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Detecting survival‑associated 
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Tianzhou Ma2*

Detection of prognostic factors associated with patients’ survival outcome helps gain insights into 
a disease and guide treatment decisions. The rapid advancement of high‑throughput technologies 
has yielded plentiful genomic biomarkers as candidate prognostic factors, but most are of limited 
use in clinical application. As the price of the technology drops over time, many genomic studies are 
conducted to explore a common scientific question in different cohorts to identify more reproducible 
and credible biomarkers. However, new challenges arise from heterogeneity in study populations 
and designs when jointly analyzing the multiple studies. For example, patients from different cohorts 
show different demographic characteristics and risk profiles. Existing high‑dimensional variable 
selection methods for survival analysis, however, are restricted to single study analysis. We propose a 
novel Cox model based two‑stage variable selection method called “Cox‑TOTEM” to detect survival‑
associated biomarkers common in multiple genomic studies. Simulations showed our method greatly 
improved the sensitivity of variable selection as compared to the separate applications of existing 
methods to each study, especially when the signals are weak or when the studies are heterogeneous. 
An application of our method to TCGA transcriptomic data identified essential survival associated 
genes related to the common disease mechanism of five Pan‑Gynecologic cancers.

Many biomedical studies aim to understand the progression of a disease and identify prognostic factors of 
patients’ survival time after standard treatment. Traditional well-known clinical prognostic factors for diseases 
such as cancer often provide poor prognosis and  prediction1. The rapid advancement of high-throughput tech-
nology in the past two decades has generated enormous amount of genomic data at different levels (e.g. genetic 
variants, gene expression and DNA methylation) and enabled the tailoring of medical treatment to individual 
molecular characteristics of each  patient2. Detection of prognostic genomic biomarkers is useful for the selection 
of patients who will likely benefit from a specific clinical intervention in precision medicine. Over years, various 
prognostic genomic biomarkers were reported in the literature but a majority of them are of limited use outside 
 research3. As the price of technology becomes more affordable, many genomic studies are conducted to explore 
a common scientific question in different cohorts or populations. For example, the Pan-Cancer Atlas initiated by 
The Cancer Genome Atlas (TCGA) consortium studied the multi-platform molecular profiles spanning 33 cancer 
types and identified common somatic mutations or other genetic variations across multiple tumor  lineages4,5. 
Numerous clinical trials were conducted to detect prognostic molecular markers for survival in different cancer 
 types6–9. Compared to a single study, discovery of biomarkers from multiple studies is more reproducible and 
credible and shows stronger evidence of a true association with potential for clinical  utility10. However, the 
intrinsic population heterogeneity that exists in different cohorts has created a barrier for an effective integration 
of multiple studies. For example, high inter-tumor and intra-tumor heterogeneity exhibited in different tumor 
types present heterogenous patient populations with different risk profiles in Pan-cancer  analysis11,12. Additional 
difficulty arises when the time to event outcomes are censored at different time points due to different study 
durations. Due to these challenges, no methods have been developed to detect survival-associated biomarkers 
from multiple studies while accounting for the heterogeneity in study populations and designs.

Standard models for the analysis of survival data with censoring include the nonparametric Kaplan–Meier 
 method13, the semi-parametric Cox proportional hazards model, abbreviated as the Cox  model14, and other 
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parametric regression  models15. Due to the high-dimensional nature of genomic data (i.e., the number of features 
greatly exceeds the sample size), there is a serious collinearity issue in fitting a prediction model with limited 
sample size so that these survival models do not directly apply. Classical model selection methods such as the best 
subset selection using  AIC16 or  BIC17 criterion suffer from an NP-hard combinational problem in the presence of 
a large number of features. There are two major approaches in modern variable selection for high dimensional 
data. The first approach directly applies popular regularization methods such as  Lasso18 and elastic  net19. These 
regularization methods have been adopted to survival analysis in recent years based on the Cox  model20–22 or 
parametric  models23,24 to detect features associated with the survival outcome. The second approach implements 
a two-stage procedure by first reducing the dimension of feature space from high to moderate size via sure 
independence screening (SIS; sure screening or screening for short) methods and then applying regularization 
methods to refine the final pool of features. First introduced by Fan et al.25, SIS comprises a series of methods that 
select features based on their marginal associations with the response. Zhao et al.26 proposed a Cox SIS procedure 
by fitting marginal Cox models to reduce the dimension in the analysis of censored data. The two-stage procedure 
has advantages in computational efficiency and algorithmic stability, and has been widely applied in genomic 
data analysis. However, all the aforementioned variable selection methods are restricted to single study analysis.

In this paper, we propose a novel Cox model based two-stage variable selection method for the detection of 
survival associated biomarkers common in multiple genomic studies. In the first stage, we extend the screening 
procedure for the linear model in Ma et al.27 to perform sure screening with multiple studies in high-dimensional 
Cox regression. In the second stage, we penalize the partial log-likelihoods with a group lasso penalty across 
multiple studies to select the final set of features in all studies simultaneously. The proposed method is statisti-
cally attractive in that it allows the studies to have different signal strengths, baseline hazard rates and censoring 
distributions, and effectively integrates the information from multiple heterogeneous studies. In addition, the 
method is also computationally favorable by implementing a fast marginal screening in the first stage and solving 
the regularization problem in the second stage with an efficient ADMM  algorithm28. To the best of our knowl-
edge, the proposed method is the first to address the high-dimensional variable selection problem in survival 
models with multiple studies. We also extend other regularization and two-stage methods to a multiple study 
version to compare our method under various simulation scenarios and demonstrate our method’s strength, 
especially when the signals are weak or when the studies are heterogeneous. An application of our method in 
TCGA Gynecologic and breast (Pan-Gynecologic or Pan-Gyn) cancer transcriptomic data detects essential 
survival associated genes related to the common disease mechanism of Pan-Gyn cancers.

The paper is structured as follows. In Sect. 2, we discuss the variable selection in the Cox model with both 
single and multiple studies, and introduce our novel two-stage variable selection methodology for multiple stud-
ies. Section 3 evaluates the performance of our method under four different simulation scenarios. In Sect. 4, we 
analyze TCGA Pan-Gyn cancer with the proposed methodology. Discussion and final conclusion are presented 
in Sect. 5.

Methods
Variable selection in Cox model with single study. Suppose there are n subjects for right censored 
survival data. The outcome of the ith ( 1 ≤ i ≤ n ) subject is Oi = (Yi ,�i) where Yi is the observed survival time 
and �i is the censoring indicator. When right censoring occurs, censoring time Ci comes before the true survival 
time Ti . In this case, we only observe Yi = Ci and �i = 0 . When the subject is not censored, we observe the true 
survival time Yi = Ti with �i = 1 . The Cox model is a popular semi-parametric survival model to investigate 
the association between the survival outcome and explanatory variables X such as the gene expression through 
modeling the hazard function by

where X = (x1, . . . , xp) is the feature vector with p being the number of features, β = (β1, . . . ,βp)
T is the cor-

responding regression coefficient vector and �0(t) is the baseline hazard function. In the low-dimensional case 
where p is smaller than n,  Cox14 proposed maximizing the following partial log-likelihood to estimate β:

where the risk set R(t) is the set of indices j for the subject whose outcome has not yet been observed at time t 
(i.e., Yj ≥ t).

When there are far more features than the number of observations, a reasonable assumption made in the 
variable selection literature is the sparsity assumption that only a small set of features are true predictors of the 
response, which is also adopted in this paper. The following penalized partial log-likelihood is maximized to 
estimate β:

where the penalty term P�(.) can represent different types of penalties (popular choices include the L1 lasso 
 penalty20 and the L1/L2 elastic net  penalty22). The tuning parameter � controls the balance between the strength 
of coefficients and the penalty level and is usually chosen by cross validation. The final model consists of the 
features with nonzero coefficient estimates.

(1)�(t|X) = �0(t) exp(Xβ),

(2)l(β) =

n∑

i=1

�i log

(
exp(Xiβ)∑

j∈R(Yi)
exp(Xjβ)

)
,

(3)pl(β) = l(β)−

p∑

j=1

P�(|βj|),
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The above regularization methods are generally sub-optimal when p grows at an exponential rate of n (com-
monly seen in most genomic studies) due to algorithmic stability and accuracy. A common practice is to perform 
a two-stage procedure where we first reduce the dimension of the feature set by screening out unimportant 
features that have no marginal associations with the outcome and then apply regularization. Such methods in 
the first stage possess a sure screening property that the features remaining after screening still include the true 
set of predictors with high  probability25. Bühlmann et al.29 further proposed a partial faithfulness assumption 
which states that a zero marginal correlation implies a zero regression coefficient in linear models to support the 
use of sure screening methods. In survival analysis, the principled Cox sure independence screening procedure 
(“PSIS”) was proposed to screen out covariates that have no association with the survival outcome in marginal 
Cox  models26.

Variable selection in the Cox model with multiple studies. Suppose we have data from K genomic 
studies where each study k ( 1 ≤ k ≤ K ) has nk observations. For study k, we assume the Cox model with the 
conditional hazard function is given by

where �(k)0 (t) is the study-specific baseline hazard function, β(k) = (β
(k)
1 , . . . ,β

(k)
p )T is the study-specific regres-

sion coefficients, and X(k) = (x
(k)
1 , . . . , x

(k)
p ) is the features collected from the kth study. The goal of variable 

selection with multiple studies is to identify the active predictors x(k)j  with j ∈ M = {j : β
(k)
j �= 0 for all k} . Here 

we assume that all studies have the same sparsity pattern (i.e., β(k)
j = 0 for all k or β(k)

j  = 0 for all k). Under this 

assumption, we can accumulate potentially weak signals from each study to yield a strong evidence of active 
predictors. Note that because one can easily select common features across studies, we assume that p is common 
across all studies so that x(k)j  and x(l)j  correspond to the same feature j from the studies k and l. The extension to 
different p in different studies is straightforward and will be discussed elsewhere.

The first general framework for variable selection with multiple studies was proposed by Ma et al.27 where 
active predictors is assumed to be common to all studies, but the signal strengths (i.e., magnitudes of |β(k)

j | ) of 
those active predictors can vary among the studies. Combining marginal correlations between an outcome and 
each feature across studies, Ma et al. (2020) proposed the extension of sure independence screening to multiple 
studies in the linear models, the method known as Two-Step Aggregation Sure Independence Screening or “TSA-
SIS”. With this framework of the same sparsity pattern with varied signal strength, inclusion of multiple studies 
yields more evidence to remove unimportant features during screening since a zero marginal correlation for 
any study implies a zero regression coefficient for that feature by the partial faithfulness assumption. The same 
framework is also adopted for the integrative analysis of multiple high-dimensional -omics data for identifying 
disease related biomarkers with consistent effects across multiple studies with logistic  regression30.

Our proposed methodology is a non-trivial extension of the sure screening procedure for multiple studies of 
Ma et al.27 to the multiple Cox proportional hazards models. Unlike simpler parametric models such as linear and 
logistic regression models, the Cox model has the baseline hazard function as an infinite dimensional function 
parameter beyond the regression coefficients of interest. In linear and logistic regression, heterogeneity of multi-

ple studies only appears as different strength of signals in β(k)
j , k = 1, . . . ,K . In our survival models, heterogeneity 

also comes through different study-specific baseline hazard functions �(k)0 (t), k = 1, . . . ,K , in addition to signal 

strength in features. Another source of heterogeneity is different censoring distributions across studies. When 
right censoring occurs, the exact survival time is not observed but it is only known to be larger than certain time. 
In the context of multiple studies, for example, one study ends in one year while another ends at five years. In 
this case, censored subjects in the former has survival time more than one year while time to event in the latter is 
only known to be larger than five years. In this paper, we address the challenging issue of additional heterogene-
ity in the multiple Cox models by the partial likelihood approach. To this end, we assume that the survival time 
and censoring time are conditionally independent given covariates. This is the key assumption that enables us 
to separate multiple censoring distributions from the estimation of study-specific baseline hazard functions and 
regression coefficients. In the medical literature, the conditional independence assumption is standard for a single 
study. Thus, it is reasonable to assume the same for each of multiple studies in our variable selection problem.

In this paper, we propose the Cox model based TwO-sTage variable sElection procedure for Multiple stud-
ies, namely “Cox-TOTEM”, to detect survival associated biomarkers common in multiple genomic studies. 
In the first stage, we extend the TSA-SIS procedure in the linear model to perform sure screening in the Cox 
models with multiple studies by utilizing the standardized coefficient estimates from marginal Cox models. 
This procedure reduces the false negative errors (i.e., missing the important features) and select the features 
with nonzero coefficients in all studies. In addition to the extension of the sure screening approach, we further 
refine the pool of features using the penalized partial likelihood in the second stage. Specifically, we propose a 
novel group lasso penalty in the partial log-likelihood of the Cox models to obtain the final set of features. It is 
natural to adopt a group lasso penalty by treating the coefficients of the same feature from multiple studies as 
one group. Such group lasso penalty will achieve the selection of a feature either in all studies or in none of the 
studies (“all-in-or-all-out”), thus identifying a common set of features across multiple studies. Below, we describe 
our methodology in details.

(4)�
(k)(t|X(k)) = �

(k)
0 (t) exp(X(k)β(k)),
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Figure 1.  Flowchart of the proposed two-stage method Cox-TOTEM. Screening procedure applies to each 
feature j ( 1 ≤ j ≤ p ). “ 

√
 ” means passed to the next step or stage, while “X” means not passed to the next step or 

stage.
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The “Cox‑TOTEM” method. Figure 1 shows a flowchart of the proposed two-stage method Cox-TOTEM. 
In the first screening stage, we start by fitting a marginal Cox model with a single covariate x(k)j  to study k 

(i.e., �(k)(t|x(k)j ) = �
(k)
0 (t) exp(x

(k)
j β

(k)
j ) ). The marginal partial likelihood estimator β̃(k)

j  for the jth feature in the 

kth study is a preliminary estimate used for sure screening in the first stage. Define the observed information 

matrix to be I(β̃(k)
j ) ( = 1/v̂ar(β̃

(k)
j ) ). The corresponding standardized marginal coefficient estimator is equal to 

z̃
(k)
j = I(β̃

(k)
j )1/2β̃

(k)
j  . By the property of nonparametric maximum likelihood estimation, z̃(k)j  asymptotically 

follows the standard normal distribution when β(k)
j = 0 . As the extension of the TSA-SIS procedure to the Cox 

models, we utilize |z̃(k)j | to identify the studies with potential zero coefficients (i.e., weak signals or noises with 

small |z̃(k)j | ) for each feature j in the first step:

where � is the CDF of the standard normal distribution. The choice of α1 determines the threshold to separate 
strong signals from weak signals. This first step does not screen out any features, but instead helps separate 
potential zero and nonzero coefficients for preparation of the second step.

Let κ̂j = |L̂j| be the cardinality of L̂j . The second step tests whether the aggregate effect of studies with 
potential zero coefficients identified in the set L̂j is strong enough for the jth feature to be retained in the screen-
ing stage. Define the statistics Uj =

∑
k∈L̂j

z̃
(k)2
j  , which approximately follows a χ2

κ̂j
 distribution with degree of 

freedom κ̂j . We retain the set of features with large Uj or with κ̂j = 0:

where [p] = 1, 2, . . . , p and ϕκ̂j is the CDF of chi-square distribution with degree of freedom equal to κ̂j . The 
key tuning parameter α2 determines how many features to retain in the screening stage. The second step takes 
the sum of squares of z̃(k)j  from studies with potential zero coefficients as the test statistics of the jth feature and 
performs the actual screening. If the aggregate effect is strong enough, we will keep the feature and screen it out 
otherwise. In this way, it potentially saves those important features with weak signals in individual studies but 
strong aggregate effect. Define d1 = |M̂[1]| , after the screening stage, d1 features common to all studies remain 
and are moved on to the second stage.

Following screening, we include a group lasso penalty in the partial log-likelihoods to select the final set of 
features common to all studies in the regularization stage:

where �βj = (β
(1)
j , . . . ,β

(K)
j ) and � is the tuning parameter. Note that this group lasso penalty is different from 

the regular group lasso penalty where the different features form pre-defined groups, e.g. multiple genes form a 
 pathway31. Here we treat the coefficients of the same feature from multiple studies as one group to identify a com-
mon set of biomarkers associated with the survival. An ADMM algorithm is used to solve the above optimization 
problem. Detailed steps of the algorithm can be found in the Supplement. Define the set M̂[2] = {j ∈ [p]; �̂βj �= �0} 
and d2 = |M̂[2]| . M̂[2] is the final set of common features we select.

The Cox-TOTEM algorithm can be summarized as below: 

(5)L̂j = {k; |z̃
(k)
j | ≤ �−1(1− α1/2)},

(6)M̂
[1] = {j ∈ [p];Uj > ϕ−1

κ̂j
(1− α2) or κ̂j = 0},

(7)β̂ = argmax
β

K∑

k=1

l(β
(k)

M̂[1]
)− �

∑

j∈M̂[1]

|| �βj||2,
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Selection of tuning parameters. The proposed algorithm involves three tuning parameters: α1 and α2 
in the screening stage and � in the regularization stage. Since screening is an intermediate step, the choice of α1 
and α2 should be more conservative making as fewer false negative errors as possible (i.e., high sensitivity) while 
retaining not too many false positives (i.e., not too low specificity). A small α1 places stringent cutoff in select-
ing strong signals so more studies are included in the second step leading to more false positive errors. On the 
other hand, a large α1 tends to select very few studies causing more false negative errors. In practice, a small α1 
is generally recommended to reduce the more serious false negative errors. The parameter α2 is the threshold 
used in the actual screening step which directly determines how many features are retained. It serves the same 
role as the retained model size d in the original sure independence screening  method25 or the significance level 
α in the PC-simple  algorithm29. In practice, we recommend setting α2 = 0.05 , the popular significance level 
used in hypothesis testing. We performed a sensitivity analysis using simulation and showed that α1 = 10−4 
and α2 = 0.05 achieved a good balance between sensitivity and specificity in the screening stage (see Table S1 
in the Supplement). When the number of features p becomes even larger (e.g. p ∼ 10, 000 as in our real data 
application) and we need to remove more features during screening, we also recommend more stringent cutoff 
of α2 = 0.01 . Screening is by nature a fast step, we generally suggest users follow the aforementioned guideline 
but not use any computationally intensive data splitting or resampling procedures in choosing α1 and α2 unless 
otherwise specified. To determine the optimal value of � in the regularization stage, we propose a multi-study 
cross validation procedure by applying K-fold cross-validation within each study and utilizing individual sur-
vival prediction as the evaluation criteria. Details of the scheme can be found in the Supplement.

Methods for comparison. Since no existing methods specifically look at the variable selection problem 
in survival model with multiple studies, we compare our method to the multiple study extension of the Cox 
model specific screening and regularization methods in single study. With the target index set M , we screen out 
a feature when any study has a zero marginal coefficient for that feature. Thus, the multiple study extension of 
the original  PSIS26 for sure screening in the Cox model can be regarded as MinPSIS, which ranks the features by 
the minimum absolute standardized marginal coefficients in all studies. Likewise, the multiple study extension 
of the regularization methods such as CoxLasso (lasso penalty in Cox model) or CoxNet (elastic net penalty 
in Cox model) take the intersection of features identified in each study, abbreviated as InterCoxLasso or Inter-
CoxNet. In the simulation, we compare our method to a total of four methods, including two-stage methods 
“MinPSIS-InterCoxLasso” and “MinPSIS-InterCoxNet”, as well as direct regularization methods “InterCoxL-
asso” and “InterCoxNet”. For the retained model size d in the screening stage of other two-stage methods, we 
suggest more conservative cutoff of d = n to mitigate the missing of true signals. For regularization methods, 
we use cross-validation to select the optimal tuning parameter as implemented in the R package “glmnet”22,32.

Simulation
Simulation setting. We conducted simulations to demonstrate the strength of Cox-TOTEM as compared 
to other methods under various scenarios.

For each study k, we generated n = 100 observations, each with a survival outcome, consisting of an 
observed censored survival time Y (k)

i  and a censoring indicator �(k)
i  , and a vector of p = 2000 features 

X
(k)
i = (x

(k)
i1 , . . . , x

(k)
ip ) . X(k)

i  was randomly sampled from a multivariate normal distribution N2000(0,�
(k)) , where 

�
(k)
jj = 1 and �(k)

jj′ = 0.5|j−j′| for 1 ≤ j �= j′ ≤ p . The true survival time T(k)
i  for each individual i was generated 

from the Cox model with study-specific baseline hazard function �(k)0  and regression coefficients β(k) to be 

described below. The censoring time C(k)
i  was generated from the exponential distribution C(k)

i ∼ exp(r(k)) with 

the study-specific parameter r(k) described below. We only assumed right censoring so the observed censored 

survival time Y (k)
i  was the minimum of the true survival time and censoring time: Y (k)

i = min(T
(k)
i ,C

(k)
i ) , and 

the censoring indicator �(k)
i = 1 when C(k)

i > T
(k)
i  and 0 otherwise. The above scheme was applied to all K = 5 

studies and the simulations were repeated for B = 100 times.
We assumed only s = 10 features were true predictors with nonzero coefficients and the other features had 

zero coefficients in all studies. The ten features with nonzero coefficients were evenly distributed among the p 
variables with equal space. We considered the following four different scenarios for a complete evaluation of 
our method:

• Homogeneous strong (Homo-S) we assumed strong signals in all studies. Let µj = −1 for the first five fea-
tures with nonzero coefficients and µj = 1 for the next five features, and let µj = 0 for the rest of features. For 
homogeneous study effects, we set β(1)

j = β
(2)
j = . . . = β

(K)
j = µj for 1 ≤ j ≤ p . We also set the study-specific 

baseline hazard function �(1)0 = �
(2)
0 = . . . = �

(K)
0 = 1 and r(1) = r(2) = . . . = r(K) = 0.2 to be consistent 

across all studies.
• Homogeneous weak (Homo-W) the setting is the same as in Homo-S, except for now we assumed weak 

signals in all studies. Let µj = −0.5 for the first five features with nonzero coefficients and µj = 0.5 for the 
next five features, and let µj = 0 for the rest of features.

• Heterogeneous strong (Hetero-S) we let µj = −1 for the first five features with nonzero coefficients and 
µj = 1 for the next five features, and µj = 0 for the rest of features. To allow for between study variation 
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in magnitudes of coefficients but not in sparsity pattern, we randomly sampled β(k)
j  from N(µj , 0.2

2) for 
1 ≤ k ≤ K  for the features with nonzero coefficients and β(1)

j = β
(2)
j = . . . = β

(K)
j = µj = 0 for the other 

features. In addition, we also allowed for variation in baseline hazard functions and censoring distributions 
among studies. More specifically, we randomly drew �(k)0  from exp(1) and r(k) from {0.1, 0.3, 0.5} for 1 ≤ k ≤ K 
studies.

• Heterogeneous weak (Hetero-W) the setting is the same as in Hetero-S, except we assumed weak signals 
with µj = −0.5 for the first five features with nonzero coefficients and µj = 0.5 for the next five features.

In addition to the case with n = 100 and p = 2000 , we also conducted simulations of higher dimension with 
n = 200 and p = 10, 000 and slightly weaker signals ( |µj| = 0.7 for the true predictors in strong scenarios and 
|µj| = 0.35 in weak scenarios) and evaluated the performance under the same four scenarios. In all simulations, 
we used α1 = 1e−4 and α2 = 0.05 (and for p = 10, 000 , we used α2 = 0.01 ) in the screening stage and chose 
an optimal � via the proposed cross-validation scheme in the regularization stage. To benchmark the perfor-
mance of variable selection, we evaluated both the sensitivity and specificity as well as the average number of 
features selected. In addition, we also included a plot of sensitivity and specificity with varying values of tuning 
parameters in all methods for a fair comparison independent of the tuning parameter selection. After model 
selection, we fit a Cox model to all remaining features in each study and computed the sum squared errors (SSE) ∑p

j=1

∑K
k=1(β̂

(k)
j − β

(k)
j )2 , where β̂(k)

j  is the Cox model coefficient estimates for jth feature in kth study, to assess 
the parameter estimation. A smaller SSE suggests more accurate parameter estimation.

Simulation results. Table  1 shows the variable selection and parameter estimation performance with 
n = 100 and p = 2000 . As compared to the other four methods, Cox-TOTEM greatly improves the sensitivity 
with almost no decrease in specificity in all four scenarios. Such gain in sensitivity is most noticeable when the 
signals are weak or when studies are more heterogeneous. This shows the advantage of our method in aggregat-
ing the information of multiple studies and saving those features with weak signals in one or more studies. In 
most cases, Cox-TOTEM retains a majority of the true signals and has more accurate parameter estimation than 
the other methods. Figure 2 shows the plots of mean sensitivity (left) and mean specificity (right) against the 
scaled � values for all methods in the four scenarios. Increasing � value decreases the sensitivity and increases the 
specificity for all methods. With varying � values, the curve of Cox-TOTEM sits above the other methods in the 
sensitivity plot while almost indistinguishable from the others in the specificity plot, which shows the advantage 
of our method regardless of the selection of the best tuning parameter. Note that in general the two-stage meth-
ods (“MinPSIS-InterCoxLasso” and “MinPSIS-InterCoxNet”) outperform the one-stage regularization methods 
(“InterCoxLasso” and “InterCoxNet”) as expected, encouraging the use of two-stage variable selection methods 

Table 1.  Comparison of variable selection and parameter estimation under the four different scenarios with 
n = 100 , p = 2000 and s = 10 true predictors. Mean results of 100 replications are reported with standard 
errors shown in the parentheses.

Simulation scenarios Methods Sensitivity Specificity
Average number of features 
selected SSE

Homo-S

Cox-TOTEM 0.985 (0.004) 0.999 (0) 12.26 (0.194) 4.227 (0.269)

MinPSIS-InterCoxLasso 0.856 (0.018) 1 (0) 9.4 (0.173) 11.36 (1.02)

MinPSIS-InterCoxNet 0.881 (0.013) 0.997 (0.001) 14.36 (0.244) 10.79 (0.772)

InterCoxLasso 0.37 (0.018) 1 (0) 3.7 (0.183) 37.421 (0.775)

InterCoxNet 0.53 (0.014) 1 (0) 5.31 (0.143) 30.823 (0.684)

Homo-W

Cox-TOTEM 0.977 (0.049) 0.997 (0) 16.6 (0.385) 3.321 (0.203)

MinPSIS-InterCoxLasso 0.464 (0.028) 0.999 (0) 5.17 (0.347) 7.646 (0.311)

MinPSIS-InterCoxNet 0.618 (0.019) 0.997 (0) 13.07 (0.384) 6.804 (0.214)

InterCoxLasso 0.049 (0.007) 1 (0) 0.49 (0.073) 12.032 (0.073)

InterCoxNet 0.143 (0.011) 1 (0) 1.43 (0.11) 11.094 (0.117)

Hetero-S

Cox-TOTEM 0.968 (0.006) 0.998 (0) 13.64 (0.261) 7.969 (0.437)

MinPSIS-InterCoxLasso 0.723 (0.023) 1 (0) 7.98 (0.226) 20.758 (1.27)

MinPSIS-InterCoxNet 0.774 (0.015) 0.997 (0.001) 13.41 (0.26) 18.986 (0.943)

InterCoxLasso 0.258 (0.017) 1 (0) 2.58 (0.167) 45.579 (0.716)

InterCoxNet 0.393 (0.015) 1 (0) 3.93 (0.146) 39.842 (0.698)

Hetero-W

Cox-TOTEM 0.885 (0.01) 0.993 (0) 22.68 (0.66) 14.163 (0.163)

MinPSIS-InterCoxLasso 0.211 (0.017) 1 (0) 2.93 (0.241) 13.118 (0.276)

MinPSIS-InterCoxNet 0.367 (0.016) 0.997 (0) 10.01 (0.4) 11.813 (0.251)

InterCoxLasso 0.037 (0.006) 1 (0) 0.37 (0.06) 15.738 (0.123)

InterCoxNet 0.083 (0.008) 1 (0) 0.83 (0.075) 14.932 (0.154)
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in practice. The results look very consistent in the case of n = 200 and p = 10, 000 , where Cox-TOTEM has the 
greatest sensitivity among all in heterogeneous and weak scenarios (see Table S2 in the Supplement).

Application to TCGA transcriptomic data
Data description. We then applied our method to transcriptomic data from TCGA project studying the 
gene expression profile of four gynecological cancer types plus breast cancer (together known as Pan-Gyn 
cancers). Gynecologic cancers and breast cancer share a variety of generic characteristics: arising from similar 
embryonic origins, development all influenced by female hormone, among  others33. Previous studies in TCGA 
identified shared molecular features including protein, miRNA, RNA and DNA methylation among these five 
cancer  types33,34. The purpose of this application is to identify the survival associated genes common in these 
five cancer types, which might provide more insights into the commonalities and infer the underlying common 
mechanism of Pan-Gyn cancer in women.

Figure 2.  Plot of mean sensitivity (left) and mean specificity (right) against the scaled � values for (A) Homo-S; 
(B) Homo-W; (C) Hetero-S; (D) Hetero-W scenarios with n = 100 and p = 2000 . Shades denote the standard 
deviations. The original � values are rescaled in all methods for fair comparison.

Table 2.  Overview of the samples from the five Pan-Gyn cancer types.

OV UCEC CESC UCS BRCA 

Sample size 304 170 301 57 981

Censoring proportion 39% 81% 76% 39% 89%
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We retrieved both the RNA-seq data and the clinical data containing survival outcomes of the five Pan-Gyn 
cancer types including high-grade serous ovarian cystadenocarcinoma (OV), uterine corpus endometrial carci-
noma (UCEC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), uterine carcino-
sarcoma (UCS), and invasive breast carcinoma (BRCA) from TCGA data repository on Broad GDAC Firehose 
(https ://gdac.broad insti tute.org/). Table 2 shows the total sample size and the censoring proportion of each cancer 
type. The censoring distributions vary greatly across the different cancer types, implying the heterogeneity in 
censoring patterns among studies commonly seen in real datasets. The processed RNA-seq data from TCGA 
include the TPM (Transcripts Per Kilobase Million) values. We first merged the five datasets by matching the 
gene symbols and implementing quantile normalization to remove any batch effect among the different studies. 
Genes with mean TPM less or equal to 5 were filtered out and 11998 genes remained. The data was also log2 
transformed to be ready for the rest of the analysis.

Results. We applied our method as well as the two-stage methods “MinPSIS-InterCoxLasso” and “MinPSIS-
InterCoxNet” to the Pan-Gyn example. Considering the relative high dimension, we set α2 = 0.01 in the screen-
ing stage of our method and retained 268 genes after screening. The regularization stage further refined the 
pool to a final set of 29 genes. On the other hand, “MinPSIS-InterCoxNet” and “MinPSIS-InterCoxLasso” only 
detected 15 and one genes, respectively. Table 3 lists the top five genes with the largest absolute coefficient esti-
mates from the 29 genes identified by Cox-TOTEM. None of these genes were selected by the other two compet-
ing methods. When fitting a Cox model using these genes in each cancer type, the p-values vary in all cancer 
types and are small in typically more than one cancer types. This shows the superiority of Cox-TOTEM in select-
ing genes associated with survival but with possibly weak signals in some studies. PPAP2C, a member of the 
phosphatidic acid phosphatase family, has been found to be associated with endometrioid carcinoma and ovar-
ian cancer  metastasis35,36. SPRR2E is part of the human epidermal differentiation complex found to be related 
to more than 20 different cancers including breast and endometrial  cancers37,38. When we split the samples 
into a group with high SPRR2E expression ( > median ) and a group with low SPRR2E expression ( < median ) 
and compare their Kaplan–Meier curves in the five studies (Fig. 3A), we see a clear separation of two curves in 
UCEC, CESC and BRCA, but not in the other two studies, consistent with the results presented in Table 3. A 
complete list of the 29 genes identified by Cox-TOTEM together with their marginal Cox model results can be 
found in Table S3 of the Supplement.

Since the underlying truth is unknown for real data, we also performed a pathway enrichment analysis of the 
29 Pan-Gyn cancer survival associated genes identified from Cox-TOTEM using GO,  KEGG39,40 and Reactome 
databases for more biological insight. Figure 3B shows the top 12 enriched pathways sorted by their correspond-
ing − log10 p-values from the Fisher’s exact test. Out of these top pathways, we found pathways of important 
biological processes specific to female physiology such as GO:BP ovulation cycle and GO:BP embryo implanta-
tion. The enrichment in these GO pathways might reflect similar origins and development mechanism among 
the five Pan Gyn cancer types and validated our gene  findings33,34.

Discussion
In this paper, we proposed a Cox model based two-stage variable selection method called Cox-TOTEM to 
identify survival associated biomarkers with multiple genomic studies. In the first stage, we applied a two-step 
aggregation screening procedure by utilizing the standardized coefficient estimates from marginal Cox models 
in each study and testing whether each feature’s aggregate effect from multiple studies is strong enough to be 
retained. In the second stage, we started with the set of features after screening and employed a group lasso 
penalty to the partial log-likelihoods in Cox models to select the features simultaneously in all studies. From a 
meta-analytic perspective, the method improves the accuracy of variable selection in high dimension by borrow-
ing information from multiple studies. Such advantage has also been seen in other literature when combining 
multiple studies for more accurate and robust results in classification and  clustering41,42. In addition, the method 
is computationally favorable by greatly reducing the dimension via fast screening in the first stage and apply-
ing the efficient ADMM algorithm in the second stage. Simulations with four scenarios to describe cross-study 
patterns showed the method greatly improved the sensitivity especially when the signal strengths were weak or 
when studies were heterogeneous. A real application of the method to the RNA-seq data from TCGA identified 

Table 3.  List of the top five genes from the 29 genes selected by Cox-TOTEM with the largest absolute 
coefficient estimates and their corresponding coefficient estimates and p-values (in parentheses) when fitting 
a Cox model in each cancer type. None of those genes were selected by MinPSIS-InterCoxLasso or MinPSIS-
InterCoxNet Significant code: < 0.01**, < 0.1 *, < 0.15

· ; N.S.: not selected

Cox model coefficient estimate (p-value) MinPSIS-
InterCoxLasso

MinPSIS-
InterCoxNetOV UCEC CESC UCS BRCA 

PPAP2C − .214 (.007**) − .291 ( .131·) − .130 (.244) .155 (.455) − .074 (.594) N.S. N.S.

SLC19A1 .240 (.006**) .180 (.368) − .232 (.089*) .158 (.521) .115 (.330) N.S. N.S.

SPRR2E − .058 (.619) 2.002 (.009**) − .300 (.095*) .072 (.654) .128 (.079*) N.S. N.S.

EIF4E3 − .177 (.041*) − .079 (.632) − .234 ( .119·) − .240 (.215) − .201 (.074*) N.S. N.S.

IFRD2 − .133 ( .118·) − .274 (.237) .349 (.029*) − .188 (.473) .129 (.197) N.S. N.S.

https://gdac.broadinstitute.org/
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Figure 3.  (A) Comparison of Kaplan–Meier curves between samples with high SPRR2E expression ( > median ) 
and those with low SPRR2E expression ( < median ) in the five studies. (B) Top pathways enriched with the 29 
survival associated genes identified by Cox-TOTEM; x-axis: − log10(p-value), y-axis: pathway names.
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important genes associated with survival in five Pan-Gyn cancer types. These genes were enriched in pathways 
specific to female physiology implying the common disease mechanism behind these cancer types.

Few methods have looked at the survival analysis problem when combining multiple high-dimensional data 
sets, our proposed method is one of the first to target at this significant but overlooked problem with the focus 
on variable selection. One important merit of our method is that we allow the studies to have different signal 
strengths for the same features, as well as different baseline hazard rates and censoring distributions. Such study 
heterogeneity is commonly seen in the biomedical literature when researchers performed survival analysis in 
multiple cohorts using Cox  models43,44. In this paper, we only considered the selection of continuous covariates 
(e.g. gene expression) in the simulations and real data analysis, for a more general application with multi-omics 
data, the model can also include ordinal variables (e.g. genotype) or binary variables (e.g. DNA methylation). 
In case where the proportional hazards assumption does not hold in some studies, the method can be readily 
extended to perform variable selection in other parametric or nonparametric survival models. The performance 
of such extended methods needs to be further explored in both simulations and real data applications.

Other meta-analysis methods in the differential expression analysis of transcriptomic studies also consider 
heterogeneous sparsity pattern across studies, i.e. the set of associated biomarkers is different in different genomic 
 studies45. In cases when biomarkers uniquely associated with survival in specific studies are of interest, we can 
include alternative regularization methods, e.g. sparse group  lasso46, in the second stage to encourage selection 
of study-specific survival associated biomarkers. In addition, the directionality of effect size across studies is 
another major consideration in meta-analysis in practice, for example, some studies have positive coefficients 
thus increase the risk of failure while the others decrease the risk for the same features. Such phenomenon has 
also been observed in our real data example. The method can be modified to accommodate such scenarios, details 
of which is beyond the scope of this paper and left for future work.

The current method uses the MLE estimates of coefficients from the marginal Cox model in the screening 
stage and applies a group lasso penalty to the partial log-likelihoods in the regularization stage. Considering 
the fact that some signals may be jointly associated with the survival outcome but not marginally, we may 
consider using MLE in a full model with sparsity restriction to take the joint effects of features in the screening 
 process47. In addition to group lasso, other types of group penalties such as group bridge or group  SCAD48 can 
also be applied. An R package, CoxTOTEM, is publicly available at https ://githu b.com/kehon gjie/CoxTO TEM 
to implement our method.

Data availability
The TCGA Pan-Gyn transcriptomic and clinical data used in real data application are also publicly available at 
https ://githu b.com/kehon gjie/CoxTO TEM.
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