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Chondrogenesis of human 
amniotic fluid stem cells 
in Chitosan‑Xanthan scaffold 
for cartilage tissue engineering
Carolina C. Zuliani1, Ingrid I. Damas1, Kleber C. Andrade2, Cecília B. Westin3, 
Ângela M. Moraes3 & Ibsen Bellini Coimbra1*

Articular chondral lesions, caused either by trauma or chronic cartilage diseases such as osteoarthritis, 
present very low ability to self‑regenerate. Thus, their current management is basically symptomatic, 
progressing very often to invasive procedures or even arthroplasties. The use of amniotic fluid stem 
cells (AFSCs), due to their multipotentiality and plasticity, associated with scaffolds, is a promising 
alternative for the reconstruction of articular cartilage. Therefore, this study aimed to investigate 
the chondrogenic potential of AFSCs in a micromass system (high‑density cell culture) under insulin‑
like growth factor 1 (IGF‑1) stimuli, as well as to look at their potential to differentiate directly when 
cultured in a porous chitosan‑xanthan (CX) scaffold. The experiments were performed with a CD117 
positive cell population, with expression of markers (CD117, SSEA‑4, Oct‑4 and NANOG), selected 
from AFSCs, after immunomagnetic separation. The cells were cultured in both a micromass system 
and directly in the scaffold, in the presence of IGF‑1. Differentiation to chondrocytes was confirmed 
by histology and by using immunohistochemistry. The construct cell‑scaffold was also analyzed by 
scanning electron microscopy (SEM). The results demonstrated the chondrogenic potential of AFSCs 
cultivated directly in CX scaffolds and also in the micromass system. Such findings support and 
stimulate future studies using these constructs in osteoarthritic animal models.

Injuries to articular cartilage can be caused mainly by traumas, such as those occurring in athletes or by dis-
eases that can affect this tissue, such as osteoarthritis (OA)1,2. In people over 65 years old affected by OA, tissue 
degeneration is, at least in part, responsible for clinical manifestations such as pain and functional incapacity, 
leading to high costs for health  systems3. Chondral lesions have been diagnosed earlier and at a higher frequency. 
However, the available treatments are palliative, focused on the relief of symptoms and without robust evidence 
of modification in disease  progression4.

Several sources of stem cells have been studied for the regeneration of different tissues. In the case of hyaline 
cartilage, cells from adipose  tissue5–7, bone  marrow7,8, umbilical cord  blood9,10,  periosteum11,12, dental  pulp13, 
 placenta14, amniotic  fluid7,15 and  embryos16 have already been investigated. Among these many possibilities, the 
potential use of amniotic fluid stem cells (AFSCs) has attracted attention due to their low immunogenicity and 
tumorigenic characteristics when implanted in vivo and due to the absence of ethical problems, since these cells 
can be collected during routine amniocentesis procedures. In addition, these cells are isolated by adherence 
to culture flasks and are easily  expanded17. AFSCs can differentiate into cells of the three germ layers (endo-
derm, mesoderm, and ectoderm) and have recently been shown to be able to become pluripotent, the so-called 
induced pluripotent stem cells (iPSCs)18. AF has great variability of cell types with characteristics of intermediate 
phenotype between mesenchymal stem cells (MSCs)19 and embryonic stem cells (ESCs). The amniotic fluid is 
composed of water, different types of chemicals and heterogeneous populations of cell types. The cells present in 
AF during the second trimester of pregnancy are mainly of fetal origin and are classified into and subpopulations 
according to their  morphology17,20. Among those of fetal origin, a subpopulation of undifferentiated cells can be 
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characterized by the expression of the surface marker c-kit (CD117) or type III tyrosine kinase receptor for stem 
cell  factor21. In addition, this type of cell shows expression of markers such as Octamer transcription factor-4 
(Oct-4)22 and Stage-specific embryonic antigen-4 (SSEA-4)20,21. Furthermore, these cells have high proliferation 
rates and maintain their undifferentiated phenotype even after many  passages23,24.

The use of stem cells allied to biocompatible and biodegradable three-dimensional scaffolds to heal injured 
regions seems to be an interesting  solution25,26. Numerous materials have been investigated as potential scaf-
folds. These include both synthetic materials, such as polystyrene, poly-l-lactic acid (PLLA)27, polyglycolic acid 
(PGA)28 polylactic-co-glycolic acid (PLGA), and polyethersulfone (PES)29—or natural materials, mainly those 
produced with natural polysaccharides such as agarose, alginate, and chitosan, which present ideal properties 
for stem cell (SC)  chondrogenesis30.

Chitosan is a polymeric biomaterial derived from the deacetylation of chitin, which, in turn, can be obtained 
from crustacean shells. Above its isoelectric point, chitosan becomes positively charged, which makes it capable 
of forming polyelectrolyte complexes with negatively charged polymers such as xanthan gum, a polysaccharide 
naturally synthesized by the bacterium Xanthomonas campestris and widely used in the pharmaceutical and 
food  industries31. This study aimed to demonstrate chondrogenic differentiation of human amniotic fluid stem 
cells induced by insulin-like growth factor 1 (IGF-1) after high-density culture in a chitosan-xanthan gum (CX) 
support, aiming at the production bio-dressing for the treatment of small lesions in articular  cartilage32.

Results
Characterization of AFSCs. The cells tested fulfilled all three criteria established by the consensus of the 
International Society for Cellular Therapy for characterization of  MSCs33 (Fig. 1).

Microscopic analysis showed adhesion of the cells to the surface of the polystyrene culture flasks and typical 
fibroblast-like aspect (Fig. 1a). Under specific stimuli, they were able to differentiate in vitro into cells of the three 
major mesenchymal lines. Cultures with adipogenic stimulation exhibited fat vacuoles inside oil red stained cells. 
Cells with osteogenic stimulation showed abundant calcium matrix formation observed in red by alizarin red 
staining, and those stimulated with chondrogenic medium presented formation of a rich GAGs matrix stained 
by Alcian blue (Fig. 1b).

As observed in Fig. 1c and summarized in 1 day, the immunophenotypic characterization of AFSCs, after 
magnetic separation, showed positivity for CD90, CD105, and CD73 mesenchymal stem cell markers and nega-
tivity for hematopoietic lineage markers CD19, CD34, CD45, and HLA-DR. The cells also showed positivity 
for CD44, CD49c, CD151, and CD166 cell condensation markers as well as for Oct-4, NANOG, SSEA-4, and 
CD117 markers.

Chondrogenesis in micromass culture. After 21 days of culture, macroscopic whitish and shiny struc-
tures were observed. The histological analysis in sections stained by H&E (Fig. 2a), Masson’s trichrome (Fig. 2b), 
Alcian blue (Fig. 2c), and Picrosirius red (Fig. 2d) revealed abundant matrix formation, suggestive of collagen 
and glycosaminoglycans (GAGs), the main components of the extracellular matrix of cartilage. The presence 
of type II collagen was confirmed by immunohistochemistry in structure cuts (Fig. 2e) using polyclonal anti-
collagen II antibody.

Chondrogenic differentiation of  CD117+ AFSCs directly in the CX scaffold. The scaffolds used 
proved to be flexible, opaque, corrugated, and porous (Fig.  3a–c), with thickness between 887 and 969  μm. 
Cytotoxicity assays by MTT technique demonstrated that daily replacements of the culture media were required 
for 7 days prior to cell inoculation to attain complete hydration and pH stabilization of the biomaterial. Repre-
sentative images of the scaffold are shown in Fig. 3 along with typical scanning electron microscopy results of 
the cells 7, 14, and 21 days after inoculation (Fig. 3d–f). Structures similar to those seen in the histology and 
immunohistochemical slides were observed in Fig. 4, indicating adherence of the cells to the tested material, 
intense cell growth, and evident extracellular matrix network production.

After 21 days, the CX constructs cell-scaffold, stimulated or not with IGF-1, were analyzed histologically, 
and the representative results are shown in Fig. 4 for both groups. H&E staining (Fig. 4a,b) indicated that the 
cells remained viable inside the material, with intact cells with purplish nuclei and reddish cytoplasm. Based 
on specific staining for cartilaginous tissue, the group of IGF-1 stimulated cells presented differentiation with 
collagen production, confirmed by blue staining among the cells in the sections stained by MT (Fig. 4d), and a 
network of reddish when stained by Picrosirius red (Fig. 4f). The production of GAGs, stained light blue among 
the cells, was also observed in sections stained by Alcian blue (Fig. 4h). In cells without stimulation (control 
group), a small and discrete production of collagen in the MT slides was observed (Fig. 4c), probably due to the 
micromass-like grouping effect.

In sections incubated with anti-collagen II and anti-aggrecan antibodies, positive labeling was observed in 
both experimental groups (Fig. 4i–l), without and with IGF-1 stimulus. Nevertheless, the latter appeared to be 
more intense than that observed in the non-stimulated group. The negative control did not show any marking 
(results not shown).

Discussion
This study demonstrates that it is possible to differentiate stem cells from human amniotic fluid into chondrocytes 
when seeded directly in an efficient and low-cost CX scaffold produced by the combination of two renewable 
biopolymers, chitosan and xanthan gum, as compared to cells cultured according to the micromass approach. It 
is a promising biomaterial for the treatment and repair of small articular cartilage lesions associated with trauma 
or diseases such as  osteoarthritis1.
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Figure 1.  Characterization of human AFSCs: (a) cells showing adherent growth, exhibiting fibroblast-like aspect (400 ×); 
(b) differentiation potential in mesenchymal lineage after culture in specific medium (400 ×): adipogenic, oil Red O staining 
indicating lipidic vesicles; osteogenic, alizarin red staining indicating calcium matrix formation and chondrogenic, Alcian blue 
staining evidencing glycosaminoglycan presence; (c) immunophenotype analysis of AFSCs by flow cytometry; (d) percentage 
of cells showing specific markers of MSC, hematopoietic, multipotency, and chondrogenic potential in different samples.
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As noted herein, AFSCs show high cell proliferation in culture without loss of phenotype, as well as multipo-
tency or partial pluripotency characteristics confirmed by the presence of typical ESC markers (Oct4, SSEA4, 
c-kit, or CD117)20. In addition, these cells show the ability to differentiate into the major mesodermal lines and, 
when compared to other sources of stem cells, have lower immunogenicity and are not  tumorigenic19,20,34. It is 
also noteworthy that they can be obtained in routine examinations for prenatal genetic diagnosis from the backup 
samples without increasing the low risk of the procedure itself, for which ethical concerns are not a significant 
restriction compared to the collection of embryonic  tissue20. Such characteristics indicate that their clinical use 
could be important and strategic in the treatment of articular cartilage regeneration. In a recent  review17, several 
studies showed evidence of the potential use of AFSCs in clinical applications related to cell therapy in different 
areas such as hematogenous, gastrointestinal, cardiovascular, nervous, respiratory, urinary, and musculoskeletal. 
However, little research has been done on AFSCs chondrogenic properties applied to tissue engineering, which 
makes further studies in this area particularly important in view of the low potential for spontaneous healing 
of cartilaginous tissue.

This study presented a great variability of cell lines in the amniotic fluid, which made it necessary to perform 
two cell selection steps to obtain a more homogeneous population. Initially, only adherent cells were analyzed, 
and subsequently surface antigen positive cells separated using a CD117 (c-Kit) magnetic immunoassay were 
investigated. As found in other  studies21,24, our results also confirm that  CD117+ AFSCs have all the minimum 
criteria for classification as human  MSCs33. However, unlike expected by the proposed consensus, the presence 
of CD34 and CD45 in low levels of expression was detected, which was also reported by Ditadi et al.35. Likewise, 
in a recent  study23 based on the analysis of 165 AF samples, both CD34 and CD45 were expressed in cells and 
the amount of these markers increased with the number of passages, while CD90 decreased. In our study, the 
cytometric analyses were performed after four passages, and the quantities found for these markers were similar 

Figure 2.  Micromass results stimulated with IGF-1 for 21 days by chondrogenic differentiation: Histological 
analysis (400 ×): H&E stain (neoformed matrix appears in pink) (a), Masson’s trichrome (collagens appear in 
blue) (b), Alcian Blue stain (glycosaminoglycans appear in light blue) (c), and Picrosirius Red stain (collagens 
fibers appears in red) (d); positive immunohistochemical staining for specific Type II collagen (e) and negative 
control (f).
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and compatible with those found in that study. Perhaps these findings may be justified by the fact that the fetal 
stem cells found in the amniotic fluid, notably in the early stages of gestation, largely resemble embryonic cells 
and, as recently suggested by Loukogeorgakis and De  Coppi19, those cells would present an intermediate cellular 
phenotype between ESCs and adult MSCs.

Flow cytometry analysis also showed high levels of cell condensation markers expression: CD49c (α3 integ-
rin), the major CD44 (hyaluronan receptor), CD151 (tetraspanins), and CD166, all indicative of  CD147+ AFSCs 
chondrogenic potential. These findings were important for the purpose of this study. Subpopulations of chon-
drocytes express high levels of membrane markers and genes involved in cell–matrix interactions essential to 
the onset of chondrogenesis, with formation of cartilaginous tissue with higher levels of collagen type II and 
 GAGs36. Initially,  CD117+ AFSCs were cultured for 21 days in chondrogenic medium in the presence of IGF-1 
at 10 ng/ml in a high-density micromass culture. Previous studies from our group have shown the efficiency of 
this system in the induction of chondrogenesis from umbilical cord MSCs and AFSCs under the influence of 
TGFβ39,11,37. In this study, after 21 days of culture, it was possible to show the formation of whitish pellets with 
hardened consistency, suggesting, at least macroscopically, the production of a tissue very similar to hyaline car-
tilage. When analyzed histologically, cellular aggregates permeated by abundant extracellular material suggestive 
of cell matrix production were observed (Fig. 2). Section treatment with specific cartilage staining evidenced the 
formation of collagen fibers stained in blue by Masson’s trichrome (Fig. 2b) and varying in intensity from pale 
yellow to intense red according to Picrosirius staining (Fig. 2d). Likewise, the formation of glycosaminoglycans in 
light blue was evidenced by Alcian blue staining (Fig. 2c), which, as well as collagen, is a fundamental component 
of cartilage. In addition to demonstrating matrix formation, it was important to prove that the collagen fibers 
produced were type II collagen, the most specific type of hyaline cartilage, by immunohistochemistry analysis 
(Fig. 2e), thus proving in an unprecedented way the chondrogenic differentiation of these cells in this system 
under IGF-1 stimulation, similarly to that observed previously by our group under the stimulation of TGF-β315.

In a second step, the  CD117+ AFSCs were injected directly into the porous scaffold of chitosan-xanthan. 
The choice of this scaffold was based on the characteristics of chitosan as a biopolymer widely used in tissue 
engineering due to its high availability, biocompatibility, and biodegradability. The experience of our group with 
chitosan-xanthan scaffolds demonstrated their effectiveness when combined with mesenchymal stem cells in 
the treatment of cutaneous  lesions38. The physical–chemical characterization of the scaffold used was previously 
described by our group and is reported in detail  elsewhere13. The experiments performed in the present studies 
pointed out initially to low scaffold cytotoxicity for  CD117+ AFSCs. However, consecutive washings with culture 
medium were able to circumvent the problem associated to the initial low matrix pH.

Figure 3.  Macroscopic aspect of the CX scaffold (a) SEM micrographs of CX: section porous structure (b); 
surface and morphology (c). Aspect of  CD117+ AFSCs cultured in CX analyzed in different periods. The black 
arrows indicate the cells adhered to the scaffold with 7 days (d), 14 days (e), and 21 days of culture, exhibiting 
many adhered cells and evident matrix network production (f).
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In the histological analysis of the pH stabilized matrix and cells construct, viable cells well distributed 
throughout the internal pores of the scaffold, as well as on its surface, were observed, showing extensive forma-
tion of collagen-glycosaminoglycan extracellular matrix. These findings were even more evident with positive 
immunoblotting by anti-Collagen type II and anti-Aggrecan antibodies. Images obtained from SEM confirmed 
these results of an abundant number of cells with rich extracellular matrix network formation well distributed 
both on the surface of and inside the scaffolds. The findings were similar to those of a previously published study 
in which the same scaffold was used, but with stem cells collected from human dental pulp stimulated for chon-
drogenic differentiation with  kartogenin13. Similarly, some studies have been successful with the use of chitosan 
and silk fibroin scaffolds to culture adult bovine  chondrocytes39 or mesenchymal stem cells from mouse bone 
 marrow40 as a promising approach to tissue engineering to repair defects of cartilage and to study the formation 
of cartilaginous tissue in vitro. Recent studies using different scaffolds based on PES, either alone or with poly-
aniline (PANI) blend, showed chondrogenesis from human adipose tissue  cells41, bone marrow mesenchymal 

Figure 4.  Chondrogenic differentiation of  CD117+ AFSCs seeded into CX scaffold for 21 days with and without 
IGF-1 stimulation. In the group stimulated by IGF-1 (b,d,f,h,j,l) more compact agglomeration of the cells is 
observed,with a higher amount of extracellular material compared to that noticed in the non-stimulated control 
group (a,c,e,g,i,k). H&E staining (a,b); collagen (indicated with *) stained in blue by Masson´s trichrome (MT) 
(c,d); collagen fibers shown in red by Picrosirius red (PR) (e,f); glycosaminoglycans (‡) stained light blue using 
Alcian blue (AB) (g,h). Labeling with anti-collagen type II antibody (COL II) (i,j) and anti-aggrecan antibody 
(ACAN) (k,l) in the stimulated group compared to the control group.
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stem cells (BMSCs)42, as well as induced iPSC chondrogenesis isolated or under TGF-β3  stimuli29,43. Kolambkar 
et al.44 in 2007 investigated the differentiation of hAFSC in chondrocytes using a total AFSC cell population in 
pellets and in alginate hydrogel, differently from ours, with CD117 + cells selected and differentiation in micro-
mass and directly in a chitosan-xanthan scaffold.

Finally, this study made it possible to show for the first time the efficacy of human AFSCs as an important 
source for the induction of chitosan-based scaffold chondrogenesis. Limitations of this study include lack of 
a quantitative method to determine the expression of cartilage-specific genes and hypertrophy markers, such 
as type X collagen, to better evaluate cell differentiation. Also, functional studies of chondral lesions in animal 
models to confirm the usefulness of this cellular dressing for future clinical use of the construct in humans are 
needed. Considering the positive results obtained, we believed that, in a next step, it would be important to stand-
ardize a quantitative method and to evaluate the scaffold-cell performance in a chondral lesion animal model.

Methods
All experimental protocols, including informed consent, were approved by the Ethical Committee of the Univer-
sity of Campinas, São Paulo, Brazil (approval CAAE: 31984414.6.0000.5404). All the patients provided written 
informed consent for the amniocentesis and the use of samples and data for research purposes. All experiments 
were performed in accordance with relevant guidelines and regulations, including the Declaration of Helsinki—
Ethical Principles for Medical Research Involving Human Subjects.

Isolation, expansion, and selection of  CD117+ human amniotic fluid stem cells. Amniotic fluid 
samples were obtained from routine amniocentesis performed during the 2nd trimester of gestation from 43 
women at the Center for Integrated Health Care for Women (CAISM), University of Campinas (Campinas, SP, 
Brazil). Aliquots of 10 mL of human amniotic fluid (AF) were obtained from each woman and, after karyotype 
analysis, only those not showing alterations were used in the study, in a total of 22. Samples from four women 
were used in experiments standardization, eight in micromass differentiation, and ten in scaffold differentiation. 
The harvested material was centrifuged at 300G for 10 min and the precipitate was then transferred to 25 cm2 
T-Flasks with MEM α (Minimum Essential Medium α) (Gibco) for cell expansion supplemented with 20% fetal 
bovine serum (Gibco) and 1% penicillin/streptomycin solution (Gibco). The cells were incubated at 37 °C with 
5%  CO2. After 6 days, non-adherent cells were discarded and the culture medium was exchanged. Upon reach-
ing 75% confluency, the cells were detached using 0.25% trypsin/EDTA solution (Gibco) for 5 min at 37 °C and 
transferred to larger T-Flasks. After the cells reached 75% confluency, they were labeled with specific antibody 
and a magnetic immuno-separation procedure of CD117 (c-kit) positive  cells21 was performed, according to 
the manufacturer’s protocol (Human CD117 MicroBead kit-MACS-Miltenyi Biotec). The  CD117+ AFSCs were 
cultured up to the fourth passage for characterizations and chondrogenesis experiments using the micromass 
culture system and the chitosan-xanthan gum scaffold.

Characterization of  CD117+ AFSCs. Samples from four women were used in this step. The cells were 
evaluated according to the criteria for characterization of  MSCs33. Regarding adhesion to polystyrene and for-
mation of fibroblast-like forming colonies,  immunophenotypic15 characterization was done by flow cytome-
try by labeling the cells with the following antibodies: CD73-PECy7, CD90-FITC, CD105- FITC, CD19-PE 
Cy7, CD34-APC Cy7, CD45-APC, HLA-DR-PERCP Cy5.5, CD44-PERCP Cy5.5, CD49c-PE, CD151-APC, 
CD166-PE, CD117–APC, SSEA4-FITC, Oct4-PE (Biolegend, San Diego, CA), and NANOG-PERCP Cy5.5 (BD 
Pharmingen). The analysis was done in BD FACSCanto or BD FACSVerse and the results were analyzed using 
BD FACSDiva.

Analysis of differentiation into the three main mesenchymal lines was performed using adipogenesis, chon-
drogenesis, and osteogenesis StemPro differentiation kits (Gibco), according to the manufacturer’s protocol. 
0.5% oil Red O (Sigma-Aldrich), Alcian blue (Sigma-Aldrich), and Alizarin red (Sigma-Aldrich) were used 
respectively to observe adipogenesis, chondrogenesis, and osteogenesis.

Differentiation of  CD117+ AFSCs in micromass culture. Eight AFSC samples from different women 
were used in this step. The cells were differentiated in a high-density micromass  culture45 upon stimulation with 
IGF-1. After expansion, the cells were centrifuged at 300g for 10 min, diluted to 15–20 × 106 cells/ml, and then 
approximately 3 × 105 cells were placed in a 96-well V-shaped bottom plate (Corning) and incubated at 37 °C and 
5%  CO2 for 2 h to allow them to adhere to the wells. Next, 0.2 mL of chondrogenic medium composed of Dul-
becco’s modified Eagle’s medium glucose (Gibco), supplemented with 50 μg/mL ascorbic acid (Sigma-Aldrich), 
40 μg/mL proline (Sigma-Aldrich), 1% insulin-transferrin-selenium (ITS + 1) (Sigma-Aldrich), 0.1 μmol/L dex-
amethasone (Sigma-Aldrich), and 10 ng/mL IGF-1 growth factor (R&D Systems), was gently added to the wells. 
The cells were cultured during 21 days under the same conditions with exchanges of culture medium every 3 or 
4 days.

Differentiation of  CD117+ AFSCs directly in chitosan‑xanthan scaffold. Cells from 10 different 
women were used in this step. The CX scaffold was prepared using chitosan and xanthan at a ratio of 1:1, as 
described by Bellini et al.38 and adapted by Westin et al.13. Indirect toxicity of CX scaffolds to AFSCs was assessed 
by the colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), according to meth-
odology previously published by the  authors13.

Circular scaffolds of 1.5-cm diameter were placed in 24-well plates and sterilized with ethylene oxide (EO) 
by exposure to Oxyfume-30 (30% EO and 70% carbon dioxide) for 8 h at 40 °C and relative humidity of 30–80% 
at Acecil Central de Esterilização Comércio e Indústria (Campinas, SP, Brazil).
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The sterilized scaffolds were hydrated in high-glucose DMEM culture medium and incubated at 37 °C and 
5%  CO2. The medium was replaced every 24 h for 7 days for pH neutralization. The cells from 10 samples in the 
fourth passage were injected into the scaffolds at a concentration of 2 × 106 cells diluted in 0.5 mL of chondro-
genic medium containing IGF-1 and cultured for 21 days with exchanges of culture medium every 3 or 4 days.

Confirmation of differentiation. After 21 days, cells collected both from the micromass and CX scaf-
folds were analyzed histologically by optical microscopy (Leica DM2500) with the aid of Leica Application Suite 
(LAS) software (version 4.6.2) after staining with Hematoxylin and eosin (H&E), Masson’s trichrome (MT), and 
Picrosirius red (PR) to determine the presence of collagen, and with Alcian blue (AB) to detect glycosaminogly-
cans (GAG), according to previously described specific  protocols46.

Immunohistochemistry tests were performed in different samples. Sections were immersed in 1% Trilogy 
solution (Cell Marque) and placed in a steamer for 15 min for deparaffinization, rehydration, and recovery of 
the antigens. Endogenous peroxidase was blocked with  H2O2, and each section was incubated with rabbit anti-
collagen II polyclonal antibody (Bioss, catalog bs-0709R) and rabbit anti-aggrecan polyclonal antibody (Bioss, 
Catalog bs-11655R) at a 1:100 dilution ratio, overnight at 4 °C. Subsequently, the sections were treated with the 
HiDef Detection HRP Polymer System (Cell Marque), according to the manufacturer´s instructions. Color devel-
opment was carried out with DAB solution and the material was counterstained with Harris hematoxylin, dehy-
drated, and mounted for microscopic analysis. A negative control slide was prepared without using antibodies.

Scaffold morphology was analyzed before and after the inoculation of cells at different culture times by scan-
ning electron microscopy (SEM), according to a previously established  protocol13,47.
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