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New analytic bending, buckling,
and free vibration solutions

of rectangular nanoplates

by the symplectic superposition
method

Xinran Zheng, Mingqi Huang, Dongqi An, Chao Zhou & Rui Li**

New analytic bending, buckling, and free vibration solutions of rectangular nanoplates with
combinations of clamped and simply supported edges are obtained by an up-to-date symplectic
superposition method. The problems are reformulated in the Hamiltonian system and symplectic
space, where the mathematical solution framework involves the construction of symplectic eigenvalue
problems and symplectic eigen expansion. The analytic symplectic solutions are derived for several
elaborated fundamental subproblems, the superposition of which yields the final analytic solutions.
Besides Lévy-type solutions, non-Lévy-type solutions are also obtained, which cannot be achieved by
conventional analytic methods. Comprehensive numerical results can provide benchmarks for other
solution methods.

Nanoplates play an important role in the micro- and nano-scale technology, with applications to nano sensors,
resonators, storage components, micro switches, etc. Mechanical behaviors, including bending, buckling, and
free vibration, are frequently encountered in response to external excitations during the use of nanoplates.
Accordingly, investigations on such behaviors are crucial for understanding the mechanical properties as well as
providing guidelines for structural safety designs of relevant devices. In order to avoid enormous computational
efforts when carrying out discrete atomistic or molecular dynamics simulation!~, some continuum theories
considering scale effects, which were not incorporated in classical plate theories, have been proposed, including
the couple stress elasticity theory®, strain gradient theory’, micro-morphic theory?, surface energy incorporated
continuum theory’, etc. One of the well-accepted models is the non-local continuum theory by Eringen'?, which
assumes that the stress at a point is a function of the strains at all the other points in the domain. Lu et al.'' estab-
lished the non-local elastic plate theories based on Eringen’s theory, where the basic equations for the non-local
Kirchhoff and Mindlin plate theories were derived, and the bending and free vibration problems of a rectangular
nanoplate with simply supported edges were solved. It was shown that, for very small-sized plates, the influences
of non-local effects on the mechanical properties are considerable.

Many studies have been conducted on modeling two-dimensional plate-like structures using the nonlocal
plate theories. Some notable progresses by numerical methods are briefly reviewed in the following. Pradhan
and Murmu'? explored the small-scale effect on the buckling analysis of biaxially compressed simply supported
single-layered graphene sheets (SLGS) by computing the buckling loads using the differential quadrature method
(DQM), which was also employed for vibration analysis of SLGS embedded in elastic medium'?. Malekzadeh and
Shojaee'* extended a two-variable refined plate theory for the free vibration of nanoplates, where different types
of boundary conditions (BCs) were studied by the DQM. Farajpour et al.'>'¢ used the DQM to analyze the buck-
ling of higher-order and lower-order nonlocal strain gradient theory based orthotropic micro/nanoscale plates.
Mohammadsalehi et al.'” investigated the vibration features of rectangular viscoelastic nanoplates with variable
thickness by the DQM. Ghadiri et al.'® applied the generalized DQM to investigate the thermo-mechanical vibra-
tion of orthotropic cantilever and propped cantilever nanoplates. The method was also adopted by Ebrahimi
et al.”® to analyze the thermo-mechanical vibration of rotating nonlocal nanoplates. Phadikar and Pradhan®
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reported finite element formulations for nonlocal elastic Euler-Bernoulli beam and Kirchhoft plate, and analyzed
bending, vibration, and buckling of simply supported nonlocal plates. Bahu and Patel* developed an improved
quadrilateral finite element for nonlinear second-order strain gradient elastic Kirchhoff plates based on the non-
local theory. Necira? developed the hierarchical finite element method for size-dependent free vibration analysis
of Mindlin nano-plates with curvilinear plan-forms. Akgéz and Civalek* employed the discrete singular convo-
lution method for the free vibration and bending analysis of nano-scaled graphene sheets having sector shape.
Babaei and Shahidi* investigated the buckling behavior of quadrilateral SLGS under bi-axial compression by the
Galerkin method, where the buckling loads of nanoplates with different geometrical parameters were obtained.
Rahimi et al.?* studied the thermoelastic damping of in-plane vibration of the functionally graded nanoplates
using the Galerkin method. Based on three-dimensional nonlocal elasticity theory, Shahrbabaki?® developed
novel trigonometric series to be used as approximating functions in the Galerkin based approach in dealing
with free vibration problems of rectangular nanoplates. Anjomshoa?” adopted the Ritz functions for buckling
analysis of embedded orthotropic circular and elliptical micro/nano-plates under uniform in-plate compression.
Chacraverty and Behera® took the Rayleigh-Ritz method with algebraic polynomial displacement function
to solve the vibration problem of isotropic rectangular nanoplates subjected to different BCs. Analooei et al.”
addressed the buckling and vibration characteristics of isotropic and orthotropic nanoplates using the spline finite
strip method (FSM). Sarrami-Foroushani and Azhari*® examined the vibration and buckling characteristics of
single and multi-layered graphene sheets by the FSM. Wang et al.’! presented highly accurate solutions for free
vibration and eigen buckling of rectangular nanoplates with the iterative separation-of-variable (iSOV) method.
Thanh et al.***> conducted the bending, buckling, and vibration analyses of microplates via the isogeometric
method with couple stress theory, and further extended the method to the thermal buckling and post-buckling
analyses of functionally graded micro-plates with porosities.

Although various effective numerical methods have been developed to study the mechanical behaviors of
nanoplates, it is still important to explore new analytic methods because they cannot only provide benchmark
theoretical solutions of permanent interests, but can also explicitly capture the relationships among different
mechanical quantities, thus can serve as useful tools for validation of numerical methods, rapid parameter
analyses, and efficient structural designs. However, due to the recognized mathematical difficulties in solving
the complex boundary-value problems of governing higher-order partial differential equations (PDEs), the
applicability of conventional analytic methods is generally restricted to some specific cases such as Navier-type
and Lévy-type rectangular nanoplates, i.e., those fully simply supported or with at least two parallel edges sim-
ply supported. Some representative studies in this regard are briefly reviewed here. Aghababaei and Reddy**
reformulated the third-order shear deformation plate theory using the nonlocal theory, and presented analytical
solutions of bending and free vibration of a simply supported rectangular nanoplate. Aksencer and Aydogdu®’
used Navier-type solution and Lévy-type solution for vibration and buckling of simply supported nanoplates and
those with two opposite edges simply supported. Sumelka®® proposed fractional calculus as a new formulation
to study the nonlocal Kirchhoff-Love plates, taking the case of simply supported plate as an illustrative example.
Based on Reddy’s nonlocal third-order shear deformation plate theory, Hosseini-Hashemi et al.* obtained Lévy-
type solutions for buckling and vibration problems of rectangular nanoplates. Ilkhani et al.** applied the wave
propagation approach to determine the natural frequencies of rectangular nanoplates with two opposite edges
simply supported. Jamalpoor et al.*! adopted the Navier approach to solve free vibration and biaxial buckling of
double-magneto-electro-elastic nanoplate-systems subjected to initial external electric and magnetic potentials.
Moradi-Dasjerdi et al.** applied the Navier approach at the free vibration analysis of nanocomposite sandwich
plates reinforced with CNT aggregates. Arefi et al.*’ adopted the Navier-form solutions to analyze the free vibra-
tion of a sandwich nano-plate including FG core and piezoelectric face-sheets. Cornacchia et al.** obtained the
Navier solutions for vibration and buckling of Kirchhoft nanoplates using second-order strain gradient theory.
Besides, Yang et al.*® utilized the Bessel functions to settle the bending problems of circular nanoplates under
concentrated and uniform loads.

In recent years, we have proposed an analytic symplectic superposition method for mechanics problems of
plates and shells based on classical theories, which proved to be widely applicable to bending***’, buckling*®, and
vibration*»*° problems. The solution procedure involves three main steps, i.e., converting an original problem
into several elaborated subproblems, solving the subproblems within the Hamiltonian system by the symplectic
approach, and superposition of the subproblems for the final solution. Specifically, the symplectic eigenvalue
problems of a Hamiltonian matrix are introduced, followed by symplectic eigen expansion, to yield the analytic
solutions of the subproblems, which are exclusive mathematical techniques in the symplectic space® rather than
in the traditional Euclidean space. However, since the governing equations of the nanoplate problems are much
more complex than those of the classical plate problems, there has been almost no research on developing the
symplectic superposition method for analytic modeling of similar issues. In the following, for the first time,
the symplectic superposition method is extended to obtain the analytic bending, buckling, and free vibration
solutions of rectangular nanoplates with all combinations of clamped and simply supported edges, including
both Lévy-type and non-Lévy-type solutions. Comprehensive benchmark results are presented to show fast
convergence and high accuracy of the present solutions by excellent agreement with those obtained by the finite
element method (FEM) and other numerical methods in the open literature. The effects of the nonlocal param-
eter and plate dimensions on the mechanical behaviors of the nanoplates are well examined with the present
analytic solutions. Some useful conclusions are drawn to reflect the small-scale effects that are not captured in
classical theories.
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Figure 1. (a) Top view and (b) tilted side view of a rectangular nanoplate resting on a two-parameter elastic
foundation. (c-f) Symplectic superposition for a fully clamped rectangular nanoplate, where the original
problem (c) is equivalent to the superposition of the three subproblems (d-f).

Governing equation for bending, buckling, and free vibration of nanoplates
in the Hamiltonian system
Based on the nonlocal theory by Eringen'?, the transformed differential constitutive equation® is

2
0'1.7 —uVv al-]f‘ =0jj = Sijklekl (1)

where o3, oi;’, Sijki> and ¢g denote the components of local stress tensor, nonlocal stress tensor, fourth order
stiffness tensor and strain tensor, respectively, 1« = (el)? is the nonlocal parameter depending on the internal

characteristic length, /, and an experimentally defined material constant, ey. For isotropic thin nanoplates, we have

E vE 0

n n
UJ;, 5 G);, Oy 1752 17Ev2 Ex

v
U)}; —pV 0);[ =y % (= | 107 1= g Ey )
ny ny ny 0 20+v) Exy

where E and v are Young’s modulus and Poisson’ ratio, respectively. The stress resultants are defined as

M" = M%, = / z (7);1 dz (3)
Mg, —h/2 oy

where h is the thickness of the nanoplate. The moment component resultants are thus
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where D = ER® /[12(1 — v?)]is the bending stiffness.
The nonlocal theory-based quadratic functional for a nanoplate within the domain € resting on a two-
parameter elastic foundation as shown in Fig. 1a,b is written as?”?%3!

Mo = [ [U003) = T(3) + V(59) - Qooy)Jesdy ®

in which
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Here, x and y are the coordinate variables; w is the transverse deflection of the nanoplate; k,, and kp are Winkler

+kw{w2+u

V(xy) = ;{M{Ny

and Pasternak foundation coeflicients, respectively; my = ﬁl{jz pdz,andmy = [ fﬁz pz2dz, with p being the
mass density of the nanoplate; Ny and N, are the membrane forces along the x and y directions, respectively;

q(x,y)is the transverse external load. Putting u = 0, the quadratic functional for the classical thin plate model
is obtained.
The variation of the governing equation (5) about w yields

_tw  _ *w  — ¥tw < Pw - Pw

— 2 _
—Regg - it xyW—FRX@—f—Rya—yz-i-(mo—kw)w—i-(I—MV )g=0 (10)

where Ry =D+ u(ky+Ny—m), R,=D+u(k,+N, —m), Ry=Rc<+R,, Ry = ky + Ny — 71,
+ulky — o), Ry = kp + Ny — 3 + u(ky — o), Mo = w*mo, and 1, = w?m,.
Define the generalized displacement vector

q=(w6:}" (11)
where
ow
Oy = —— 12
* 0x (12
The corresponding generalized force vector is
oIl \%d
p= at(fl)tal = {M)i! } (13)
where () = 9()/dx, and
v R aw? (E D ) aw? AR aw aq 14
= — _— —Dy)— _ — u—
* * 9x3 v dxdy? " ox Hox (14)
" e aw?

are respectively the nonlocal equivalent shear force and nonlocal bending moment in the cross sections perpen-
dicular to the x axis. By coordinate exchange, we have

V"= -R ow (R —Dv)LW3 I AL (16)
y 4 8)’3 xy axZBy 4 ay May
" _ aw? Iw?
M) = —R},a—yz —Dvo—5 —nq (17)

A new set of quantities excluding the external load are introduced as
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Form Eq. (12),
e (19)

Form Eq. (19) and the second equation of Eq. (18),

9 _ My Dvw 00)
dx R, R, 92

From Eq. (19) and the first two equations of Eq. (18),

M, — 920, -
Pl Vi— (Ry — 2Du)a—y2 + Ry 0y (21)
From Eq. (10) and the first two equations of Eq. (18),
vy [=  (Dv)?]dtw - 3w - Dv 3> M, 5
ax { - R, By 4 8)/2 + (e — mo)w R, 3y2 ( M )q (22)
Equations (19-22) are written in matrix form as
0Z
C_HZ+f (23)
ax
T . F G .
where Z = [w,0y,Vy,M,]" is referred to as the state vector; H= Q g with
R —(DJ)Z] * R +(k — M) 0 -1 00
Q= [J’ R, | oyt )’ B 52 . F=|pv o 0 :andG:{()L};
0 —(Ry —2Dv) 35 + Ry R, 9y R

f=10,0,—(1—puV?)q,0] T is the transverse external force vector that only exists in a bending problem. H is a

01,

Hamiltonian operator matrix satisfying HT = JHJ, where ] = {Iz 0

} is the unit symplectic matrix with 2 x2
unit matrix I; accordingly, Eq. (23) gives the governing equation for bending, buckling, and free vibration of
nanoplates in the Hamiltonian system.

Fundamental analytic solutions in the symplectic space

In applying the symplectic superposition method, an original problem is converted into superposition of several
elaborated subproblems that are solved in the symplectic space, whose solutions are referred to as the funda-
mental analytic solutions in this study.

Taking bending of a fully clamped nanoplate as an example, Fig. 1c-f schematically shows the symplectic
superposition of the problem, where the nanoplate (Fig. 1c) has length a and width b, with the axes ox and oy
along the plate edges. Corresponding to the bending moments excluding the external load, as expressed in Eq.
(18), we denote the BCsw = 0, My = 0atx =0, aand w = 0, M, =0aty=0, b by “S” In comparison, the
actual simply supported conditions of a nanoplate, denoted by “S”, implyw = 0, M = 0atx =0, aandw = 0,
My =0aty =0, b.

" The first subproblem (Fig. 1d) is for a transversely loaded nanoplate with all edges S-supported. For the second
subproblem (Fig. le), the same S-supported nanoplate is driven by a pair of nonzero My|,—y and My |,, that
are expanded as ) 2| 53 Eusin (B,y)and Y307 55 Fysin (Bay), respectively. For the third subproblem
(Fig. 1f), the same S- supported nanoplate is driven by a palr of nonzero M, | and M, | that are expanded
asd> 02 55 Gusin(ayx)and Y00 5 Hysin (), respectively. Here, o, = nt/a, ﬁn = n7 /b; Ey, Fy, G
and H,, are the series expansion coefficients, which will be determined later. The BCs are thus

W|x:0,a =0, Mx'x:O,a =0

_ _ (24)
wly—op = 0, My\yzo,b =0

for the first subproblem,
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Myleo = Z:O:l,z,x... Ensin (Bny)> Mxleeq = Z:il,z,s,... Fysin (By)

(25)
Wlimo,a = 0, Wly—op =0, M},‘yzo)b =0
for the second subproblem, and
Wly=0a = 0, Mx|y—00 =0, le:O,b =0
(26)

o0 00
My|y=0 = anl,z,s,... Gy sin (ayx), MJ"y:b = Zn:l,2,3,... H,, sin (ax)

for the third subproblem. B

All the three subproblems come down to a general problem for a nanoplate with a pair of opposite edges S
-supported. Taking the nanoplate S-supported at y=0 and y="b as an example, the homogeneous equation of
Eq. (23) is

9Z
Z _wuz 27)
ox
The validity of variable separation in the symplectic space®® gives
Z=XxY(y) (28)
where X (x) is a function of x, and
T
Y(y) = [w():6x (1), Vi (v): M (v)] (29)
is a vector with argument y. Substituting Eq. (28) into Eq. (27) yields
dX (x)
5 =W (30)
x
and
HY(y) = £Y(y) (31)

with the eigenvalue & and the eigenvalue Y (y). With the BCs at y=0 and y=b, we obtain the eigenvalues and
eigenvectors:

Rot R = ) (R + Re)” — 4Re[BE (R, + B3R, + o — 0]
Snl = _";:nZ = —
2R,
(32)
Re+RoB2 ) (RyB2 + R)” — 4R [B2(R, + B2R,) + kyy — T0)
§n3 - _";:n4 = —
2R,
and
e 27327 5 el T
Yoi(y) = sim (Bry) {1, R TR -

forn=1,2,3,..andi =1, 2, 3, and 4. Accordingly, we have
HY(y) =Y(y)M (34)

where M = diag[. .., &n1, En2, Enz> Ena, - . -], and Y(y) = [ .Y (y),Y,,g (y),Y,,3 (y),Y,,4 (y), .. } Substituting
Egs. (28) and (34) into the Eq. (23), we have

dX(x)
dx

T.
where X(x) = [. .., X1 (%), X2 (), X3 (), Xpa (), . . .1, and G = [ <> 8nl>8n2>8n3> Ends - - ] is the column

= MX(x) + G (35)

matrix of the expansion coefficients of f, satisfying f = Y (y)G. Utilizing the eigenvectors conjugacy and orthog-
onality, G is determined by foh Y(y) T]Y(y) Gdy = fob Y(y)T]fdy.
For the uniform load with intensity q,,
Guénill — cos (n7)]
n7 [ky — 7 — £xRe + B (BiRy + Ry)]

i =— (36)

forn=1,2,3,..(i =1, 2, 3, and 4), where the script “u” corresponds to uniform load. For the concentrated
load with intensity g at (xo, yo ),
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qc&ni sin (}’O,Bn)
blky — 7 — §1Rx + B2 (B2Ry + Ry)]

8ni=— 3(x — xo) (37)

« »

where the script “c” corresponds to concentrated load. From Eq. (35), we then obtain

qu[1l — cos (nm)]

XU (x) = cie™™ + = 2+ R
ni i n [k — o — E4Rx + B2 (B2R, + Ry )]

(38)

and

qcEniH (x — x0) sin (yoBy ) e =%0)
blky — o — EXR, + B2(B2R, + Ry)]

XE,(3) = e — (39)

for the cases with uniform and concentrated loads, respectively. Here, H (x — x) is the Heaviside theta function,
cpi are the constants to be determined by imposing the remaining BCs at x = 0 and x = a. The solution of the
Eq. (23) is thus expressed by

0 4
Z Z Xni Yni (40)
n=1,2,3,... i=1

The deflection solution of the nanoplate S-supported at y=0 and y=b, denoted by wg (x, y), is thus obtained as

- >

n=1,2,3,... i

M“‘

sin(By) X,,; (x) (41)
1

Substituting Eq. (41) into Eq. (24) to determine the constants, we obtain the deflection solution, w; (x, y), of
the first subproblem. For the uniform loading, we have

wi (x,y s 2q, [cos (nm) — 1] sin (nmy B
1 (b ) _ ; . ( ) {{cosh [(Zx — l)]/n3/2] sech(yn3/2) - I}Wnl ()

+{cosh [(2x — 1)ym1/2]sech(yu1/2) — 1} 43}

where¢ = b/a,q, = b°qu/D,% = x/a,7 = y/b,ym = aén1, Yu3 = aén3, ¥m = b* [k — 0 + B2(BZR, + Ry)
—Ri&}] /D, and Y3 = b* [k, — mo + B2 (BER, + R),) — Ry&,5] /D. For the concentrate loading, we have

wi(xy) _ g~ 204,
b =1 1/011‘/’113

+¥n3¥micsch(yys) sinh (y,3%) sinh [y3 (1 — X0)] + Ym1¥nzcsch(yar) sinh (y,1%) sinh [y (1 — o)1}

sin (ny) sin (n770) {yu3¥m sinh [yn3 &o — %)] + Yu1 Va3 sinh [y (%o — X)]} H(E — %o)

(43)

where ¢ = a/b, y, = yo/b, %o = x9/a,and q, = bq. /D
Equating g, or q,, with zero, and imposing the BCs in Eq. (25), we obtain the deflection solution of the second
subproblem, denoted by w, (x, y), as

M = Z M{{csch(ym) sinh [yu1 (X — 1)] — csch(yy3) sinh [y, — D]}E, +
a n=1,2,3,... (Vi = i) (44)

[csch(yy3) sinh (yu3%) — csch(yn1) sinh (Y1 X)]F, }

where E,, = aEn/ﬁx, and F, = aF,,/ﬁx.
For the third subproblem, incorporating Eq. (26), we obtain the deflection solution, denoted by w;, (x, y),
following the second subproblem, i.e.,

= (Z,y) - i (sm (nJTX)) {{csch(¥,1) sinh [, (7 = 1)] — esch(7,3) sinh [7,3(7 — 1)] } Ga

Va1 — Vs (45)
+esch(7,3) sinh (7,57) — csch(7,,1) sinh (7,17) | Hau }

where Y =bEn Vs = b Gn=bG,/R, H, = bH, /R,

B = ¢ {Ry—f—nyoz (R + Ry)* — 4R [02 (Re + a2Re) + _mo]} / (2R) . and

E,s = \/ {Ry + Ry + 1\ (Ryad + Ry)” — 4Ry [02 (Re + a2Re) + _mo]} / (2R)).
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BC
Mechanical quantity Number of series terms | CCCC | CCCS | CCSS SCSC SCSS SSSS
10 70.575 | 85.081 | 10625 |100.52 |129.81 |163.76
20 70.532 | 85.028 | 10622 | 100.51 |129.81 |163.76
10°Dw(a/2,b/2) /(qub*) |40 70.527 | 85.022 | 106.22 | 100.51 |129.81 | 163.76
80 70.526 | 85.021 | 106.22 |100.51 |129.81 |163.76
120 70.526 | 85.021 | 106.216 |100.510 | 129.810 | 163.760
40 330.37 |351.37 38094 |373.81 |413.82 |460.12
80 330.52 | 35153 [381.10 |373.97 |413.98 |460.28
160 330.55 |351.56 |381.14 | 37401 |414.02 |460.32
10°Dw(a/2,b/2) /(9:b%)
240 330.56 | 35157 |381.14 |37402 |414.02 |460.33
320 330.57 |351.57 |381.15 |374.02 |414.03 |460.33
400 330.57 | 35157 38115 |37402 |414.03 |460.33
3 34352 | 29.844 | 24271 |- - -
" 5 34.359 | 29.848 | 24272 |- - -
_Ncrmcale/D
* 10 34.359 | 29.848 | 24273 |- -
20 34359 | 29.848 | 24273 |- - -
3 32.240 | 28.620 | 24418 |- - -
5 32251 | 28.626 | 24.421 |- - -
b*\/ph/D
10 32.252 | 28.626 | 24.421 |- -
20 32252 | 28626 | 24421 |- - -

Table 1. Convergence study for bending, buckling, and free vibration solutions of the square nanoplates with
b=10nm,u =1 nm?, and kp =20 under different BCs.

Analytic solutions for rectangular nanoplates with combinations of clamped
and simply supported edges
Superposing the fundamental analytic solutions given in “Fundamental analytic solutions in the symplectic space”
section, analytic bending, buckling, and free vibration solutions of rectangular nanoplates with combinations of
clamped and simply supported edges can be obtained, provided that the BCs are satisfied.

Denoting the clamped edge by “C, a fully clamped (CCCC) nanoplate resting on an elastic foundation is first
solved, where zero rotation conditions should be satisfied at each edge. Therefore, the following equations hold:

3 awi 3 3Wi
> ol =0 X =0 (46)

i=1 x=0,a i=1 % ly=op

For a uniformly loaded CCCC nanoplate, substituting Eqs. (42), (44), (45) into Eq. (46) and expanding the
existed polynomials as sine series, using the orthogonality in the trigonometric series, we have

Ym1 coth (Yim1) — Ym3 coth (yn3) E, + VmSCSCh(Vm3) leCSCh(le)*
m

yr%ll - )’r%ﬁ le — Vm3
2¢pmnm? _ _
+ — —— |G, — cos (mm)H
Y %:3 m2n2 + y%ll) (mzﬂz + Vﬁs) [ n n} (47)
_ 2¢q,[cos (mm) — 1] [Vm1 ¥m3 tanh (Y1 /2) 4 Vm3¥mi tanh (ym3 /2) ]

nT[Wmlmev
forx=0m=1,2,3,...),

Ym1csch(ym1) — Vm3CSCh(Vm3)7 + Ym3 coth (VmS) — ¥m1 coth ()/m1)7

V2 ~ Vs b Vi1 = Yo o
2¢mn7t cos (nm) _ _
+ G, — cos (mm)H, 48
n_%% 72) (2 + 72,) [ ] (48)
24, [cos (1mmr) — 1] [ym1 ¥ms tanh (V1 /2) + Y3 Ym1 tanh (yms/2)]

”nl//mN/’mS
forx=a(m=1,2,3,..)),
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5558 Present (y=1.84 nm?) 1.08381 0.653020 0.435623 0.264407 0.175096 0.123826
Molecular dynamics® 1.0837 0.6536 0.4331 0.2609 0.1714 0.1191
coce Present 52.3447 16.9193 10.0904 5.58334
iSOV 52.4550 16.9308 - 5.5846
Present 32.0524 14.0452 8.99289 5.23016
eSS iSOV 32.0859 14.0516 - 5.2310
Present 37.7996 15.0477 9.39361 5.36322
568¢ iSOV 37.7996 15.0477 9.3936 5.3632
Present 26.2798 12.8120 8.47084 5.04918
SCss iSOV?! 26.2798 12.8120 8.4708 5.0492
Present 19.7392 11.0302 7.65342 4.74697
555 iSOV 19.7392 11.0302 - 4.7470

Present (u=0.28 nm?) 0.166204 0.0525765 | 0.0297640 | 0.0191059 | 0.0132896 0.00977343
cece Molecular dynamics? 0.1162438 | 0.0534719 | 0.0307422 | 0.0180318 | 0.0133060 0.0104205
5555 Present (4=1.30 nm?) 0.0586902 | 0.0277179 | 0.0159556 | 0.0103251 | 0.00721415 | 0.00531994

Molecular dynamics® 0.0587725 | 0.0273881 | 0.0157524 | 0.0099840 | 0.0070655 0.0052982

Present 40.2855 43.4400 50.1684 58.9583
cece Rayleigh-Ritz method? 40.2856 43.4408 50.1693 58.9610
Present 30.8646 37.5974 46.7039 53.5255
cees Rayleigh-Ritz method? 30.8647 37.5978 46.7047 53.5259
Present 30.0688 35.5232 43.6944 53.1077
cess Rayleigh-Ritz method® 30.0688 35.5235 43.6951 53.1091
scse Present 39.6000 40.7306 45.2329 52.4998
Rayleigh-Ritz method® 39.6000 40.7306 45.2329 52.5002
Present 29.5537 33.8697 41.0402 49.9349
SCSS Rayleigh-Ritz method? 29.5537 33.8697 41.0402 49.9379
5558 Present 22.1851 29.1902 38.2287 44.1800
Rayleigh-Ritz method? 22.1851 29.1902 38.2287 44.1800

Table 2. Comprehensive comparison of the critical buckling load and fundamental frequency solutions.

7m3 csch (7m3) - 7m1 csch (7m1 ) ﬁ
=2 _ =52
Yml Ym3

Y m coth (7:,121) : fgﬁ coth (7,"3) Gt
Yim1 Ym3
o0
+ >
n=1,2,3,...
- i —16g,, sin (mr /2)” sin (n7/2)” [V s (72 + v2) + Vv (mP7® + v2s)]
MY Yn3 (mznz + Vrfl) (””27[2 + )/,,23)

m

2¢pmnm?
(m2r? + y) (m?? + v,3)

[E, — cos (mm)Fy] (49)

n=1,2,3,...

fory=0(m=1,2,3,...),and

7m3 coth (7m3) - 7m1 coth (7m1)

7mlCSCh (7m1) - 7m3 csch (7m3) 6 +
m — —
Vol = Vs

Vo~ Vs
f: 2¢pmnm? cos (n)
(m2m? + ) (m2m® + )

H,.+

[E, — cos (mrr)f,,]

n=1,23,...
_ i —16g,, cos (n7) sin (mn/2)2 sin (nrr/2)2 Wy (M2 + v0) + Yy (m*a? 4+ v5)]
n=1.23... ma Y Vs (m2a? + v ) (m2n? + )

(50)
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BC

u EP CCCC | CCCS |CCSs |SCsC | scss SSSS
Present | 108.83 130.23 | 164.08 |153.39 |203.31 |265.33
0 FEM 108.84 130.23 | 164.08 | 153.39 |203.32 |265.33
5 100.36 118.60 | 146.47 |138.23 |178.21 |226.39
0 10 93.100 | 108.88 |132.29 |125.77 |158.60 |197.29
15 86.822 | 100.63 | 120.63 |115.36 |142.87 |174.74
20 81.336 93.543 | 110.86 | 106.53 | 129.96 | 156.76
0 105.28 130.87 | 171.41 |158.50 |218.05 |291.07
5 93.726 | 115.32 | 148.59 |138.54 |186.41 |243.89
1 10 84.462 |103.07 |131.14 |123.03 |162.77 |209.77
15 76.8665 | 93.178 | 117.37 | 110.64 | 144.44 |183.95
20 70.526 85.021 | 106.22 | 100.51 |129.81 |163.76
0 101.94 131.38 | 177.84 |163.09 |230.94 |313.20
5 87.920 | 112.43 |150.33 |138.78 |193.35 |258.66
2 10 77.291 98.25 |130.20 |120.77 |166.27 |220.23
15 68.958 87.261 | 114.84 |106.90 | 14585 |191.72
20 62.249 78.482 | 102.72 95.890 | 129.89 | 169.72
0 98.816 | 131.78 |183.50 |167.22 |242.26 |332.34
5 82.791 |109.86 |151.78 |138.96 |199.28 |271.27
3 10 71.243 94.198 | 129.42 | 118.88 |169.26 |229.14
15 62.524 82.448 | 112.81 |103.88 |147.10 |198.33
20 55.708 73.306 | 99.983 | 92.234 | 130.07 |174.82
0 95.873 | 132.09 |188.51 |170.94 |252.27 |349.00
5 78.229 | 107.57 |153.00 |139.11 |204.42 |282.17
4 10 66.073 90.733 | 128.76 | 117.28 |171.84 |236.81
15 57.188 78.456 | 111.16 |101.37 |148.22 |204.02
20 50.411 69.106 | 97.789 | 89.266 | 130.31 |179.21

Table 3. Bending deflections, 10°Dw(a/2,b/2) /(q,b*), of uniformly loaded square nanoplates with
b=10 nm under different BCs.

fory=>b(m=1,2,3,...).
For a CCCC nanoplate under concentrated load, the only differences are on the right-hand sides of Eqs.
(47-50), which become

2 2— . —
M%W{wméacsch(m sinh [y o — D] + YimsZacsch(yn) sinh [y o — D1} (51)
2¢2§C sin (mnyo)

- [V Vm3esch(Vm3) sinh (Vm3Xo) + Ym3 Vs csch(Vm1) sinh (v Xo)) (52)
m m.

B i 4nm ¢q, sin (mmXp) sin (nnyo) [1//,,1)/,%3 (mznz + ynzl) + 1/@,3]/31 (mzrr2 + )/,123)}

53
VntVa (27 + 72) (w27 + 73) 9
3 i 4nm ¢q, cos (nmr) sin (mxo) sin (nmy) [y (m* 7 + v4) + Yy (m* 7 + v5)]
n=123... Y W3 (M2 + v, ) (mP72 + y,5)
(54)

for Egs. (47-50), respectively.

For the bending problem, equating Ny, N,, and o with zero, the constants E,,, F;, Gy, and Hy (n = 1,2,3, .. )
are obtained by solving the nonhomogeneous equations (47-50) for the case of uniform load or incorporating
Eqs. (51-54) for the case of concentrated load. Substituting the constants into Eqs. (44) and (45), followed by
summation of Egs. (42)/(43), (44), and (45), the final bending solution is obtained. For the buckling (free vibra-
tion) problem, equating gy, g., Nx, Ny, ky, and kp (qu> ge> 0, kw, and kp) with zero, the buckling loads (natural
frequencies) are determined by equating with zero the determinant of the coefficient matrix of the homogeneous
simultaneous equations of Eqs. (47-50). Substituting the nonzero constant solutions into the Egs. (44) and (45),
and conducting summation, the buckling (vibration) mode shapes are obtained.
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BC

u EP CCCC | CCCS |CCSS |SCSsC | scss SSSS
Present | 497.93 |541.68 |609.34 | 589.07 | 687.68 |810.08

0 FEM 497.92 | 541.68 | 609.34 | 589.06 | 687.69 |810.10

5 462.99 |499.37 |553.69 |538.53 |615.51 |708.21

0 T 43295 |463.69 |508.30 |496.63 |558.39 |631.11
15 | 43295 |433.18 |470.48 |461.29 |511.94 |570.59
T 406.83 | 406.75 |438.44 |431.05 |473.37 |521.70
707 483.29 |523.84 |585.63 | 567.65 | 656.63 |765.62
Bl 43296 |466.24 |515.57 |502.04 |571.59 |655.00

1 |10 | 392.31 | 420.31 |460.98 |450.37 |506.74 |573.33
T 358.75 |382.81 |417.15 |408.56 |455.54 |510.40
120 | 330.57 |351.57 |381.15 |374.02 |414.03 |460.33
0 469.55 |507.24 |563.90 |547.87 |628.56 |726.26
57 406.61 | 437.25 |482.40 |470.21 |533.58 |609.31

2 T 358.64 | 384.36 |421.72 |411.99 |463.85 |525.25
(15 | 320.85 |342.96 |374.72 |366.70 |410.41 |461.82
F 290.29 |309.66 |337.23 |330.43 |368.11 |412.20

0 456.62 | 491.76 |543.90 |529.54 |603.05 |691.14
5 | 383.30 |411.67 |453.28 |442.20 |500.35 |569.64

3 |10 | 330.30 |354.07 |388.63 |379.65 |427.65 |484.61
T 290.20 |310.64 |340.16 |332.63 |373.45 |421.74
T 258.79 | 276.71 |302.46 |295.99 |331.47 |373.35

0 44444 | 477.27 |525.42 |512.50 |579.76 |659.60
T 362.52 | 388.94 |427.49 |417.35 |471.05 |534.86
4 T 306.11 |328.21 |360.35 |352.01 |396.69 |449.81
15 | 26490 |283.90 |311.45 |304.37 |342.62 |388.11
120 | 233.47 | 250.13 |274.24 |268.09 |301.53 |341.30

Table 4. Bending deflections, 10°Dw (a/2,b/2) /(qcb?), of centrally concentrate-loaded square nanoplates
with =10 nm under different BCs.

For the nanoplates with any other combinations of clamped and simply supported edges, the solutions can
be obtained by relaxation of BCs from the above derivations. By equating Ny, N, and o with zero, imposing
H, = 0or H, = —2uqy[cos (nm) — 1]/(n7'r) (n=1,2,3,...), and eliminating Eq. (50), we have three sets of
simultaneous linear equations for the bending solutions of a CCCS nanoplate under concentrated or uniform
loads. By imposing F, = H, = 0 or F,, = H, = —2uqy[cos (nm) — 1]/(n7r) (n=1,2,3,...), and eliminating
Egs. (48) and (50), we obtain the bending solutions of a CCSS nanoplate under concentrated or uniform loads.
Similar treatments yield the bending solutions of SCSC, SCSS, and SSSS nanoplates. Here, an anti-clockwise
four-letter notation, starting from the edge x = 0, has been used to label a nanoplate under different BCs. The
buckling (free vibration) solutions are obtained in a similar way after equating q,, q., @, ky and kp (qu» qc> Ny,
N, k,, and kp) with zero.

Comprehensive numerical results and discussion
Comprehensive numerical results of the nanoplates with combinations of clamped and simply supported edges
are presented to confirm the validity of the developed method, and, more importantly, to provide benchmark
solutions for future comparison.

The convergence study is carried out and the results are shown in Table 1 for the square nanoplates with
b=10 nm, © = 1 nm?, and kp = kp b> /D = 20 under different BCs, including the central bending deflections,

10°Dw (a/Z, b/Z) / (qu b4) and 10°Dw (a/Z, b/Z) / (qcbz ), critical buckling load factors, —N;riﬁcalbz/D, and fun-

damental frequency parameters, wb*/ ph /D, where the convergent results with the accuracy of five significant

figures are marked in bold. It is found that only 10 terms, at most, yield the convergence to the last digit of five
significant figures for the buckling and free vibration solutions in this study, but 80 and 320 terms, at most, are
needed to achieve the same accuracy for the bending solutions with uniform and concentrated loads, respectively.
In Table 2, the present buckling and free vibration solutions are compared with their counterparts available in
the literature by molecular dynamics simulation®?, Rayleigh-Ritz method®®, and iSOV method?!, respectively,
confirming the validity of the adopted nonlocal theory and the present method. The parameters adopted are as
follows>>*%%: p = 2250kg/m>, E = 1 TPa, v = 0.16, and h = 0.34 nm. It should be noted that Young’s moduli
may be significantly different in the directions along short and long sides of a rectangular nanoplate®¢, which
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BC
u N, /Ny CCCC |CCCS |cCCss |SscsC SCSS SSSS
Present |52.345 |42.547 |32.052 | 37.800 26.280 | 19.739
! FEM 52.352 | 42.552 | 32.055 | 37.802 26.280 | 19.740
Present |34.696 |27.973 |21.274 |26.231 17.022 | 13.159
2 FEM 34700 |27.975 |21.275 |26.232 17.023 | 13.158
Present |25.835 |20.762 |15.865 |20.062 12.573 9.8696
0 } FEM 25.837 |20.764 | 15.866 |20.064 12.573 9.8697
Present |20.551 |16.490 | 12.634 |16.236 9.9633 | 7.8957
¢ FEM 20.553 | 16.492 | 12.635 | 16.238 9.9637 | 7.8960
Present | 17.051 |13.671 |10.491 |13.634 8.2493 | 6.5798
> FEM 17.053 | 13.672 |10.491 |13.635 8.2497 | 6.5800
1 34359 |29.848 |24.273 |27.431 20.811 |16.485
2 22.754 |19.206 |16.114 |19.712 13.334 | 10.990
1 3 16.897 | 14.113 |12.014 | 14.950 9.7984 | 8.2426
4 13.393 | 11.143 9.5606 | 11.522 7.7414 | 6.5941
5 11.072 9.2013 | 7.9315| 9.3723 6.3968 | 5.4951
1 25.573 22,987 |19.532 |21.526 17.226 | 14.152
2 16.899 | 14.621 |12.966 | 15.689 10.959 9.4348
2 3 12.419 | 10.682 9.6535 | 11.064 8.0265 | 7.0761
4 9.4884 | 8.4014 | 7.6609 | 8.5450 6.3287 | 5.6609
5 7.6762 | 69171 | 6.3334 | 6.9602 52222 | 4.7174
1 20.365 | 18.690 |16.340 |17.713 14.695 |12.398
2 13.396 | 11.801 |10.843 |12.425 9.3021 | 8.2651
3 3 9.3726 | 8.5828 | 8.0431 | 8.7814 6.7967 | 6.1988
4 7.1582 | 6.7213 | 6.3292 | 7.0569 5.3508 | 4.9590
5 57892 | 5.5094 | 5.1820 | 5.5352 4.4103 | 4.1325
1 16919 |15.747 | 14.045 |15.048 12.812 | 11.030
2 10.892 9.8902 | 9.3122 | 10.2843 8.0803 | 7.3534
4 3 7.5223 | 7.2448 | 6.8397 | 7.2794 5.8929 | 5.5151
4 5.7400 | 5.5132 | 5.2966 | 5.6334 4.6329 | 4.4121
5 4.6375 | 4.4494 | 4.3002 | 4.5494 3.8140 | 3.6767

Table 5. Critical buckling load factors, —Nritical p2 /D, of square nanoplates with b= 10 nm under different
BCs.

is not considered for a 5 nm x 2.5 nm nanoplate in reference?® and thus in the present study for comparison
purpose.

To provide more comprehensive benchmark solutions, we have tabulated the bending, buckling, and free
vibration solutions of CCCC, CCCS, CCSS, SCSC, SCSS, and SSSS nanoplates in Tables 3, 4, 5 and 6, with
a total of 3000 numerical results presented. The central bending deflections, 105Dw(a/2, b/Z)/(qub4) and
10°Dw(a/2,b/2) /(qcb*), of the six types of square nanoplates with b=10 nm are tabulated in Tables 3 and
4 for the cases of uniform and concentrated loads, respectively, with k,, = k,b* /D = 200, k, = k,b* /D =0,
5, 10, 15, and 20. The critical buckling load factors are tabulated in Table 5 for Ny/Nx =1, 2, 3,4, and 5. The
frequency parameters are tabulated in Table 6 for the first five modes. In each of Tables 3, 4, 5 and 6, five equi-
different nonlocal parameters are examined, i.e., u = 0, 1, 2, 3, and 4 nm?. The results by ABAQUS software®’
based on the FEM are also presented in each table, which correspond to the classical thin plate theory and are
valid for the cases with &« = 0. In ABAQUS, the thickness-to-width ratio of the nanoplates is 1073, and the S4R
thin shell element with uniform size of b/200 is taken. Satisfactory agreement between the present solutions and
their counterparts by the FEM is observed, further validating the present method.

Figuring out the effects of the nonlocal parameter and others on the mechanical behavior of a nanoplate is
helpful for researchers to determine the nonlocal parameter and to design the structure>*»**-!. Accordingly,
quantitative parameter analyses are implemented with the analytic solutions obtained in this study. Defining the
critical buckling load ratio as the ratio of the nonlocal theory- to classical theory-based critical buckling loads,
Fig. 2a plots the nonlocal parameter dependent ratios of the six types of square nanoplates with b = 10 nm and
N, /Ny = 1. The decrease of all six lines reveals that the nonlocal effect reduces the critical buckling loads of the
nanoplates, and, compared with classical plates, a nanoplate with stronger constraints shows a greater reduction
of its critical buckling load. The length effects on the critical buckling load ratios of square SSSS and CCCC
nanoplates with different nonlocal parameters are illustrated in Fig. 2b. With the increase of length, it is found
that the critical buckling load ratios unanimously increase, and gradually approach 1 that corresponds to the
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BC
u Mode CCCC |CCCS |CCSS |SCSC | scss SSSS
Present 35985 | 31.826 | 27.054 | 28.951 | 23.646 | 19.739
! FEM 35987 | 31.826 | 27.053 | 28.950 | 23.644 | 19.736
Present 73.394 | 63.331 | 60.539 | 54.743 | 51.674 | 49.348
? FEM 73.404 | 63.335| 60.542 | 54.744 | 51.673 | 49.346
Present 73.394 | 71.076 | 60.786 | 69.327 | 58.646 | 78.957
0 } FEM 73.404 | 71.085 | 60.789 | 69.335| 58.649 | 78.947
Present | 108.22 |100.79 92.836 | 94.585 | 86.135 | 98.696
¢ FEM 108.23 | 100.80 92.836 | 94.587 | 86.130 | 98.711
5 Present | 131.58 |116.36 |114.56 |102.22 |100.27 |128.31

FEM 131.62 | 116.38 | 114.58 |102.23 | 100.29 |128.30

32252 | 28.626 | 24.421 | 26.184 | 21.464 | 18.022
58273 | 50.808 | 48.654 | 44.419 | 42.043 | 40.285
58273 | 56.578 | 48.938 | 55357 | 47.328 | 58.799
78.048 | 73.237 | 67.969 | 69.294 | 63.595 | 69.687
89.939 | 80.751 | 79.596 | 71.910 | 70.663 | 84.395

29.489 | 26.239 | 22.441 | 24.097 | 19.804 | 16.698
49.807 | 43.664 | 41.840 | 38.389 | 36.385 | 34.926
49.807 | 48.421 | 42.143 | 47.451 | 40.797 | 34.926
64.186 | 60.407 | 56.231 | 57.341 | 52.791 | 48.979
72.691 | 65.641 | 64.716 | 58.702 | 57.719 | 56.961

27.324 | 24.357 | 20.872 | 22.438 | 18.476 | 15.629
44192 | 38.874 | 37.259 | 34.292 | 32.530 | 31.259
44.192 | 42994 | 37.571 | 42.176 | 36.390 | 31.259
55.773 | 52.574 | 49.020 | 49.994 | 46.105 | 42.856
62.625 | 56.729 | 55.930 | 50.831 | 49.996 | 49.357

N
G|l W | =|lu|bs|lwlR—=lu|&]|w|N]|~

—

25571 | 22.827 | 19.589 | 21.079 | 17.382 | 14.742
40.122 | 35.378 | 33911 | 31.277 | 29.686 | 28.548
40.122 | 39.055 | 34.226 | 38.338 | 33.159 | 28.548
49.981 | 47.162 | 44.018 | 44.896 | 41.449 | 38.573

G s W N

55.836 | 50.682 | 49.965 | 45.461 | 44.722 | 44.161

Table 6. Frequency parameters, wb? 4/ ph /D, of square nanoplates with b=10 nm under different BCs.

cases of classical plates, which suggests that the nonlocal effect matters for nanoscale plates, but may be negligible
for larger-scale plates such that the classical theory can well capture their behaviors.

Defining the frequency ratio as that of the nonlocal theory- to classical theory-based frequencies, Fig. 2¢
plots the nonlocal parameter dependent fundamental frequency ratios of the six types of square nanoplates with
b = 10 nm. The decrease of all six lines reveals that the nonlocal effect reduces the fundamental frequencies of
the nanoplates, and, compared with classical plates, a nanoplate with stronger constraints generally shows a
greater reduction of its fundamental frequency. The length effects on the fundamental frequency ratios of square
SSSS and CCCC nanoplates with different nonlocal parameters are illustrated in Fig. 2d, where the ratios show a
dramatical increase, and approach 1 with length, which again suggests that the nonlocal effect plays a significant
role for nanoscale plates, but is negligible for macroscale plates.

Concluding remarks

With an up-to-date symplectic superposition method, the analytic bending, buckling, and free vibration solu-
tions of rectangular nanoplates with combinations of clamped and simply supported edges are obtained based
on Kirchhoft plate theory and Eringen’s nonlocal theory. Compared with conventional analytic methods such
as the semi-inverse methods, the present method describes the problems in the Hamiltonian system, and yields
the analytic solutions by the mathematical techniques in the symplectic space in a rigorous step-by-step way,
without predetermining solution forms, which enables one to seek new analytic solutions. After validation of the
present method by the other methods, comprehensive benchmark results are presented for both Lévy-type and
non-Lévy-type nanoplates, including the bending deflections, critical buckling loads, and natural frequencies.
Quantitative parameter analyses are implemented with the analytic solutions to gain insight into the behaviors
and to provide reference for structural designs of nanoplates. It should be noted that the present work studies
linear free vibration since the adopted superposition technique is applicable in linear regime with small deforma-
tion, but the studies on nonlinear vibration are definitely worthy of further exploration, which may constitute
our follow-up work.
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Figure 2. (a) Critical buckling load ratios versus the nonlocal parameter of square nanoplates under different
BCs. (b) Critical buckling load ratios versus the length of square SSSS and CCCC nanoplates with different
nonlocal parameters. (c) Fundamental frequency ratios versus the nonlocal parameter of square nanoplates
under different BCs. (d) Fundamental frequency ratios versus the length of square SSSS and CCCC nanoplates
with different nonlocal parameters.
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