would drastically narrow the space of multi-scale models of 
brain dynamics.

Support to our work comes from previous renormalization-inspired models of neuron-level data coarse-
graining. Bialek and team proposed a renormalization procedure that groups variables (neurons) into larger-scale 
lumped variables based on their observed pairwise  correlations33. Their procedure reveals the self-similarity of 
neuron level activities in live animal recordings, but does so without identifying the re-scaling factor that sepa-
rates similarly behaving scales or whether such a factor exists. They instead estimate a set of renormalization-
inspired scaling parameters from the data. Shew and team carry out a renormalization of binarized membrane 
potential signal from both simulation and rodent data for a coarse-graining similar to ours: their procedure is 
also partially limited by a single renormalization, rather than a sequence, as the authors point  out34. In addition, 
their procedure yields scaling laws, but not constraints on discrete ratios between similarly behaving scales. 
Instead of finding the scale at which coarse-graining reveals the most self-similar behavior, their procedure 
probes the dependence of the outcome of coarse-graining on the simulation parameters, presenting an insight 
complementary to ours.

In clarifying our results, we note that the slope at the tail of the distribution of cluster sizes is not fully 
unchanged as a function of the system size. However, as a comparison to a case where no signature of similarity 
of scales is present, we show that for a 1.23 decade ( log10(23251/1372) ≈ 1.23 ) of system sizes, the slope changes 
to a noticeably smaller degree than in a randomly clustered case, where the slope change is much larger during 
for the 0.62 decade ( log10(3418/812) ≈ 0.62 ) of sizes. We use the term “scale-invariance” in the sense of a pair 
of spatiotemporal scales that are displaying similar dynamics, rather than a stricter definition in which a system 
displays identical behavior across all accessed scales.

Our primary finding that there exists a particular re-scaling factor that best recovers the integrate-and-fire 
principle the most dynamic should not be confused with detection of the same dynamic across all accessed scales. 
The term scale-invariance is used in this paper to describe a pair of spatiotemporal scales that are displaying 
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similar dynamics, instead of the sometimes used stricter definition where the system displays identical behavior 
at all scales accessible to it. We propose a future direction to strengthen the results. In the work reported here, 
the slope at the tail of the distribution of cluster sizes is not fully unchanged as a function of the system size. 
Rather as a comparison to a case where no signature of similarity of scales is present, we show that for a 1.23 
decade  (log10(23251/1372) ≈ 1.23) of system sizes, the slope changes to a noticeably smaller degree than in a 
randomly clustered case, where the slope change is much larger during for the 0.62 decade  (log10(3418/812) ≈ 
0.62) of sizes. An additional limitation of our work is partially a matter of terminology. Here we use the term 
scale-invariance, in the sense of a pair of spatiotemporal scales that are displaying similar dynamics, instead of 
the stricter definition where the system displays identical behavior at all scales accessible to it.

The implications of our work are particularly important for neural mass models (NMMs). We add to exist-
ing experimental and analytical motivations for  NMMs35–40 and propose a mechanism for constraining scales 
to be modeled with NMMs. NMMs provide an attractive procedure for reducing brain dynamics to just a few 
quantities at the population level. Further supporting the treatment of neuronal systems as NMMs, we provide 
computational justification for approximating the fine-scale neural dynamics (namely integrate-and-fire rule) 
by a similar dynamical rule, but at a particular coarser scale out of all scales empirically available for imaging. 
One implication of such an approximation is that brain dynamics may be modeled using experimental data from 
several non-overlapping scales, as long as those scales are chosen strategically to retain self-similar dynamics. 
In addition, our analysis coarse-grains a network of neurons while preserving integrate-and-fire dynamics at 
network sizes exceeding 1000 neurons and ensemble-neurons, highlighting the potential of NMM-like models 
to describe interactions of a large number of neuronal populations.

From a biological perspective, the periodicity of scale invariance may offer clues into developmental and 
evolutionary processes. The dynamic structure of the action potential (gating, excitation, inhibition, return to 
baseline) reflects, at its very basis, a mechanistic solution to the biologically ubiquitous problem of allostatic 
regulation in response to noisy inputs. In growing the brain from unicellular to multicellular to agglomerate 
structure—while continuing to maintain allostatic regulation—it therefore makes sense that dynamic signatures 
associated with such regulation (i.e., those associated with negative feedback loops) would also be preserved. 
As such, the discontinuity of scales at which allostatic regulation continues to hold may impose key functional 
constraints on “growth spurts” in brain  development41–43, as per punctuated equilibrium theories in evolution-
ary  biology44,45.

Methods
Network structure. The starting point of our study is an all-to-all resting-state fMRI-derived (N = 68, 
repeated 4 times) functional connectivity matrix, extracted from 91,282 voxels, and providing full coverage of 
the human  cortex27,28. Each voxel is (2 mm)3, and thus measures a compensatory hemodynamic (blood oxygen 
level dependent) response across ~ 1,000 cortical minicolumns, or about ~ 1 M neurons (in primates and most 
mammals, the cortex contains a 20/80 ratio of neurons to  glia46). Each voxel is represented as a node in a graph.

Nodes. The nodes follow a leaky integrate-and-fire neuronal model, updated via change in membrane poten-
tial: dV̇k/dt = −τvV̇k +

∑
j wjk × Ij + σk with spike conditions: if Vk(t) > Vθ , then the node initiates a spike 

by setting: Vk(t) = Vr . For intuitive order of magnitude estimation, the quantities tracked and the parameters 
are implemented in dimensionless units, with the range from the reset membrane potential and the threshold 
potential equal to 1. Other scaling parameters follow the same units. Here:

Vk(t) is the time-dependent membrane potential (voltage) of a neuron, with k indexing the neuron integrating 
signal from its neighbors indexed by j.

Ij indicates the input signal from pre-synaptic neurons, indexed by j . Ij = 1 during the time-step neuron j 
fires and 0 otherwise.

wjk is weight connecting the spiking neuron j to the signal-integrating neuron k . Equal to the gain ( 7.7× 10−6 ) 
times the connectivity weight.

Vr is resting membrane potential or reset value, to which the neuron returns after spiking Equal to 0 due to 
the dimensionless units.

Vθ is firing threshold for an action potential, upon reaching which the neuron initiates a spike. Equal to 1 
due to the dimensionless units.

τv is rate of leakage in membrane potential from Vk(t) towards Vr . Equal to 10−4.
σk is the normally distributed noise input to neuron k.

Integration coefficient and normalization by random controls. We compare the well-clustered 
coarse network to a randomly clustered control to reveal effects of strong intra-cluster connectedness on coarse 
network’s input integration. In order to quantify the effects of integration of incoming ensemble-spikes from 
neighbors in a coarse-grained network, we obtain the cross-correlogram of ensemble-spikes:

• For a particular ensemble-node, for each observed ensemble-spike, we collect the most recent ensemble-
spike of each of its neighboring ensemble-nodes according to their time lag τ , by which they preceded the 
ensemble-spike. For each time lag τ , we then sum ensemble-edge weights for all ensemble-spikes that pre-
ceded our ensemble-spike of interest by τ time steps. Any neighboring ensemble-node contributes only one 
ensemble-spike to this list of sums—its most recent ensemble-spike preceding the ensemble-spike of interest, 
and to the sum of weights at observed time-lag τ . This tells us how much information was integrated by the 
ensemble-node and from how many time steps prior to producing the ensemble-spike.
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• For each time lag τ , we then sum the ensemble-edge weights collected over all ensemble-spikes of all ensem-
ble-nodes, to obtain the (ensemble-edge-weighted) cross-correlogram P(τ ) dependent only on time-delay 
τ . P(τ ) tells us how much input (ensemble-spikes weighted by ensemble-edge weights) had to be received 
from neighboring ensemble-nodes τ time steps prior to a typical ensemble-spike in the coarse network.

• The cross-correlogram P(τ ) is then normalized (divided) by the cross-correlogram Prandom(τ ) for the case 
if the original network was clustered randomly, and we integrate the ratio over interval of τ , on which the 
ratio exceeds 1, weighing by the inverse of the time lag τ to discount inputs received early, at large absolute 
value τ . We term this quantity integration coefficient ( IC):

The integration coefficient then acts as a metric of the coarse network’s similarity to a network of spiking 
nodes. The random clustering used as a baseline coarse-graining step is done by selecting a random partitioning 
of the nodes into the desired number of ensemble-nodes to match the average size of ensemble-nodes observed 
under the full-linkage clustering used in our coarse-graining. We note that this is distinct from randomly rewir-
ing the network prior to any coarse-graining is applied in order to dissociate the network features responsible 
for the observed property.

Re‑wired controls. As node degree sequence frequently drives emergent properties of a complex  network47, 
we next examine the role of isolating the fine-grain network’s node strength sequence in determining whether 
integrate-and-fire behavior emerges at a coarser scale. Node strength sequence is the equivalent of degree 
sequence for a weighted network, and is given by the sum of weights of all edges of a given node. To quantify the 
contribution of node strength sequence to our observations, we provide a comparison with an original network 
shuffled while preserving each node’s strength. The shuffling follows a local rewiring rule: given 4 nodes (A, B, C 
and D), edges AB, CD, AC, and BD are shuffled from AB = CD = w1 and AC = BD = w2 to: AB = CD = w2 
and AC = BD = w1 . This preserves the local strength of node A as: AC+ AB = w1 + w2 before and after the 
rewiring, while dissolving the network’s cluster-forming topology. The value of integration coefficient is lower 
for a shuffled network than for original brain network (Fig. 3B, right panel). It is also notable that the shuffled 
network, when re-scaled, is unable to produce the same average cluster size at the same connection threshold 
as original brain network, nor to maintain ensemble-spikes consisting of large numbers of spikes (Fig. 3B, right 
panel, bottom right corner where data is absent—area indicated in white).

Do clusters show neuron‑like refractory periods? By means of an auto-correlogram Pauto(τ ) (instead 
of binning ensemble-spike inputs from neighboring ensemble-nodes, we bin the ensemble-node’s own most 
recent ensemble-spike preceding the ensemble-spike of interest), we search for the time-axis re-scaling param-
eters that result in the strongest degree of refractory behavior, which we measure as the ratio of ensemble-spike 
auto-correlogram at τ = −2 to that at τ = −1 : Pauto(−2)/Pauto(−1) . This helps us resolve whether a pair of 
consecutive ensemble-spikes of an ensemble-node had any systematic and noticeable time-gap in between, when 
ensemble-spiking was suppressed (Fig. 3C).

Further variations. A particular coarse-grain version of a spiking network is realized by choosing mul-
tiple parameters: (1) c (edge-weight cut-off for full-linkage clustering), which directly influences NN—average 
number of nodes in an ensemble-node, (2) NS—number of spikes in an ensemble-spike and (3) NT time-axis 
re-scaling factor. The latter is formally an integer factor, by which the time bin used for the coarse level statistics 
is smaller than the mean inter-spike interval of a single node of the fine-grain network. Re-scaling the time-axis 
so that the number of spikes in an ensemble-node expected from the neuronal spiking frequency alone is ~ 1 (i.e. 
setting NT=NN ) permits singling out time bins with spiking activity elevated by a factor of NS as compared to the 
level expected from mean spiking frequency. These time-bins in the coarse ensemble-spike raster become the 
basis of the cross-correlogram and calculation of integration coefficient. Maximizing the integration coefficient 
with respect to NT after the combination of spatial ( NN ) and activity ( NS ) re-scaling parameters have been esti-
mated, allows us to establish the full set of three parameters of re-scaling. This completes the analogy between 
spiking neurons and ensemble-spiking clusters of neurons. In search of the integrate-and-fire behavior for coarse 
network, we cover the space of spatial and activity re-scaling factors as follows: NN from minimum of ~ 3 neuron 
clusters up to ~ 12 in increments of 1; NS from minimal burst of two spikes to the maximum that can be sustained 
by the fine spiking network. The coarse-graining procedures described can also be iterated more than once, on 
already clustered network, by treating it as the fine-grain network and operating with the same machinery ena-
bling a principled dynamics-preserving hierarchical reduction of functional models.

We note that our coarse-graining procedure only resolves a single step in what is potentially a multiple step 
process from neurons all the way to fMRI voxels. We consider the coarse-graining step demonstrated in the work 
as only one of the stages of potential renormalizations allowed in the brain with transitions between all pairs of 
consecutive scales preserving the dynamical principle. Therefore, we consider implanting the integrate-and-fire 
principle at the voxel level as a reasonable assumption, given the possibility of multiple scales with the principle 
emerging above the neuron level.

Data availability
The data and code that support the findings of this study are available from www.lcneu ro.org/tools .
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