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Measurement error of network 
clustering coefficients 
under randomly missing nodes
Kazuki Nakajima* & Kazuyuki Shudo

The measurement error of the network topology caused by missing network data during the collection 
process is a major concern in analyzing collected network data. It is essential to clarify the error 
between the properties of an original network and the collected network to provide an accurate 
analysis of the entire topology. However, the measurement error of the clustering coefficient, which 
is a fundamental network property, has not been well understood particularly from an analytical 
perspective. Here we analytically and numerically investigate the measurement error of two types of 
clustering coefficients, namely, the global clustering coefficient and the network average clustering 
coefficient, of a network that is randomly missing some proportion of the nodes. First, we derive the 
expected error of the clustering coefficients of an incomplete network given a set of randomly missing 
nodes. We analytically show that (i) the global clustering coefficient of the incomplete network 
has little expected error and that (ii) conversely, the network average clustering coefficient of the 
incomplete network is underestimated with an expected error that is dependent on a property that is 
specific to the graph. Then, we verify the analytical claims through numerical simulations using three 
typical network models, i.e., the Erdős–Rényi model, the Watts–Strogatz model, and the Barabási–
Albert model, and the 15 real-world network datasets consisting of five network types. Although 
the simulation results on the three typical network models suggest that the measurement error of 
the clustering coefficients on graphs with considerably small clustering coefficients may not behave 
like the analytical claims, we demonstrate that the simulation results on real-world networks that 
typically have enough high clustering coefficients sufficiently support our analytical claims. This study 
facilitates an analytical understanding of the measurement error in network properties due to missing 
graph data.

The characteristics of various real-world networks can be understood by measuring the topology of the cor-
responding graphs, with entities as nodes and their interactions as edges. One of the essential characteristics of 
real-world networks is that two nodes with a common neighbor are likely to be connected; this characteristic 
is captured by measuring the clustering coefficients of graphs. There are two types of clustering coefficients, 
namely, the global clustering coefficient (often referred to as the transitivity)1,2 and the network average cluster-
ing  coefficient3,4. In a real-world network, both types of clustering coefficients are typically higher than those of 
a random graph with a similar number of nodes and  edges2,3. The characteristics of high clustering coefficients 
have played essential roles in several areas of research, such as graph generative  models5–10 and graph clustering 
 algorithms11,12 for real-world networks.

The network data that are collected to measure the topology of a graph are often incomplete due to errors 
during the collection process. For example, in analyzing social networks through interviews with  subjects13, 
some data may be invalid due to unanswered fields in a survey or divergent interpretations. When crawling in 
online social  networks14,15 or web  pages16, some graph data may be unavailable due to restricted access to the 
neighboring data of  users17, dynamic changes in user interactions or web links, or bugs associated with public 
 interfaces18. For topology measurements of the  Internet2,19,20, a snapshot of the structure obtained by the union 
of a large set of paths taken by data packets that are sent between many different pairs may not contain comput-
ers with failed connections. Missing data during collection in real-world networks can be considered a general 
scenario in which some portion of the nodes or edges is missing from a graph.

The broad effects of missing network data on graph properties have long been  studied17,21–30. In particular, 
measurement errors due to incomplete data between the properties of an original network and the collected 
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network are a major concern in analyzing collected networks. For example, when researchers discuss the rela-
tive magnitude of the clustering coefficients of a collected network, underestimation and overestimation of the 
measured values can seriously affect the claims of the research. If such concerns are present, the qualitative effects 
of missing data, including overestimation or underestimation, can typically be predicted based on numerical 
simulations using certain real-world network data. Furthermore, the analytical investigation is essential to quan-
tify measurement errors in general networks and to understand the network properties that cause those errors.

However, few results, particularly analytical results, regarding the measurement error of clustering coefficients 
caused by missing data have been clarified. Kossinets empirically claimed that the global clustering coefficient is 
only minimally affected by randomly missing nodes based on numerical simulations using scientific collaboration 
network  data27; this claim has also been experimentally observed in other existing  studies28,29. However, analyti-
cal results for general networks have not been obtained; it is not clear whether little measurement error against 
randomly missing nodes is the characteristic of the global clustering coefficient or results from the specific type 
and topology of real-world networks. Furthermore, neither analytical results nor empirical results regarding the 
network average clustering coefficient have yet been obtained.

In this paper, we analytically and numerically clarify the measurement error of the clustering coefficients of 
networks with randomly missing nodes. Although a scenario with a randomly missing nodes does not cover all 
possible scenarios of missing data that are encountered in the real world, it is a good starting point for analytically 
investigating the measurement errors of graph properties due to missing data. First, we theoretically investigate 
the clustering coefficients of an incomplete network in which some fraction of the nodes are randomly missing 
from a general undirected and unweighted graph. We approximate the expected relative errors of the clustering 
coefficients of an incomplete network given a set of randomly missing nodes. Our approximation decomposes 
the expectation of the clustering coefficients into a tractable product form. This is inspired by the concept of 
the mean-field approximation in statistical  physics31 and was successfully applied in quantifying errors of graph 
properties caused by private nodes in social networks in our previous  study17. The first analytical result shows 
that the global clustering coefficient of the incomplete network has little expected relative error, which supports 
the empirical claims made in previous  studies27–29. The second analytical result claims that the network average 
clustering coefficient of an incomplete network is underestimated with an expected relative error that depends 
on a property that is specific to the graph. Finally, we verify the analytical claims through numerical simula-
tions using the three typical network models, i.e., the Erdős–Rényi  model32, the Watts–Strogatz  model3, and the 
Barabási–Albert  model33, and the 15 real-world network datasets consisting of five network types. Although the 
simulation results on the Erdős–Rényi model and the Barabási–Albert model suggest that the measurement errors 
of the clustering coefficients on graphs with considerably low clustering coefficients may not behave as shown 
in the analytical results, we demonstrate that our analytical claims sufficiently hold for real-world networks that 
typically have high clustering coefficients.

Methods
Definitions and notations. We represent a network as an undirected and unweighted graph with a set of n 
nodes, V = {v1, . . . , vn} , and a set of edges, E. We ignore self-loops by  convention1,34–36. We use di to denote the 
degree of node vi . We say that a triple of nodes (vj , vi , vk) is connected if vj is connected to vi , vi is connected to vk , 
and j < k . For a specific node vi , the number of connected triples is di(di−1)

2
 . A triangle is defined as a connected 

triple (vj , vi , vk) in which vj and vk are connected. Let �i = {(vj , vk) ∈ E | (vi , vj) ∈ E ∧ (vi , vk) ∈ E ∧ j < k} 
denote a set of two neighbors of node vi that are connected to each other. We use ti = |�i| to denote the number 
of triangles to which node vi belongs.

The global clustering  coefficient1,2, denoted by c, is defined as the ratio of the total number of triangles to the 
total number of connected triples:

where a set of three nodes {vj , vi , vk} forms three different triangles. Next, the local clustering  coefficient3 of node 
vi , denoted by ci , is defined as the ratio of the number of triangles to which vi belongs to the number of connected 
triplets to which vi belongs:

where we have ci = 0 when di = 0 or di = 1 . The network average clustering  coefficient3, denoted by c , is then 
defined as

We assume that an error at each node vi ∈ V  can independently occur with probability 0 ≤ p ≤ 1 . We consider 
an error at node vi to result in the exclusion of node vi and its associated edges from G. We use G′ = (V ′,E′) to 
represent the incomplete network obtained once nodes with errors and their edges have been excluded from G. 
Let n′ denote the number of nodes in G′ , and let d′i = |{vj | (vi , vj) ∈ E′}| denote the degree of node vi ∈ V ′ in G′ . 
We use t ′i to denote the number of triangles to which node vi ∈ V ′ belongs in G′.

According to Eq. (1), the global clustering coefficient of G′ , denoted by c′ , is defined as

(1)c =
2
∑

vi∈V
ti

∑

vi∈V
di(di − 1)

,

(2)ci =
2ti

di(di − 1)
,

(3)c =
1

n

∑

vi∈V

ci .
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Next, according to Eq. (2), the local clustering coefficient of node vi ∈ V ′ , denoted by c′i , is defined as

where we have c′i = 0 when d′i = 0 or d′i = 1 . According to Eq. (3), the network average clustering coefficient of 
G′ , denoted by c′ , is then defined as

For example, let G = (V ,E) be the left graph in Fig. 1, where vi = i for 1 ≤ i ≤ 8 . For node 3 in G, we have 
d3 = 5 , �3 = {(1, 2), (2, 6), (4, 7), (6, 7)} , t3 = 4 , and c3 = 0.4 . We also have c = 0.469 and c = 0.608 . Let the 
incomplete network G′ be the right graph in Fig. 1, which corresponds to the case in which node 6 is missing 
from G. For node 3 in G′ , we have d′3 = 4 , t ′3 = 2 , and c′3 = 0.33 . We also have c′ = 0.5 and c′ = 0.524.

Data and Code. In our simulations, we first use nine synthetic graphs that were generated by using three 
typical network models: the Erdős–Rényi model (ER)32, the Watts–Strogatz model (WS)3, and the Barabási–
Albert model (BA)33. For each n = 1000 , n = 5000 and n = 10, 000 , the three synthetic graphs generated by the 
three models have the same number of nodes n and an average degree of 4. The reason we set the average degree 
to 4 is to clarify the effects of nodes with low degrees on the measurement error of the clustering coefficients. In 
the Watts–Strogatz model, we connect each node to 4 nearest neighbors in the ring topology so that a generated 
graph has an average degree of 4, and set the probability of rewiring each edge to 0.1 so that a generated graph 
has high clustering coefficients. In the Barabási–Albert model, we set the number of edges to attach from a new 
node to existing nodes to 2 so that a generated graph has an average degree of 4. Table 1 lists the numbers of 
nodes and edges and the clustering coefficients for the nine synthetic graphs used in our simulations. We note 
that the numbers of edges on the three synthetic graphs with 1000, 5000, and 10,000 nodes do not exactly match 
due to the characteristics of each model.

We additionally use 15 publicly available datasets representing five types of real-world networks: a social 
network (SOC), a web graph (WEB), a computer network (COM), a co-authorship network (CA), and a co-
purchasing network (CP). For simplicity, we obtain undirected, simple, connected graphs for all datasets by per-
forming the following sequential preprocessing steps: (1) remove the directions of the edges if the original graph 
is directed, (2) treat multiple edges between the same pair of nodes as a single edge and delete loops, and (3) delete 
any nodes that are not contained in the largest connected component of the graph. These preprocessing steps do 

(4)c′ =
2
∑

vi∈V ′ t ′i
∑

vi∈V ′ d′i(d
′
i − 1)

.

(5)c′i =
2t ′i

d′i(d
′
i − 1)

,

(6)c′ =
1

n′

∑

vi∈V ′

c′i .

Figure 1.  An example network (left) and the corresponding incomplete network (right) when node 6 is 
missing.

Table 1.  Synthetic graphs generated by using Erdős–Rényi model (ER), Watts–Strogatz model (WS), and 
Barabási–Albert model (BA).

Name |V| |E| c c

ER1000 1000 1996 0.0054 0.0038

WS1000 1000 2000 0.1727 0.1983

BA1000 1000 1996 0.0119 0.0300

ER5000 5000 9954 0.0007 0.0005

WS5000 5000 10,000 0.3610 0.3800

BA5000 5000 9996 0.0022 0.0070

ER10000 10,000 20,116 0.0003 0.0002

WS10000 10,000 20,000 0.3540 0.3710

BA10000 10,000 19,996 0.0013 0.0031
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not affect our simulation results because they are performed before randomly removing nodes from the graph. 
Table 2 lists the network types, numbers of nodes and edges, and clustering coefficients for the 15 real-world 
network datasets used in our simulations. The source code and datasets used in our simulations are  available37.

Results
We provide the results regarding the measurement errors of the global clustering coefficient and the network 
average clustering coefficient of the incomplete network when each node on G is missing with probability p. We 
first present the analytical results and then we verify the analytical claims by conducting numerical simulations 
using three typical network models and the 15 real-world network datasets.

Analytical results. We analytically investigate the error of the clustering coefficients of the incomplete net-
work when each node in G is independently missing with probability p.

Global clustering coefficient. We focus on the expected relative error between c and c′ given a set of randomly 
missing nodes to quantify the measurement error of the global clustering coefficient. ERN [X] denotes the 
expected value of a random variable X given a set of randomly missing nodes in G, where RN is an abbreviation 
for “Randomly missing Nodes”. 1A(x) denotes an indicator function for a set A that returns 1 if x ∈ A and 0 oth-
erwise. Pr[B] denotes the probability of an event B.

First, d′i follows the binomial distribution with parameters di and 1− p given a set of randomly missing nodes 
because each neighbor of vi in G independently exists in G′ with probability 1− p . Thus, for any node vi ∈ V  , 
we have

Second, we derive ERN [t′i | vi ∈ V ′] for any node vi ∈ V  . For any two nodes vj ∈ V  and vk ∈ V  , we define the 
random variable X(j, k) = 1V ′(vj)1V ′(vk) . It holds that t ′i =

∑

(vj ,vk)∈�i
X(j, k) under the condition that vi belongs 

to V ′ . We obtain the expectation of t ′i given a set of randomly missing nodes under the condition that vi belongs 
to V ′ as follows:

(7)ERN [d
′
i |vi ∈ V ′] = (1− p)di ,

(8)ERN [(d
′
i)
2n|vi ∈ V ′] = (1− p)di[(1− p)di + p].

(9)ERN [t
′
i | vi ∈ V ′] =

∑

(vj ,vk)∈�i

ERN [X(j, k) | vi ∈ V ′]

(10)=
∑

(vj ,vk)∈�i

Pr[vj ∈ V ′ ∧ vk ∈ V ′]

(11)=
∑

(vj ,vk)∈�i

(1− p)2

(12)= (1− p)2ti .

Table 2.  Real-world network datasets.

Dataset Type |V| |E| c c

Facebook58 SOC 63,392 816,886 0.148 0.222

Epinions59 SOC 75,877 405,739 0.066 0.138

YouTube59 SOC 1,134,890 2,987,624 0.006 0.081

CNR200058 WEB 325,557 2,738,969 0.008 0.453

NotreDame59 WEB 325,729 1,090,108 0.088 0.235

Google59 WEB 855,802 4,291,352 0.055 0.519

Gnutella58 COM 62,561 147,878 0.004 0.005

CAIDA58 COM 190,914 607,610 0.061 0.158

Skitter59 COM 1,694,616 11,094,209 0.005 0.258

CiteSeer58 CA 227,320 814,134 0.456 0.676

DBLP59 CA 317,080 1,049,866 0.306 0.632

MathSciNet58 CA 332,689 820,644 0.137 0.410

Amazon030258 CP 262,111 899,792 0.236 0.420

Amazon060158 CP 403,364 2,443,311 0.166 0.418

Amazon050558 CP 410,236 2,439,437 0.162 0.406
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Equation (9) holds true because of the linearity of the expected value. Equation (10) holds true because of the 
law of total expectation. Equation (11) holds true because vj and vk independently exist in G′ with probability 
1− p . Equation (12) holds true because of the definition of ti.

Third, we derive the expectations of the numerator and denominator of c′ : ERN [2
∑

vi∈V ′ t ′i ] and 
ERN [

∑

vi∈V ′ d′i(d
′
i − 1)] . We define random variables Xc(i) = t′i1V ′(vi) and Yc(i) = d′i(d

′
i − 1)1V ′(vi) for 

each node vi ∈ V  . Let Xc = 2
∑

vi∈V ′ t ′i  and Yc =
∑

vi∈V ′ d′i(d
′
i − 1) . It holds that Xc = 2

∑

vi∈V
Xc(i) and 

Yc =
∑

vi∈V
Yc(i) . We obtain the expectation of Xc given a set of randomly missing nodes as follows:

Equation (13) holds true because each node vi ∈ V  independently exists in G′ with probability 1− p and Eq. (12) 
holds. Similarly, we obtain the expectation of Yc given a set of randomly missing nodes as follows:

Equation (14) holds because of Eqs. (7) and (8).
Finally, we approximate the expected value of c′ in Eq. (4) given a set of randomly missing nodes as a fraction 

of the expected value of the numerator and denominator by using Eqs. (13) and (14):

This approximation is inspired by the concept of the mean-field approximation in statistical  physics31 and was 
successfully applied in quantifying errors of graph properties caused by private nodes in social networks in our 
previous  study17.

Equation (15) claims that the global clustering coefficient of G′ has little expected relative error given a set of 
randomly missing nodes, regardless of the probability p.

Network average clustering coefficient. We derive the expected relative error between c and c′ given a set of 

randomly missing nodes. Let 
(

a
b

)

 denote the binomial coefficient defined by a pair of integers a ≥ b ≥ 0 , and 

let m! denote the factorial of a positive integer m.
First, we derive the expectation of c′i in Eq. (5) under the condition that vi belongs to V ′ : ERN [c′i | vi ∈ V ′] . 

For node vi of degree di = 0 or di = 1 , we have ERN [c′i | vi ∈ V ′] = 0 . Now, we derive ERN [c′i | vi ∈ V ′] for node 
vi of degree di ≥ 2 . For any two nodes vj ∈ V and vk ∈ V , we recall the random variable X(j, k) = 1V ′(vj)1V ′(vk) . 
It holds that t ′i =

∑

(vj ,vk)∈�i
X(j, k) . Then, we have

Here, we have

(13)

ERN [Xc] = 2
∑

vi∈V

ERN [Xc(i)]

= 2
∑

vi∈V

Pr[vi ∈ V ′]ERN [t
′
i | vi ∈ V ′]

= 2(1− p)3
∑

vi∈V

ti .

(14)

ERN [Yc] =
∑

vi∈V

ERN [Yc(i)]

=
∑

vi∈V

Pr[vi ∈ V ′]ERN [(d
′
i)
2 − d′i | vi ∈ V ′]

=
∑

vi∈V

(1− p)(ERN [(d
′
i)
2 | vi ∈ V ′] − ERN [d

′
i | vi ∈ V ′])

= (1− p)3
∑

vi∈V

di(di − 1).

(15)
ERN [c

′] ≈
ERN [2

∑

vi∈V ′ t ′i ]

ERN [
∑

vi∈V ′ d′i(d
′
i − 1)]

= c.

(16)

ERN [c
′
i | vi ∈ V ′] = ERN

[

2
∑

(vj ,vk)∈�i
X(j, k)

d′i(d
′
i − 1)

∣

∣

∣

∣

vi ∈ V ′

]

= 2
∑

(vj ,vk)∈�i

ERN

[

X(j, k)

d′i(d
′
i − 1)

∣

∣

∣

∣

vi ∈ V ′

]

= 2
∑

(vj ,vk)∈�i

(1− p)2ERN

[

X(j, k)

d′i(d
′
i − 1)

∣

∣

∣

∣

vi ∈ V ′ ∧ vj ∈ V ′ ∧ vk ∈ V ′

]

.

(17)ERN

[

X(j, k)

d′i(d
′
i − 1)

∣

∣

∣

∣

vi ∈ V ′ ∧ vj ∈ V ′ ∧ vk ∈ V ′

]

= ERN

[

1

d′i(d
′
i − 1)

∣

∣

∣

∣

d′i ≥ 2

]
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Equation (17) holds true because X(j, k) = 1 and node vi has at least two neighbors vj and vk in G′ such that 
vj ∈ V ′ and vk ∈ V ′ . Equation (18) holds true because the di − 2 neighbors of vi , excluding vj and vk , indepen-
dent ly  exist  in  G′  ,  each with probabi l ity  1− p .  Equat ion  (19)  holds  true because 
∑di

k=0

(

di
k

)

(1− p)kpdi−k = (1− p+ p)di due to the binomial theorem, and the terms for k = 0 and k = 1 are 

subtracted from the total sum. Using Eqs. (16) and (20), we obtain ERN [c′i | vi ∈ V ′] for node vi of degree di ≥ 2 
as follows:

We can incorporate ERN [c′i | vi ∈ V ′] = 0 for node vi of degree di = 0 or di = 1 into the equation 
ERN [c

′
i | vi ∈ V ′] = [1− pdi − di(1− p)pdi−1]ci for any degree di ≥ 0 because ci = 0 for di = 0 or di = 1.

Then, we approximate the expectation of c′ given a set of randomly missing nodes. Let Xc =
∑

vi∈V ′ c′i . It 
holds that Xc =

∑

vi∈V
c′i1V ′(vi) and n′ =

∑

vi∈V
1V ′(vi) . First, we have the following equation by using Eq. (21):

We also have

Finally, using Eqs. (22) and (23), the expectation of c′ in Eq. (6) given a set of randomly missing nodes is approxi-
mated as follows:

where the coefficient τp is defined as follows:

Here, it holds that 1− pdi − di(1− p)pdi−1 ≤ 1 for any probability 0 ≤ p ≤ 1 because di ≥ 0 for each node vi . 
Then, we have

for any probability 0 ≤ p ≤ 1.

(18)

=

di
∑

k=2

Pr[d′i = k]
1

k(k − 1)

=

di
∑

k=2

(

di − 2

k − 2

)

(1− p)k−2pdi−2−(k−2) 1

k(k − 1)

(19)

=

di
∑

k=2

(di − 2)!

(di − k)!k!
(1− p)k−2pdi−k

=
1

(1− p)2di(di − 1)

di
∑

k=2

(

di
k

)

(1− p)kpdi−k

=
1

(1− p)2di(di − 1)
[(1− p+ p)di − pdi − di(1− p)pdi−1]

(20)=
1

(1− p)2di(di − 1)
[1− pdi − di(1− p)pdi−1].

(21)
ERN [c

′
i | vi ∈ V ′] = 2

∑

(vj ,vk)∈�i

(1− p)2[1− pdi − di(1− p)pdi−1]

(1− p)2di(di − 1)

= [1− pdi − di(1− p)pdi−1]ci .

(22)

ERN [Xc] =
∑

vi∈V

(1− p)ERN [c
′
i | vi ∈ V ′]

= (1− p)
∑

vi∈V

[1− pdi − di(1− p)pdi−1]ci .

(23)

ERN [n
′] =

∑

vi∈V

(1− p)ERN [1V ′(vi) | vi ∈ V ′]

=
∑

vi∈V

(1− p) = (1− p)n.

(24)
ERN [c

′] ≈
ERN [

∑

vi∈V ′ c′i]

ERN [n′]

= τpc,

(25)τp =

∑

vi∈V

[

1− pdi − di(1− p)pdi−1
]

ci
∑

vi∈V
ci

.

(26)1− τp ≥ 0
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Equation (24) and an inequality (26), it follows that the network average clustering coefficient of G′ is under-
estimated with an expected relative error 1− τp given a set of randomly missing nodes.

Simulation results. We verify our analytical results regarding the measurement error of the clustering coef-
ficients of the incomplete networks with randomly missing nodes by conducting numerical simulations using 
the three typical network models and the 15 real-world network datasets. On each graph, each node and its 
associated edges are independently removed from the original graph with probability p. We set the probability p 
to values ranging from 0.0 to 0.9 in increments of 0.1. To estimate the true expected values of the clustering coef-
ficients of the incomplete network when a fraction p of the nodes is randomly missing, we calculate the average 
values for 100 independent sets of randomly missing nodes for each probability p. We observe the average values 
along with the standard deviation across 100 independent sets of randomly missing nodes.

Global clustering coefficient. Figure 2 shows the approximate expected values derived from Eq. (15) (red solid 
lines) and the average values over 100 independent simulations (black dashed lines) for various probabilities 
p on three network models for each n = 1000 , n = 5000 , and n = 10, 000 : the Erdős–Rényi model (ER), the 
Watts–Strogatz model (WS), and the Barabási–Albert model (BA). Both results are shown as the relative val-

Figure 2.  Comparison of the analytical and simulation results for the relative global clustering coefficient when 
each node is independently missing with probability p on ER, WS, and BA graphs for each 1000, 5000, and 
10,000 nodes.
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ues with respect to the global clustering coefficient of the original graph. We observe that the global clustering 
coefficient of the incomplete network has little average relative error given a set of randomly missing nodes for 
all probabilities p of the WS graphs: this result sufficiently supports the analytical result. Conversely, the aver-
age relative values of the ER and BA graphs tend to greatly differ from the analytical result as the probability p 
increases. Figure 3 shows the standard deviation of the relative global clustering coefficients across 100 inde-
pendent sets of randomly missing nodes for each probability p for the ER, WS, and BA graphs. We observe that 
the standard deviation in the ER and BA graphs tends to be considerably larger than that in the WS graphs as 
the probability p increases.

We consider that these differences in the relative errors and standard deviations between the ER and the BA 
and WS graphs arise from the magnitude of the original global clustering coefficient. In the ER and BA graphs, 
where the original global clustering coefficient is almost zero, we observed two extreme cases given a set of ran-
domly missing nodes as the probability p increases: (i) All triangles are unfortunately destroyed and then the 
relative value is zero. (ii) Most triangles are not destroyed because of the limited number, but the degrees of most 
nodes are removed, and then the relative value is considerably larger than 1. Therefore, the measurement error of 
the global clustering coefficient given a random set of missing nodes can have a very large variance and greatly 
different from the analytical result for the ER and BA graphs. On the other hand, in the WS graphs, where the 
original global clustering coefficient is sufficiently high, such extreme cases hardly occur, and hence, the relative 
values on the WS graphs do not almost deviate from the analytical result.

Then, Fig. 4 shows the approximate expected values derived from Eq. (15) (red solid lines) and the average 
values over 100 independent simulations (black dashed lines) for various probabilities p on the 15 real-world 
network datasets. The error bar indicates the standard deviation across 100 independent sets of randomly missing 
nodes. We have verified that the global clustering coefficient of the incomplete network has little average relative 
error given a set of randomly missing nodes for all datasets, except for YouTube and NotreDame, regardless of 
the type of network. These simulation results sufficiently support the analytical claim. We also observed that the 
standard deviations are small as in the simulation results on WS graphs, except for YouTube, NotreDame, and 
Gnutella. One possible reason for the large relative errors or standard deviations on YouTube, NotreDame, and 
Gnutella is that these three graphs have low global clustering coefficients compared with other datasets (0.006, 
0.088, and 0.004, respectively). Here we recall that the relative errors were large on ER and BA graphs, which 
have almost zero global clustering coefficients. However, this reason may not be definitive due to small relative 
errors and standard deviations on Skitter, which has a low global clustering coefficient of 0.005. Comparing the 
simulation results on the 15 real-world network datasets in Fig. 4, we believe that the large relative errors or 
standard deviations on YouTube, NotreDame, and Gnutella are minor exceptions. We need to further investigate 
the factors underlying these differences in real-world network datasets in future work.

Network average clustering coefficient. Figure 5 shows the approximate expected values derived from Eq. (24) 
(red solid lines) and the average values over 100 independent simulations (black dashed lines) for various prob-
abilities p on the three network models (ER, WS, and BA graphs) for n = 1000, 5000, and 10,000. We observe that 
the network average clustering coefficient is underestimated with an average relative error of 1− τp on the WS 
graphs, which supports the analytical claim. Conversely, average relative errors have some errors compared with 
the analytical results for the ER and BA graphs. Figure 6 shows the standard deviation of the relative network 
average clustering coefficients across 100 independent sets of randomly missing nodes for each probability p on 
the ER, WS, and BA graphs. We observe the standard deviation in the WS graphs is clearly smaller than that in 
the ER and BA graphs. We consider that these differences in simulation results between the WS and the ER and 
BA graphs arise from the magnitude of the original network average clustering coefficient, as in the case of the 
global clustering coefficient.

We also find that the relative error in the BA graphs increases faster than the errors in the WS and ER graphs 
as the probability p increases. For example, when the probability p is 0.3, the relative errors on ER10000 and 

Figure 3.  Comparison of the standard deviation of the relative global clustering coefficients across 100 
independent sets of randomly missing nodes with the probability p on ER, WS, and BA graphs for each 1000, 
5000, and 10,000 nodes.
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WS10000 are 0.08 and 0.10 (Fig. 5g,h), whereas that on BA10000 is 0.37 (Fig. 5i). The fast increase of the rela-
tive errors against the probability p caused by the degree distribution being biased to low degrees on the BA 
graphs in contrast to the ER and WS graphs. Here, we recall the definition of the coefficient τp in Eq. (25). The 
closer the quantity, 1− pdi − di(1− p)pdi−1 , for each node in the numerator is to 0, the more relative errors 
there are in the network average clustering coefficient of the incomplete network. Figure 7 shows the function, 
f (d, p) = 1− pd − d(1− p)pd−1 , for degrees 2 ≤ d ≤ 10 and values p = 0.1, 0.3, 0.5, 0.7 , and 0.9. We note that 
the function f(d, p) is not dependent on the node vi and the graph. We ignore the function values for d = 0 and 
1 because ci = 0 for nodes with di = 0 and 1. We see that as the degree d is smaller, the function value f(d, p) is 
lower for each value of p, i.e., the effect of nodes with the smaller degree d on the relative error is larger.

Figure 8 shows the approximate expected values derived from Eq. (24) (red solid lines) and the average values 
over 100 independent simulations (black dashed lines) for various probabilities p on the 15 real-world network 
datasets. The error bar indicates the standard deviation across 100 independent sets of randomly missing nodes. 
We have verified that the network average clustering coefficient is underestimated with an average relative error of 
1− τp for all datasets regardless of the type of network, which sufficiently supports the analytical claim. We also 
found that the standard deviations are typically small as in the simulation results on the WS graphs. We further 
observe that the slope of the increase in the relative error of the network average clustering coefficient when the 
probability p increases is different depending on the real-world network. This difference results from the different 
proportions of nodes with a low degree in real-world networks, similar to the discussion in the case for the ER, 
WS, and BA graphs. Table 3 shows the cumulative degree distributions, P(degree ≤ d) , for d = 2, 3, and 6 of 15 
real-world network datasets. On YouTube, where nodes with degrees 6 or less account for 87.8% of the total, the 
increase in the relative errors of the network average clustering coefficient is considerably large (see Fig. 8c); e.g., 
the relative error is 0.489 if half of the nodes are removed. Conversely, on Amazon0601 and Amazon0505, where 
only approximately 20% of the nodes with degrees 6 or less, the slope of the relative error is relatively small (see 
Fig. 8n,o): the relative error is only 0.101 on Amazon0601 even if half of the nodes are removed.

The final observation is that, in both the three network models and the 15 real-world network datasets, the 
analytical result for the network average clustering coefficient clearly provides a more accurate approximation 
than the case of the global clustering coefficient. We find that, for instance, the standard deviation of the relative 
network average clustering coefficients on the ER and BA graphs (see Fig. 6) is considerably smaller than that of 
the relative global clustering coefficients (see Fig. 3). We also see that the analytical results regarding the network 

Figure 4.  Comparison of the analytical and simulation results for the relative global clustering coefficient 
when each node is independently missing with probability p on 15 real-world network datasets. The error bar 
indicates the standard deviation across 100 independent sets of randomly missing nodes.
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average clustering coefficient on YouTube and NotreDame are almost the same as the simulation results (see 
Fig. 8c,e) in contrast to the case in the global clustering coefficient (see Fig. 4c,e). These differences empirically 
suggest that the measurement error in the network average clustering coefficient has little variance with respect 
to a set of randomly missing nodes. To fully explain the reason for these differences, it is necessary to analytically 
clarify the upper or lower bounds or the variance of the measurement errors of the clustering coefficients given 
a set of randomly missing nodes in future work.

Discussion
We have studied the measurement error of two types of clustering coefficients, namely, the global clustering 
coefficient and the network average clustering coefficient, of a network with randomly missing nodes. First, 
we have analytically investigated the clustering coefficients of the incomplete network for a general undirected 
and unweighted graph. We have focused on the expected clustering coefficients given a set of randomly missing 
nodes to quantify the measurement errors. Then, to verify our analytical claims, we have numerically analyzed 
the measurement errors of the clustering coefficients on the three typical network models, i.e., the Erdős–Rényi 
model, the Watts–Strogatz model, and the Barabási–Albert model, and the 15 real-world network datasets 
consisting of five network types.

Figure 5.  Comparison of the analytical and simulation results for the relative network average clustering 
coefficient when each node is independently missing with probability p on ER, WS, and BA graphs for each 
1000, 5000, and 10,000 nodes.
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Our main results are as follows:

• In theory, the global clustering coefficient of the incomplete network shows little expected error given a set 
of randomly missing nodes.

• In theory, the network average clustering coefficient of the incomplete network is underestimated with an 
expected error that is dependent on τp , which is a property specific to the graph, given a set of randomly 
missing nodes.

• The analytical results sufficiently hold for real-world networks that typically have high clustering coefficients, 
regardless of the network type. However, as the simulation results on the Erdős–Rényi model and the Bara-
bási–Albert model suggest, the measurement errors of the clustering coefficients on graphs with considerably 
small clustering coefficients may not behave like those in the analytical results.

• The property τp can cause large measurement errors of the network average clustering coefficients on graphs 
with degree distributions that are biased toward low degrees.

Our results provide the following guidance for researchers investigating the triangular properties of collected 
networks. The global clustering coefficient provides reliable measurements under randomly missing nodes; even 
if a large percentage of nodes are randomly missing from the original network, the predicted measurement error 
is typically small in real-world scenarios. In contrast, researchers should carefully deal with the measured network 
average clustering coefficient when making claims based on the measurements. For example, if a researcher claims 

Figure 6.  Comparison of the standard deviation of the relative network average clustering coefficients across 
100 independent sets of randomly missing nodes with the probability p on ER, WS, and BA graphs for each 
1000, 5000, and 10,000 nodes.

Figure 7.  Function, f (d, p) = 1− pd − d(1− p)pd−1 , for several degrees d and values of p.
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that the measured network average clustering coefficient is small, the claim may be overturned; the original value 
may be notably higher than the measurement.

Our study lefts future work of theoretically investigating the factors for the differences in the behaviors of 
measurement errors given a set of randomly missing nodes between the global clustering coefficient and the 
network average clustering coefficient. We empirically observed the analytical result for the network average 

Figure 8.  Comparison of the analytical and simulation results for the relative network average clustering 
coefficient when each node is independently missing with probability p on 15 real-world network datasets. The 
error bar indicates the standard deviation across 100 independent sets of randomly missing nodes.

Table 3.  Cumulative degree distribution P(degree ≤ d) for d = 2, 3, and 6 of 15 real-world network datasets.

Dataset P(degree ≤ 2) P(degree ≤ 3) P(degree ≤ 6)

Facebook 0.203 0.264 0.392

Epinions 0.620 0.696 0.802

YouTube 0.691 0.773 0.878

CNR2000 0.367 0.430 0.579

NotreDame 0.605 0.670 0.809

Google 0.288 0.374 0.551

Gnutella 0.606 0.670 0.739

CAIDA 0.442 0.566 0.763

Skitter 0.279 0.392 0.613

CiteSeer 0.290 0.439 0.692

DBLP 0.322 0.478 0.723

MathSciNet 0.492 0.628 0.808

Amazon0302 0.047 0.072 0.650

Amazon0601 0.068 0.109 0.214

Amazon0505 0.088 0.128 0.231



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2815  | https://doi.org/10.1038/s41598-021-82367-1

www.nature.com/scientificreports/

clustering coefficient clearly provides a more accurate approximation than the case of the global clustering coef-
ficient in both three typical network models and 15 real-world network datasets. We also empirically found that 
the measurement error of the network average clustering coefficient has a much smaller variance given a set of 
randomly missing nodes than the global clustering coefficient. Although we have only focused on the expected 
measurement errors of the clustering coefficients given a set of randomly missing nodes in this study, to fully 
explain these differences, it is also necessary to analytically clarify the upper or lower bounds or the variance of 
the measurement errors.

Our study also provides several directions for future research. First, we plan to study the measurement error 
caused by other types of missing data, such as the erroneous addition of nodes and the removal and addition 
of  edges25,27,30. We believe that it is possible to analytically investigate the measurement error due to missing 
data under the assumption that nodes/edges are independently removed/added at random. Second, we would 
like to analytically clarify the measurement error of other graph properties. For example, there are extended 
clustering coefficients, such as the clustering coefficients in  weighted38,  directed39, or multiplex  networks40; the 
network  motifs41; and modified definitions of the clustering  coefficients36,42. We consider that this study helps 
us to analytically study the measurement error due to missing graph data of particularly local graph properties, 
such as the triangular properties.

Data Availability
The original real-world network datasets are publicly available:  Facebook43,  Epinions44,  YouTube45,  CNR200046, 
 NotreDame47,  Google48,  Gnutella49,  CAIDA50,  Skitter51,  CiteSeer52,  DBLP53,  MathSciNet54,  Amazon030255, 
 Amazon060156,  Amazon050557.
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