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Landscape‑induced spatial 
oscillations in population dynamics
Vivian Dornelas1, Eduardo H. Colombo2,3,4, Cristóbal López2, Emilio Hernández‑García2 & 
Celia Anteneodo1,5*

We study the effect that disturbances in the ecological landscape exert on the spatial distribution of a 
population that evolves according to the nonlocal FKPP equation. Using both numerical and analytical 
techniques, we characterize, as a function of the interaction kernel, the three types of stationary 
profiles that can develop near abrupt spatial variations in the environmental conditions vital for 
population growth: sustained oscillations, decaying oscillations and exponential relaxation towards a 
flat profile. Through the mapping between the features of the induced wrinkles and the shape of the 
interaction kernel, we discuss how heterogeneities can reveal information that would be hidden in a 
flat landscape.

The Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP)  equation1–3 is the standard model describing, at a con-
tinuum level, the spatio-temporal dynamics of a population of individuals that diffuse, grow and compete for 
resources. In one dimension, it is given by

where ρ(x, t) is the population density at position x and time t, D is the diffusion coefficient, a is the (clonal) 
reproduction rate, and b is the strength of (intraspecific) competition that bounds population growth.

In Eq. (1) competition is local, in the sense that it occurs at scales much smaller than those associated with the 
diffusion process. However, competition processes might also extend to larger scales. This can be promoted by 
the underlying dynamics of interaction mediators (e.g., shared resources), such that even if individuals’ actions 
are locally initiated, the effects of these actions propagate to the surroundings. Along the lines of the Turing 
 mechanism4, the mediator dynamics can be explicitly modeled using an additional reaction–diffusion equa-
tion, an approach that has been widely applied to water-vegetation  systems5–9. Also in the context of vegetation 
dynamics, competition among plants can be mediated by  roots10,11, that extend beyond the surface vegetation. 
More generally, spatially-extended interactions between many types of organisms can be generated by various 
other mechanisms, such as acoustic  communication12, exchange of physico-chemical  signals13–16, and spatial 
exploitation, as present in the case of  sensile17 and  territorial18 organisms.

Although the intraspecific competitive interaction is established by other species or substances that act as 
mediators, when their timescales are much shorter than the population ones, a single equation for the distribu-
tion of individuals can be  derived19. This effective equation contains a nonlocal term describing the influence 
of individuals at a distance. Due to the often complex web of processes regulating the mediator dynamics, a 
useful phenomenological approach is to incorporate their effects with an interaction kernel (also called influ-
ence function) γ (x) , describing how the effective interaction between individuals decreases with their distance 
x. Furthermore it allows to address rather generally the impact of distance-dependent competition regardless of 
the mechanisms behind it. Then, Eq. (1) is extended  as20–22

where [γ ⋆ ρ](x, t) ≡
∫∞
−∞ γ (x − x′)ρ(x′, dt)dx′ , and 

∫∞
−∞ γ (x)dx = 1 . The particular shape and characteristic 

scales of γ effectively embody the details of the interaction mechanisms. At a difference from the original FKPP, 
the nonlocal FKPP equation, given by Eq. (2), can exhibit self-organized structures (as depicted in Fig. 1a) 
depending primarily on the particular properties of the kernel and, secondarily, on the values of the diffusion and 

(1)∂tρ(x, t) = D∂xxρ(x, t)+ aρ(x, t)− bρ2(x, t) ,

(2)∂tρ(x, t) = D∂xxρ(x, t)+ aρ(x, t)− bρ(x, t)[γ ⋆ ρ](x, t) ,
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reproduction  rates21–24. This is a minimal continuous-field description of population of individuals that compete 
nonlocally, containing the essential ingredients used to model diverse species  dynamics22.

Moreover, Eq. (2) assumes a homogeneous environment, which is implicit in the constant coefficients. But, 
actually, in biological systems, environmental factors suffer spatial  variations25–27. In this paper, we exploit that 
they can stress the system and resonate with the internal  scales20,28–31, generating spatial oscillations in the 
distribution of the population that can serve to unveil hidden information. In order to do that, we consider the 
following extension of Eq. (2),

where the spatially-dependent reproduction rate, �(x) , reflects the overall habitat quality at a given location x27.
Particular forms of � , accounting for diverse complex spatiotemporal features of natural environments, have 

been considered in previous  studies20,32–34. They have shown how this spatial dependence can modify the stability 
domains or even generate new states that were absent otherwise. For the particular case in which environmental 
disturbances are random, these results can be framed in the context of noise-induced transitions31,35,36.

In this work, we focus on sharp changes in the spatial environmental conditions relevant for the popula-
tion under  consideration26,27,37. This kind of change is found in diverse situations in nature, e.g., at the interface 
between forest and  grassland27, at the bounds of  oases25 or harmful  regions38, or in artificial lab  experiments26, 
where there is a neat contrast of spatial domains with different growth rates. Contemplating these cases justifies 
attributing the Heaviside step or rectangular functions to �(x) . For Turing-like models, it has been shown that 
the existence of a step-function hetereogenity can promote the formation of decaying oscillations even when 
the system is stable under homogeneous  conditions34. We extend this discussion by noting that there is a close 
relation between the landscape-induced states and the underlying dynamics of the interaction mediators which, 
in our case, is captured by the influence function.

We perform a systematic exploration of the model parameter space and investigate the emergence of the 
three kinds of stationary (long time) population profiles that can develop from the interface between regions of 
contrasting characteristics: sustained oscillations (or spatial patterns, without amplitude decay), decaying oscilla-
tions (with decreasing amplitude from the interface) or exponential decay towards a flat profile. These behaviors 
are schematically depicted in Fig. 1b. Ultimately, we report the existence of a one-to-one mapping between the 
influence function parameters and the oscillations features, allowing us to extract details of the interaction from 
the pattern  images39.

The paper is organized as follows. In Preliminaries section, we provide introductory information with general 
considerations about the homogeneous environment as a frame of reference. In Heterogeneous landscapes sec-
tion, we present the main results for 1D landscapes with sharp changes. Additionally, outcomes for 2D landscapes 
are displayed. In Inferring information about the interaction section, we discuss how information about the 
interaction kernel can be extracted from observable oscillations. A summary of the main findings and discussion 
are presented in Final remarks section.

Preliminaries
In this section, we first define the main class of influence functions that will be used in numerical examples 
throughout the paper. We also revisit the linear response analysis for the homogeneous environment, which 
serves as a reference frame for the more complex heterogeneous case.

Interaction kernel. We have chosen a family of influence functions that allows us to continuously vary its 
compactness:

(3)∂tρ(x, t) = D∂xxρ(x, t)+�(x)ρ(x, t)− bρ(x, t)[γ ⋆ ρ](x, t) ,
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Figure 1.  Population distribution in a medium which is (a) homogeneously viable, (b) heterogeneous, with 
viable and non-viable regions. Depending on the values of the parameters in Eq. (3), spatial patterns can develop 
around the uniform steady state in (a), and they are preserved in the viable region of the corresponding case in 
(b). But even when the steady state is uniform in (a), decaying oscillations can emerge in (b). Parameters are 
a = b = 1 , values of D are given in the legend, and for kernel γq defined in Eq. (4), we fix q = −0.5 and ℓ = 2 . 
For panel (b), A in Eq. (9) is A → ∞.
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where q and ℓ control the shape and scale of the kernel, respectively, and Nq is a normalization constant. The 
subindex + means [z]+ = z , if z > 0 , and [z]+ = 0 otherwise. This kernel is based on a generalization of the 
exponential function, known as q-exponential40. In the limit q → 1 , the standard exponential is approached 
yielding γ1(x) ∝ e−|x|/ℓ . The kernel shapes, for different values of q are illustrated in Fig. 2a. As we will see, it is 
specially relevant the fact that, only for q < 0 , the Fourier transform of γq(x) can take negative values. Then, we 
focus on the range −1 ≤ q < 1 , around this critical value. Moreover, in this range, the interaction is restricted 
to a finite region and the kernel moments are well-defined, a fact that will facilitate both the numerical and 
theoretical approaches. The family of stretched exponential kernels was also considered for comparison (see 
Supplementary Information).

Homogeneous landscapes. For a homogeneous landscape,  with �(x) = a , the linearization of 
Eq.  (3) around its uniform solution ρ0 = a/b , done  by setting ρ(x, t) = ρ0 + ε(x, t) (with ε/ρ0 ≪ 1 ), gives 
∂t ε̃(k, t) = [−Dk2 − aγ̃ (k)]ε̃(k, t) in Fourier space, where γ̃ (k) =

∫∞
−∞ γ (x)e−ikxdx is the Fourier transform of 

the interaction kernel γ . The factor between square brackets represents the growth rate of mode k,

which, for the considered kernels, is a real function, and whose shape is plotted in Fig. 2b, for each kernel γq 
shown in Fig. 2a. It is the important quantity that will appear all throughout the paper, since solutions of the 
transformed linearized equation satisfy ε̃(k, t) = ε̃(k, 0)e�(k)t . Thus, if �(k) < 0 for all k, any initial perturbation 
will fade out, such that in the long-time limit the population distribution, ρ(x) , will be flat. On the contrary, if 
there are unstable modes, with �(k) > 0 , stationary spatial oscillations will be produced with a characteristic 
mode k⋆ (the maximum of � ), which is the initially fastest growing  one41.

From Eq. (5), �(k) > 0 occurs for sufficiently small D if the Fourier transform of the kernel takes some nega-
tive values. Then, by substitution of γ̃q into Eq. (5), we conclude that sustained oscillations can only appear if 
γq(x) is sub-triangular, i.e., q < 0 (in the critical case q = 0 , γq(x) produces the triangular kernel, whose Fourier 
transform is γ̃0(k) = sin2(kℓ)/(kℓ)2 ). This is a necessary but not sufficient condition that arises by imposing 
�(k⋆) > 0 in the most favorable case D = 0 (hence γ̃ (k⋆) < 0 ), to induce the growth of certain modes. In con-
trast, for q ≥ 0 , the uniform state is intrinsically stable (that is, independently of the remaining parameters). In 
Fig. 2b, we plot the mode growth rate for D = 0 and D > 0 , which shows how diffusion affects mode stability, 
damping inhomogeneities in the population distribution.

Concerning the interaction length ℓ > 0 , when D = 0 , it simply scales the wavenumber as kℓ . Therefore, 
when ℓ goes to zero (implying local dynamics), �(k) → �(0) < 0 , meaning that patterns go continuously to 
a flat profile in that limit. In contrast, for D > 0 , the first term in Eq. (5) has a more homogenizing effect the 
larger is k⋆ , hence the smaller is ℓ . As a consequence, despite interactions are nonlocal, patterns emerge only for 
ℓ above a critical  value41. For D > 0 , there is also a critical reproduction rate, ac , such that sustained oscillations 
emerge only for a > ac.

In summary, in the cases where �(k⋆) ≤ 0 , i.e., either q ≥ 0 , or q < 0 with sufficiently large D (or, alternatively, 
small enough ℓ or a), information regarding the interaction scale ℓ or other details of the kernel profile are not 
stamped in the spatial distribution ρ(x, t) , which becomes uniform at long times.

Heterogeneous landscapes
In this section, the heterogeneity of the landscape is introduced by assuming that its profile can be written as 
�(x) = a+ ψ(x) , where ψ(x) represents the spatial variations of the environment around a reference level a.

The results that we will present were obtained through theoretical and numerical techniques. The theoretical 
approach is based on the mode linear stability analysis discussed in the previous section. Numerical integration 

(4)γq(x) = Nq[1− (1− q)|x|/ℓ]1/(1−q)
+ ≡ Nq expq(|x|/ℓ) ,

(5)�(k) = −Dk2 − aγ̃ (k) ,
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Figure 2.  Interaction kernel and mode stability in a homogeneous medium. (a) γq(x) , defined in Eq. (4), for 
the values of q indicated on the figure, and ℓ = 2 . (b) Mode growth rate �(k) given by Eq. (5), for a = b = 1 , 
with D = 0 (dashed lines) and D = 0.01 (solid lines), corresponding to the values of q plotted in (a). The case 
q = 0 (triangular kernel) is the critical one, for which the maximal value of �(k) at finite k is zero when D = 0 . 
Notice that, when diffusion is absent, the mode growth rate is proportional to the kernel Fourier transform (see 
Eq. (5)).
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of Eq. (3), starting from a homogeneous state plus a random perturbation, was performed following an explicit 
forward-time-centered-space scheme, with boundary conditions suitably chosen for each case (see Supplemen-
tary Information for details).

Refuge. As a paradigm of a heterogeneous environment with sharp borders, we first consider that the spatial 
variations around the reference level a are given by

where � is the Heaviside step function. With A > 0 , it represents a refuge of size L with growth rate a immersed 
in a less viable environment with growth rate a− A . In a laboratory situation, this can be constructed by means 
of a mask delimiting a region that protects organisms from some harmful agent, for instance, shielding bacteria 
from UV  radiation26. In natural environments, this type of localized disturbance appears due to changes in the 
geographical and local climate  conditions27, or even engineered by other  species38.

In Homogeneous landscapes section, we have seen that the uniform distribution is intrinsically stable when 
q ≥ 0 . In contrast, when there are heterogeneities in �(x) , spatial structures can emerge even if q ≥ 0 , as illus-
trated in Fig. 3 for the case D = 0.01.

In the limit of weak heterogeneity, i.e., under the condition |ψ(x)|/a ≪ 1 , we obtain an approximate analytical 
solution assuming that the steady solution of Eq. (3) can be expressed in terms of a small deviation εs(x) around 
the homogeneous state ρ0 = a/b . Then, we substitute ρs(x) = ρ0 + εs(x) into the stationary form of Eq. (3), 
discard terms of order equal or higher than O(ε2,Aε,A2) , and Fourier transform, obtaining

where �(k) was already defined in Eq. (5) and ψ̃(k) is the Fourier transform of the small fluctuations in the 
landscape quality, which for the case of Eq. (6) is ψ̃(k) = A[2 sin(Lk/2)/k − 2πδ(k)].

Finally, assuming that �(k⋆) < 0 , the steady density distribution is given by

where the inverse Fourier transform F−1 must be numerically computed in general. For small heterogeneity, 
Eq. (8) is in very good agreement with the exact numerical solution obtained by integration of the dynamics 
Eq. (3), as can be seen in Fig. 3. Notice the two different profiles, depending on the diffusion coefficient D: one 
gently following the landscape heterogeneity and the other strongly oscillatory.

For small D, the induced oscillations display two evident characteristics, which depend on γ̃q : a well-defined 
wavenumber and an amplitude that decays with the distance from the interface at x = ±L/2 (highlighted by 
dashed vertical lines in Fig. 3). We will see in the next section how the characteristics of the oscillations reflect 
the details of the kernel γq.

Semi‑infinite habitat. Since oscillations are induced by changes in the landscape, it is worth focusing, 
from now on, on one of the interfaces between a more viable region and a less viable one. Moreover, we assume 
a refuge much larger than the oscillations wavelength, sufficient to follow over several cycles the structure origi-
nated at the interface. To do that, we consider a semi-infinite habitat defined by

(6)ψ(x) = −A[1−�(L/2− |x|)] ,

(7)ε̃s(k) =
ρ0ψ̃(k)

−�(k)
,

(8)ρs(x) = ρ0 + εs(x) = ρ0 + F
−1

(ρ0ψ̃(k)

−�(k)

)

,

(9)ψ(x) = −A�(−x) ,
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Figure 3.  Stationary population density ρs vs. x in a refuge. This heterogeneous environment is defined by 
Eq. (6), with a = b = 1 , A = 10−3 and L = 10 . The vertical lines indicate the refuge boundaries. We used 
the kernel γq(x) , with q = 0.1 and ℓ = 2 , and two different values of D. Symbols are results from numerical 
integration of Eq. (3) under periodic boundary conditions, and solid lines from the small-A approximation 
given by Eq. (8), in excellent agreement with the exact numerical solution. Recall that, in a homogeneous 
environment, no oscillations appear for q ≥ 0.
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where for convenience the interface was shifted to x = 0 , such that the low-quality region is at x < 0 . As an addi-
tional feature, we consider that the harmful conditions are very strong, that is, A → ∞ . The purpose is twofold, 
on the one hand, it allows to test the robustness of the results beyond the small-A approximation, on the other, 
it allows a simplification as follows. When A ≫ a , ρ is very small in the unfavorable region, then the nonlinear 
competition term in Eq. (3) can be neglected, leading to a steady distribution that decays exponentially from the 
interface as ρ(x < 0) ∼ exp[

√
(A− a)/D x] . Thus, in the limit A → ∞ , we have ρ(x < 0, t) = 0 . In addition, 

the semi-infinite habitat is simulated by the interval [0, L], where L ( = 100 in our simulations) is large enough 
in comparison to oscillation length-scales. Then, far away from the interface, we set ρ(x ≥ L, t) = ρ0 . This is the 
setting used to produce Fig. 1b, by numerical integration of Eq. (3).

As sketched in Fig. 4, for each steady distribution attained at long times, we measure the wavelength, from 
which we obtain the wavenumber k̄ , and the decay length x̄ , by observing that the envelope of the oscillations 
decays as exp(−x/x̄).

The stationary spatial structures that emerge for x > 0 can be classified into the three types depicted in 
Fig. 1: sustained oscillations (lilac line, with k̄ > 0 and x̄ → ∞ ); decaying oscillations (orange line, with k̄ > 0 and 
finite x̄ ); exponential decay (gray line k̄ = 0 and finite x̄ ). In the case of Fig. 1b, these three types appear when D 
changes. We also systematically varied the shape parameter q to construct the phase diagram in the plane q− D 
presented in Fig. 5a.

To perform a theoretical prediction of k̄ and x̄ , within the linear approximation, we consider that these oscil-
lation parameters should be related to the poles of the integrand eikxQψ(k)/[−�(k)] in the expression for the 
inverse Fourier transform that provides the solution, according to Eq. (8). As far as the external field ψ(x) does 
not introduce non-trivial poles, like in the case of a Heaviside step function ( ψ̃(k) ∼ 1/k ), only the zeros of the 
complex extension of �(k) matter. The dominant (more slowly decaying mode) is given by the complex poles 
k = ±kr + iki (kr > 0) with minimal positive imaginary part that, except for amplitude and phase constants, will 
approximately provide patterns of the form e−kix cos(krx) , allowing the identifications

This theoretical prediction42 is in very good agreement with the results of numerical simulations, as shown in 
Fig. 5, explaining the observed regimes.

Moreover, the modes that persist beyond the interface have relatively small amplitudes, so that the system 
response is approximately linear in this region.

Lastly, recall that this analysis assumes mode stability ( �(k) < 0 ). When �(k⋆) > 0 , the system is intrinsically 
unstable, with the poles having null imaginary part (lying on the real axis). Nevertheless, the initially fastest 
growing mode, given by the maximum of �(k) , tends to remain the dominant one in the long  term41, yielding 
k̄ ≃ k⋆ for the sustained oscillations ( ̄x → ∞).

In order to obtain further insights, it is useful to consider the response function R̃(k) that, from Eq. (7), is

Despite missing some of the dynamical information contained in the phase of �(k) , it can provide a more 
direct estimation of the observed parameters than through calculation of the poles. In order to perform this 
estimation, we resort to the response function of a driven damped linear  oscillator43 described by the equation 
ε′′H (x)+ 2ζk0ε

′
H (x)+ k20εH (x) = f (x) . We have

with −�H(k) = −k2 + i2ζk0k + k20 , whose zeros (poles of 1/�H (k) ) are k = ±kr + iki = k0(±
√

1− ζ 2 + iζ ) , 
where k0 is the natural mode and ζ is the damping coefficient. Note that, under a step forcing f (x) = k20�(x) , 

(10)k̄ = kr and 1/x̄ = ki .

(11)R̃(k) ≡
|ε̃s(k)|2

|ψ̃(k)|2
=

ρ2
0

�2(k)
.

(12)R̃H (k) ≡
|ε̃H (k)|2

|f̃ (k)|2
=

1

|�H (k)|2
=

1
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Figure 4.  Characterization of stationary profiles. Long-time solutions approach a stationary state characterized 
by the wavelength 2π/k̄ and decay length x̄ . The slope of the straight black line is indicated in the figure. This 
example was obtained from numerical integration of Eq. (3), assuming a semi-infinite habitat, with parameters 
D = 0.003 , γq(x) with ℓ = 2 and q = −0.5.
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which simulates our present setting, those poles carry the essential information of the damped-oscillation solu-
tion, given by ε̃H (k) = f̃ (k)/[−�H (k)] , where f̃ (k) = k20(πδ(k)− i/k) . In the underdamped case ( ζ < 1 ), this 
solution is explicitly given by

where κ = k0
√

1− ζ 2 ( = kr ), ξ = 1/(ζk0) ( = 1/ki ), and the phase constant φ = tan−1(ξκ) . The solution for 
the overdamped case emerges for ζ > 1 , when the zeros of �(k) are pure imaginary with ki = k0(ζ ±

√

ζ 2 − 1) . 
The connection between the poles of R̃H (k) and the dynamic solution of the driven harmonic oscillator is pos-
sible because, as previously discussed, f̃  does not introduce relevant poles, and the forced solution has a form 
similar to the unforced one.

The harmonic model is, in fact, the minimal model sharing characteristics with our observed structures, and 
the correspondence between Eqs. (12) and  (13) will allow to estimate the oscillation features. In the limit of 
small ζ , R̃H (k) has a sharp peak, characterized by a large quality factor Q ≡ k⋆/�k , where �k is the bandwidth at 
half-height of R̃(k) around k⋆43. First, we see that the position of the peak of R̃H approximately gives the oscilla-
tion mode κ , according to k⋆ = k0

√

1− 2ζ 2 = κ +O(ζ 2) . Second, the bandwidth is related to the decay-length 
through �k = 2/x̄ +O(ζ 2)44.

Putting all together, as long as R̃(k) resembles the bell-shaped form of R̃H (k) , we can use the following esti-
mates, which are correct for the harmonic case to first order in ζ:

(13)εH (x) =
[

1−
k0

κ
e−x/ξ sin(κx + φ)

]

�(x) ,

(14)k̄ ≃ arg max
k

(R̃) ≡ k⋆ and x̄ ≃
2

�k
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Figure 5.  Phase diagram and characteristics of the stationary profiles as a function of diffusion coefficient D 
and q, in the semi-infinite habitat. We used the kernel γq(x) , with ℓ = 2 . (a) Phase diagram in the q− D plane, 
and cuts at (b) D = 10−3 , (c) q = −0.5 (d) q = 0.5 . The remaining parameters are a = b = 1 . In diagram (a), 
for each point in the grid, the type of regime was determined based on the values of 2π/k̄ and x̄ that characterize 
the solutions of Eq. (3): sustained oscillations ( ̄k > 0 and x̄ → ∞ , lilac), decaying oscillations ( ̄k > 0 and finite 
x̄ , orange), and pure exponential decay ( ̄k = 0 and finite x̄ , gray). In (a), the dashed and dotted lines correspond 
to ki = 0 and kr = 0 , respectively, where kr and ki are the real and imaginary parts of the zeros of �(k) , with 
the smallest positive imaginary part. In (b)-(d), symbols correspond to measurements of numerical profiles, 
according to Fig. 4, and solid lines correspond to the prediction in Eq. (10) (theoretical 1). Thin dashed lines 
correspond to the harmonic estimate (theoretical 2) given by Eq. (14).
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The expression for x̄ is also valid in the overdamped limit (large ζ in the harmonic model), in which case the 
maximum is located at k⋆ = 0.

The adequacy of the harmonic framework as an approximation to the response function of our model, R̃(k) , 
is illustrated in Fig. 6. In the case D = 2× 10−1 , the harmonic response is able to emulate R̃(k) . Then, if the 
harmonic approximation holds, one expects that the estimates given by Eq. (14) should work for the population 
dynamics case. In fact, they do work, as we will see below. Differently, when D = 2× 10−4 , R̃(k) does not follow 
the harmonic shape, it is multipeaked and the dominant mode observed in the simulations is not given by the 
absolute maximum.

In Fig. 5, we compare the values of k̄ and x̄ extracted from the numerical solutions of Eq. (3) with those esti-
mated by Eq. (14) (dashed lines) and, more accurately, with those predicted from the poles of R̃(k) (solid lines), 
which perfectly follow the numerical results. The harmonic estimates are shown in the full abscissa ranges, as a 
reference, even in regions where the approximation is not expected to hold, because discrepancies give an idea 
of the departure from the harmonic response.

Figure 5c shows outcomes for a fixed q < 0 ( q = −0.5 ), corresponding to a vertical cut in the diagram 
of Fig. 5a. Sustained oscillations (i.e., x̄ → 0 ) can emerge for q < 0 , when diffusion is weak, namely, for 
D < Dc ≃ 0.0025 (lilac colored region), where Dc is obtained from �(k⋆) = 0 . When D increases beyond this 
critical value, oscillations are damped with a finite characteristic length x̄ . For even larger values of D, oscillations 
completely disappear ( ̄k → 0 ). Note that the comparison between numerics and harmonic theory (symbols vs. 
dashed lines) is good close to the pattern transition point Dc , where the response peak is sharp (large Q). Despite 
the lack of agreement for larger D, the harmonic approximation qualitatively works with a shift of the transition 
from attenuated oscillations to exponential decay.

Figure 5d (which corresponds to vertical cut at q = 0.5 in the diagram of Fig. 5a) shows the corresponding 
results for a fixed q > 0 ( q = 0.5 ), which is characterized by the absence of sustained patterns.

Above D ≃ 0.02 , the response R̃(k) is unimodal, a bell-shaped curve that resembles the harmonic response, 
as in the case D = 0.2 (black lines) in Fig. 6, producing a good agreement between harmonic and numerical 
results, despite being far from the large-Q limit. However, for smaller values of D, the profile is multi-peaked, 
and not even k⋆ predicts the observed mode, indicating that the harmonic approximation does not hold, as for 
D = 2× 104 (red lines) in Fig. 6. In this regime, it is crucial to analyze the response function in terms of complex 
poles in order to extract the dominant mode and its decay.

Figure 5b displays k̄ and x̄ as a function of q, for a fixed value of the diffusion coefficient ( D = 10−3 ), corre-
sponding to a horizontal cut in Fig. 5a. Recall that, the smaller the value of q, the more confined is the interaction 
(thus, the larger is x̄ ). For q < qc ≈ −0.093 there are sustained oscillations ( ̄x → ∞ ). Above qc , oscillations decay, 
which is indicated by the transition of 1/x̄ from null to finite values. Again, near this transition, the harmonic 
approximation works well, but, far from the critical point, it fails, as noticed above q ≃ 0.2 , where there is a 
strong mismatch between the main mode given by the harmonic approximation and the numerical one. Also 
in this case, a small hump in the response function represents the dominant mode, as predicted by the analysis 
of the complex poles of R̃.

Two‑dimensional landscapes. In this section, we show results of simulations for relevant 2D scenarios, 
verifying that the picture of induced oscillations described up to now for 1D also holds in 2D.

Snapshots of simulations for different 2D landscapes are presented in Fig. 7: a refuge (a), a defect (b), multiple 
defects (c) and spatial randomness (d) where many spatial scales are present. It is worth remarking that, in 2D, 
for the kernel γq , patterns only appear in homogeneous landscapes if q < qc ≃ 0.25 (i.e., if �(k⋆) > 0 ). Thus, in all 
the cases of Fig. 7 (using q = 0.5 ) we would not find oscillations if the landscape were homogeneous. In Fig. 7, we 
see that for 2D the same picture as in 1D is found: decaying oscillations appear near landscape disturbances with 
a clear wavenumber and decay length. The linear response approach presented in Semi-infinite habitat section 
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Figure 6.  Comparison of R̃(k) with the harmonic response R̃H (k) , both normalized to their maximal values. 
R̃(k) of our model, given by Eq. (11) (solid lines) and harmonic response R̃H (k) , given by Eq. (12) (dashed 
lines), where the values of k0 and ζ were obtained by fitting Eq. (12) to R̃(k) . In all cases, q = 0.5 , ℓ = 2 and 
two different values of D shown in the legend were considered. Notice that for D = 2× 10−1 , the response can 
be described by the harmonic approximation. For D = 2× 10−4 , the response is multipeaked, indicating that 
the harmonic approximation fails. In fact, the dominant mode observed in the simulations is not given by the 
absolute maximum, but by the small hump at k ≃ 2.1 , as predicted by the analysis of complex poles.
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can straightforwardly be extended to 2D. Figure 7a–c shows the case in which defects either increase or decrease 
the population growth rate. This can be promoted by ecosystem engineers such as  termites38. Figure 7d shows 
a case where the landscape is random (in space, but time-independent). This situation, investigated in many 
previous  studies20,36, produces a pattern that is noisy but has a dominant wavelength, which is related to ℓ . Fur-
thermore, although there is not a clear identification of decay length from pattern observation, the linear theory 
would allow one to estimate the characteristic spatial correlation length from the width of the Fourier spectrum.

Inferring information about the interactions
In this section, we extend the discussion about the mapping between kernel and oscillation parameters, showing 
how information about the interactions can be extracted from landscape-induced oscillations. For that purpose, 
using the theoretical predictions given by Eq. (10), we obtained the contour lines for certain wavelengths k̄ and 
decay lengths x̄ , in the space of the kernel parameters, as shown in the plane (q, ℓ) of Fig. 8a, for the kernel γq : 
k̄(ℓ, q) = constant , and x̄(ℓ, q) = constant.

These contour lines depend both on ℓ and q. However, while k̄ is strongly controlled by the interaction scale, ℓ , 
x̄ is more closely related to the shape parameter q. As a consequence, there is a crossing of the lines that uniquely 

−0.25 0 0.25

ρ(x, t)− ρ0

a b c d5 a.u.

Figure 7.  Long-time spatial distribution in 2D. Simulated scenarios: (a) a circular region (with radius 5 a.u., 
highlighted with a black dashed boundary) where the growth rate is positive, a (in a strong negative background 
a− A ); (b) a circular region (with radius 2.5 a.u., highlighted with a black dashed boundary) where the growth 
is strongly negative a− A (while outside, it is positive, a); (c) four regions with negative growth rates a− A (in 
a positive background, a); (d) time-independent random landscape (where each spatial cell is assigned a growth 
rate uniformly distributed in [0.5a, 1.5a]). In all cases the interaction kernel is γq , with ℓ = 2 and q = 0.5 , 
D = 10−3 , a = b = 1 and A = 10 . Colors show the deviation from the homogeneous state ρ(x, t)− ρ0 (where 
ρ0 = 1 for the chosen values of the parameters). For numerical integration, a pseudo-spectral  method45 was 
used with �x = 0.2 and �t = 10−3.
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Figure 8.  Determination of oscillation wavenumber, k̄ , and decay length, x̄ . Contour lines for fixed 
wavenumber (solid lines) and decay lengths (dashed lines). Colors for different oscillatory regimes are applied 
to the background as in previous figures. We considered the interaction kernel γq , given by Eq. (4), in (a) and 
γα ≡ N−1

α e−|x/ℓ|α in (b). The remaining parameters are D = 10−3 and a = b = 1 . The highlighted points 
correspond to (k̄, x̄) = (3, 1) (gray square) and (k̄, x̄) = (5, 2) (black circle). (c), (d) Oscillations produced by 
the kernels shown in the respective insets (case γq in purple circles and γα in black crosses). For both panels, 
the inset shows the kernels γq (solid purple) and γα (dashed black) obtained from the oscillation’s parameters 
for the highlighted points: (c) (ℓ, q) = (1.345, 0.433) , (ℓ, 2− α) = (1.450, 0.079) (gray squares), and (d) 
(ℓ, q) = (1.313,−0.116) , (ℓ, 2− α) = (0.871,−0.413) (black circles). The gray lines show a sinusoidal fit for 
each case, namely ρH (x) = 1+ Be−x/x̄ sin(k̄x + φ) , with mode, k̄ , and decay, x̄ , as predicted by the mapping, 
while B and φ were adjusted.
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identifies the kernel properties. Of course, this is possible for the decaying-oscillation phase (orange region), 
in which oscillations have a well-defined k̄ and x̄ . For the sustained-oscillation ( ̄x → ∞ ) and the exponential 
relaxation ( ̄k = 0 ) phases, the stationary distribution does not carry sufficient information to infer the specific 
values of q and ℓ (in the perspective of the linear theory).

For comparison, in Fig. 8b, we perform the same analysis considering the stretched-exponential kernel, 
γα(x) ≡ N−1

α exp(−|x/ℓ|α) , where Nα is the normalization factor. Likewise γq , this kernel also allows us to con-
template changes in the range and shape of the competitive interactions. Since, for γα , compactness increases 
with α , and sustained spatial oscillations require 2− α < 024, in Fig. 8b, we show contour lines for the same 
values used in Fig. 8a, in the plane defined  by parameters 2− α and ℓ . Also, in this case, the results show that 
the identification of the kernel features is possible. Additional results using this kernel can be found in the Sup-
plementary Information.

To test the inference procedure, we imagine the scenario in which spatial oscillations with certain values of 
k̄ and x̄ are observed. Then, assuming that the population distribution evolves according to Eq. (3), one pro-
poses a generalized form for γ (as one of the two discussed above) and extracts the kernel parameters from the 
(ℓ,β) ↔ (k̄, x̄) mapping (Figs. 8a,b), where β represents either q or 2− α (for γq and γα , respectively).

In Fig. 8c,d, we verify that, in fact, using the extracted kernel parameters, (ℓ,β) , numerical simulations pro-
duce spatial oscillation with the correspondent (k̄, x̄) (black circles and gray squares). Moreover, in the insets 
of Fig. 8c,d, we compare the inferred kernel under the γq and γα representations. Note that, regardless of the 
particular choice made for γ , both profiles have the same coarse-grained appearance, allowing to qualitatively 
access the characteristic length and compactness of the influence function. However, we stress that since the 
information provided by the theory is limited, it is not possible to infer exactly the form of γ just by measuring 
(k̄, x̄) of the oscillations. To access the fine details about the kernel, improvements of this methodology could 
look for information encoded in the spatial transient and nonlinear effects that occur close to the interface.

Final remarks
Heterogeneities can modify system stability  conditions31,35,36, inducing the emergence of states that would not be 
present under homogeneous conditions. In the context of biological populations with the potential to develop 
spatial patterns, it would be interesting to establish if the conditions for the occurrence of pattern formation can 
be modified by the presence of environmental inhomogeneities. Also, it is natural to ask under which conditions 
or how heterogeneities can be used to help in the task of identifying details about microscopic interaction from 
the observation of the macroscopic  patterns39.

The first question was considered by Page et al.34 in the context of two-species reaction–diffusion models 
undergoing a pattern formation instability of the Turing type. It was found that the range of parameters for which 
periodic solutions were possible was extended by the presence of a discontinuity in some system parameter. Here, 
we have addressed this issue in a model of a population of competing organisms. In particular, we have considered 
a nonlocal FKPP equation which includes reproduction, diffusion, and competition between individuals at a dis-
tance. Non-local competitive interactions can arise due to different mechanisms, as in root-mediated competition 
for water in  vegetation10,11,38, and release or consumption of intermediate substances by the  organisms10,14,15,19. 
In all cases, the fact that competitive interactions are nonlocal plays a major role in the spatial organization of 
the population. In particular, pattern formation can occur in a manner related to the Turing case, although in 
the FKPP approach a single species is explicitly modeled, with competitive interactions effectively captured by 
the influence function, γ . The kernel family γq was chosen in the examples because it allows shapes of different 
compactness. But results for another important class, the stretched exponential family, were presented in Sup-
plementary Information. A necessary condition for the development of stable spatially periodic patterns starting 
from a uniform solution is that the interaction profile is sufficiently compact, meaning sub-triangular ( q < 0 ), 
for the q-exponential (see Fig. 2a), or platykurtic ( α > 2 ), for the stretched exponential family (see Fig. S1).

Previous work already showed that these conditions become less strict when the initial condition contains 
sharp changes: propagating-front solutions of the nonlocal FKPP equation develop oscillatory patterns in cases 
when the influence function does not satisfy the above compactness  condition20,46. Here, we have investigated 
how the above scenarios are modified by an abrupt change in the ecological landscape. We have seen that modes 
which are suppressed in the homogeneous-landscape case are activated by the interface, producing decaying 
oscillations. Activation of modes have been observed in particular realizations of the nonlocal FKPP triggered 
by  random20,33 heterogeneities. In these cases, the variation of the equation parameters extends to all the space, 
generating a noisy pattern that has a clear dominant wavelength (see Fig. 7d). A localized perturbation (like the 
interface we consider) is more useful because it puts into evidence, besides the dominant wavenumber, also the 
decay length (see Fig. 7b), which reflects how a perturbation spreads in the system. When the landscape variation 
occurs in all points of space, the decay length is blurred. The implication of these results (alike in a multispecies 
reaction–diffusion  situation34) is that the range of parameters for which spatial structures can occur in biological 
populations can be much larger than superficially expected.

Deepening further into the interplay between nonlocality and environmental heterogeneity, we have shown 
here that the presence of heterogeneities can reveal information about interaction scales that would otherwise 
be hidden. This is possible due to the existence, once a functional form for the influence function is fixed, of a 
one-to-one correspondence between the parameters of the competitive interactions (shape and range) and the 
landscape-induced oscillation features (wavenumber and decay length). So, the natural or artificial interposition 
of an interface can act as a lens that allows us to see what is veiled in a homogeneous landscape. This might be 
particularly useful in situations where the details of the long-range influence are not perfectly clear, depending 
on a complex combination of ecological factors. Although the approach provides the coarse-grained profile 
of the influence function, without distinguishing other fine details, our results allow to take a step forward in 
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the direction of understanding the connection between interactions at the individual level and the emergent 
macroscopic  patterns39.

The numerical results were perfectly predicted by the analysis of the poles of the system response function. 
Additionally, we have presented a harmonic approximation that has limitations but provides a more direct insight. 
The analytical results were obtained for general forms of the landscape �(x) and can be used to understand the 
effects of arbitrary heterogeneous landscapes, like the multiple and random cases shown in Fig. 7. But we have 
focused on the case of a single interface because of its above-discussed features.

It is worth remarking that, due to computational cost, we compared theoretical predictions with numerical 
simulations mostly for 1D, but we showed also similar outcomes in some 2D environments. Lastly, it is also inter-
esting to remark that the reported results can reach contexts beyond population dynamics, since the interplay 
between nonlocality and heterogeneity is found in diverse systems.
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