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Edge states of Floquet–Dirac 
semimetal in a laser‑driven 
semiconductor quantum‑well
Boyuan Zhang1, Nobuya Maeshima2 & Ken‑ichi Hino2,3*

Band crossings observed in a wide range of condensed matter systems are recognized as a key to 
understand low‑energy fermionic excitations that behave as massless Dirac particles. Despite rapid 
progress in this field, the exploration of non‑equilibrium topological states remains scarce and it has 
potential ability of providing a new platform to create unexpected massless Dirac states. Here we 
show that in a semiconductor quantum‑well driven by a cw‑laser with linear polarization, the optical 
Stark effect conducts bulk‑band crossing, and the resulting Floquet‑Dirac semimetallic phase supports 
an unconventional edge state in the projected one‑dimensional Brillouin zone under a boundary 
condition that an electron is confined in the direction perpendicular to that of the laser polarization. 
Further, we reveal that this edge state mediates a transition between topological and non‑topological 
edge states that is caused by tuning the laser intensity. We also show that the properties of the edge 
states are strikingly changed under a different boundary condition. It is found that such difference 
originates from that nearly fourfold‑degenerate points exist in a certain intermediate region of the 
bulk Brillouin zone between high‑symmetry points.

The theoretical prediction and the subsequent discovery of topological  insulators1,2 have led to explosive expan-
sion of the studies of topological perspectives of condensed  matter3,4 and photonic  crystals5, where a sharp 
distinction between topologically trivial and non-trivial phases with energy gaps is made by the presence of 
a gapless Dirac dispersion. The viewpoint of the gapless state has been developed to connect to the studies of 
topological semimetals akin to  graphene6–8, termed Dirac, Weyl, and line-node  semimetals9,10. Emergence of 
topological gapless phases is derived from symmetries inherent in the physical system of concern, namely, the 
time-reversal (T-)symmetry, the spatial-inversion (I-)symmetry, small groups supported by space groups, and 
so  on9–18. As regards a Dirac semimetal (DSM), this is realized by an accidental band crossing due to fine-tuning 
of material  parameters11,12, the symmetry-enforced  mechanism13,14, and the band inversion  mechanism15–17. 
Further, there exist edge modes known as double Fermi arcs at the surface of the DSM formed by the band 
inversion  mechanism17,19–21. Recently, a growing attention has been paid to two-dimensional (2D) DSMs from 
the perspective of in-depth theories and applications to novel nano scale  devices14,18,22–24.

While these intriguing topological semimetals are fabricated in equilibrium, there is still concealed attain-
ability of creating and manipulating gapless Dirac dispersions in Floquet topological systems with spatiotemporal 
periodicity. Owing to this property, the existence of quasienergy bands are ensured by the Floquet  theorem25,26. 
These systems are driven into non-equilibrium states by a temporally periodic external-field that has many 
degrees of freedom of controlling these states in terms of built-in  parameters27–36. It is reported that a three-
dimensional (3D) DSM, Na3Bi , is changed to a Floquet-Weyl semimetal by irradiation of femtosecond laser 
pulses with a circularly polarized  light34, and that band crossings at Dirac points are realized by forming a 
photonic Floquet topological insulator mimicking a graphene-like honeycomb lattice driven by a circularly 
polarized  light31. It is remarked that the T-symmetry is broken/protected in a system under the application of a 
circularly/linearly polarized light-field.

In this study, first, we show that a gapless Dirac state emerges in a 2D-bulk band of a semiconductor quantum 
well driven by a cw-laser with a linear polarization, where the T-symmetry is protected, however, the I-symmetry 
is broken. Here, the optical Stark effect (OSE) accompanying quasienergy band  splitting37,38 is introduced to cause 
an accidental band crossing at high-symmetry points in the 2D Brillouin zone (BZ). This effect is enhanced by a 
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nearly resonant optical excitation from a valence (p-orbital) band to a conduction (s-orbital). Such an optically 
nonlinear excitation leads to strong hybridization between the different parity states with s- and p-orbitals over 
a wide range of the BZ due to the broken I-symmetry. Second, we show that such photoinduced hybridization 
brings the resulting DSM state to coincide with an unconventional edge state with a linear and nodeful dispersion 
in a projected one-dimensional (1D) BZ under a boundary condition that an electron is confined in the direction 
perpendicular to that of the applied electric field of laser. Further, when the laser intensity changes to make a gap 
open, this edge state is transformed smoothly into another edge state within this gap; which is either topologi-
cally trivial or non-trivial. It is also shown that the manifestation of these edge states is drastically changed under 
another boundary condition that an electron is confined in the direction parallel to the applied electric field. To 
deepen the understanding of the properties and boundary-condition dependence of the edge states, we introduce 
an interband polarization function that reflects the degree of parity hybridization in the bulk BZ. Finally, we 
point out that local anticrossings with quite small energy separation exist in a certain intermediate region of the 
2D BZ between high-symmetry points, and show that these anticrossings leading to nearly fourfold degeneracy 
are crucial to understand the different properties of edge states, depending on the boundary conditions.

These edge states concerned here share features with other studies. As regards the OSE, a valley-selective OSE 
is demonstrated in monolayer transition metal dichalcogenides with application of a circularly polarized electric 
 field39. As regards edge states of the Floquet DSM states, Tamm  states40–42 appearing in the surfaces of several 
Dirac materials are theoretically  examined43. Recently, growing interest has been captured in the interrelation of 
Tamm states with topological edge states in optical waveguide  arrays44–46, 1D photonic  crystals47–49, a graphene 
ring with the Aharonov-Bohm  effect50, a honeycomb magnon  insulator51, and a gold  surface52.

Results
Modified Bernevig–Hughes–Zhang model with a laser‑electron interaction. We begin by con-
structing the Hamiltonian of the present system of a semiconductor quantum well with a linearly polarized light 
field based on the paradigmatic Bernevig–Hughes–Zhang (BHZ)  model2 composed of two bands with s- and 
p-orbitals in view of a spin degree of freedom. Hereafter, the band with s(p)-orbital is termed as s(p)-band just 
for the sake of simplicity, and the atomic units (a.u.) are used throughout unless otherwise stated. The BHZ 
Hamiltonian concerned here is read as the 4× 4-matrix:

with k = (kx , ky) as a 2D Bloch momentum defined in the xy-plane normal to the direction of crystal growth of 
quantum well, namely, the z-axis. Here I represents the 4× 4 unit matrix, and Ŵj ’s represent the four-dimensional 
Dirac matrices for the Clifford algebra, defined by Ŵ1 = τx ⊗ σx , Ŵ2 = τx ⊗ σy , Ŵ3 = τx ⊗ σz , Ŵ4 = τz ⊗ I2 , and 
Ŵ5 = τy ⊗ I2 , where I2 represents the 2× 2 unit matrix, τs and σs with s = x, y, z represent the Pauli matrices for 
orbital and spin degrees of freedom, respectively, and the anti-commutation relation, {Ŵi ,Ŵj} = 2δij , is ensured. 
Further, ǫ(k) = 1

2
(ǫs + ǫp)− (tss − tpp)(cos kxa+ cos kya) , and

where ǫb and 8tbb represent the center and width of band b, respectively, and tbb′ represents a hopping matrix 
between b and b′(�= b) orbitals with lattice constant a; after this, a is set equal to unity unless otherwise stated. 
Hereafter, a semiconductor quantum well of HgTe/CdTe is accounted as the object of material. It is understood 
that tss = tpp and ǫs = −ǫp . Thus, a Fermi energy is given by EF = (ǫs + ǫp)/2 = 0 , and the energy gap Eg at the 
Ŵ-point of the quantum well equals 2(ǫs − 4tss).

An interaction of electron with a laser field is introduced into HBHZ(k) by replacing k by K(t) = k + A(t) , 
followed by adding to HBHZ(K(t)) an interband dipole interaction given by v(t) = �(t)Ŵ6 , where Ŵ6 = τx ⊗ I2 , 
and �(t) is a real function of time t, provided as �(t) = F(t) · Xsp . Here an electric field of the cw-laser with 
a linear polarization in the x-direction is given by F(t) = (Fx cosωt, 0, 0) with a constant amplitude Fx and a 
frequency ω , where this is related with a vector potential A(t) as F(t) = −Ȧ(t) , and Xsp = (Xsp, 0, 0) represents 
a matrix element of electric dipole transition between s- and p-orbitals, independent of k : Xsp = X

∗
ps . Thus, in 

place of HBHZ(k) , the resulting expression ends with up

where Di(k, t) = di(K(t)) for i  = 6 , and D6(k, t) = �(t) (for more detail of derivation of it, consult Supplemen-
tary Note 1). Obviously, this ensures the temporal periodicity, H(k, t + T) = H(k, t) , with T = 2π/ω , and the 
system of concern follows the Floquet theorem.

T‑ and pseudo‑I‑symmetries. It is evident that the T- and I-symmetries are conserved in HBHZ(k) , that is, 
�−1 HBHZ(−k)� = HBHZ(k) , and �−1 HBHZ(−k)� = HBHZ(k) , where � and � represent the T- and I-oper-
ators, defined by � = −iI2 ⊗ σyK and � = τz ⊗ I2 , respectively, where K means an operation of taking complex 
conjugate. Accordingly, by fine-tuning Eg , it is likely that an accidental band crossing occurs at a high-symmetry 
point with fourfold  degeneracy11.

(1)HBHZ(k) = ǫ(k)I +

5
∑

i=3

di(k)Ŵi

(2)







d3(k) = 2tsp sin kya

d4(k) =
1
2
(ǫs − ǫp)− (tss + tpp)(cos kxa+ cos kya)

d5(k) = 2tsp sin kxa
,

(3)H(k, t) = HBHZ(K(t))+ v(t) ≡

6
∑

i=3

Di(k, t)Ŵi ,
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On the other hand, as regards H(k, t) , while the T-symmetry is still respected, the I-symmetry is broken 
because Di(−k, t) �= −Di(k, t) for i = 5, 6 , and D4(−k, t) �= D4(k, t) . That is, �−1H(−k,−t)� = H(k, t) , 
whereas �−1H(−k, t)� �= H(k, t) . In fact, it is shown that in terms of an operator defined as �̃ = �T1/2 , the 
symmetry �̃−1H(−k, t + T/2)�̃ = H(k, t) is retrieved, where T1/2 represents the operation of putting t ahead 
by a half period T/2, namely, the replacement of t → t + T/2 . Hereafter �̃ is termed as the pseudo-I operator 
reminiscent of the time-glide  symmetry53.

Floquet quasienergy bands. Owing to the Floquet theorem, a wavefunction of the time-dependent Schrö
dinger equation for H(k, t) is expressed as �kα(t)e

−iEα(k)t for Floquet state α , and thus �kα(t) is ensured by the 
quasi-stationary equation

under a temporally periodic condition �kα(t + T) = �kα(t) , where L(k, t) = H(k, t)− iI∂/∂t and Eα(k) 
is an eigenvalue termed as quasienergy of the 2D bulk band. It is noted that �−1L(−k,−t)� = L(k, t) , and 
�̃−1L(−k, t + T/2)�̃ = L(k, t) . The state α is denoted as a combination of β(n) , where β is assigned to either 
s- or p-band that dominates over this hybridized state, and n represents an additional quantum number due 
to the temporal periodicity that means the number of dressing photons. Owing to the pseudo-I-symme-
try, Eα(k) equals Eα(−k) , where the associated eigenstate of the former is �kα(t) , while that of the latter is 
�̃�kα(t) = �−kα(t + T/2) . It is remarked that a parity is still a good quantum number at a high-symmetry point 
k = k

j (j = Ŵ,X1,X2,M) , that is, �−1L(kj , t)� = L(kj , t) , where four X-points in the 2D-BZ are not equivalent 
because of the application of the laser field in the x-direction, and these are distinguished by representing as X1 
and X2.

Eα(k) ’s are obtained by numerically solving Eq.  (4) in the frequency (ω) domain, where the Floquet 
matrix is recast into L̃nn′(k,ω) = (n|L(k, t)|n′) with respect to n and n′ photon states; it is understood that 
(n| · · · |n′) = 1

T

∫ T
0

dte−i(n−n′)ωt · · · . The matrix element of it is read as

where D̃i,nn′(k,ω) = (n|Di(k, t)|n
′) , and an explicit expression of it is given in Supplementary Note 2. A quasi-

energy band, Eα(kx)/Eα(ky) , which is the projection of Eα(k) onto the kx/ky-direction, is obtained by solving the 
equation provided by representing Eq. (4) in the lattice representation just in the y/x-direction where the motion 
of electron is confined. Thus, there are two types of vanishing boundary conditions that the electron is confined 
in the direction either perpendicular or parallel to the direction of F(t) . Hereafter, the former type is termed 
the boundary condition A, the latter is the boundary condition B; the allocation of both types is schematically 
shown in Supplementary Figure 1.

(4)L(k, t)�kα(t) = Eα(k)�kα(t)

(5)L̃nn′(k,ω) = nωδnn′ I +

6
∑

i=3

D̃i,nn′(k,ω)Ŵi ,

Figure 1.  Scheme of the nearly resonant optical-excitation followed by the OSE. (Left) The original energy 
allocation of the p-band (red solid line) and the s-band (blue solid line) with energy gap Eg . (Center) With the 
application of cw-laser with frequency ω and constant electric field Fx , the OSE causes quasienergy-splitting 
of the order of the Rabi frequency �R between a pair of photodressed bands, s(n− 1) and p(n), with n = 0, 1 . 
(Right) With the further increase in Fx , a pair of bands of p(1) and s(−1) undergoes inversion with anticrossing. 
Band crossing takes place at a certain Fx , as shown by a dashed line.
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Quasienergy‑band inversion and crossing due to OSE. Here we show an overall change of quasi-
energy spectra with respect to Fx due to the OSE, eventually leading to a band inversion. Figure 1 shows the 
scheme of the nearly resonant optical-excitation from the p-band to s-band with ω � Eg . Such a scheme of 
excitation almost maximizes the degree of the sp hybridization to induce sharp quasienergy-splitting of the order 
of �R between two quasienergy bands of s(n− 1) and p(n) for n = 0, 1 , where �R represents the Rabi frequency 
given by FxXsp

37. As Fx increases, a pair of photodressed bands of p(1) and s(−1) undergoes inversion to swerve 
with anticrossing.

Figure 2a, b show the calculated results of Ep(1)(kx) and Es(−1)(kx) under the boundary condition A as a func-
tion of Fx for kx = 0 and π , respectively. It is noted that these bands cross at the abscissa (E(kx) = EF = 0) without 
anticrossings at Fx ’s indicated by I, II, and III; these positions are mentioned as FIx , FIIx  , and FIIIx  , respectively. 
The band inversions of p(1) and s(−1) discerned in Fig. 2a, b accompany the emergence of zero-energy modes 
indicative of topological phase transitions, where the zero-energy modes are designated by the horizontal lines 
along the abscissa in FIIx < Fx < FIx and Fx < FIIIx  , respectively.

To examine the band crossings in detail, bulk bands E(k) at FIx , FIIx  , and FIIIx  are shown in Fig. 3a–c, where 
Ep(1)(k) and Es(−1)(k) are degenerate at a single point of kj in the 2D-BZ with j = Ŵ , X2 , and X1 , respectively; 
these are indicated in Fig. 3d. Obviously, the crossing points seen in Fig. 2 are found identical with these high-
symmetry points projected on the kx-axis, which are denoted as Ŵ̄ = X̄2 and X̄1 = M̄ . Actually, E(k) is conical-
shaped with linear-dispersion in the vicinity of kj , and this is considered as a DSM state. It is understood that 
hereafter, FIx , FIIx  , and FIIIx  are represented as FŴx , FX2

x  , and FX1
x  , respectively. These crossing points are also obtained 

by inspecting Ep(1)(ky) and Es(−1)(ky) under the boundary condition B. The high-symmetry points projected on 
the ky-axis, which are denoted as Ŵ̄′ = X̄ ′

1 and X̄ ′
2 = M̄ ′ , are also depicted in Fig. 3d.

Fourfold accidental degeneracy. Here we consider the origin of such band crossings. Because of the 
conservation of both T- and pseudo-I-symmetries, it is still probable that the band crossing between p(n) and 
s(n′) occurs at a high-symmetry point. In fact, to that end, an additional condition is required that the difference 
of photon numbers �n ≡ n− n′ is an even number. Contrariwise, when �n is odd, the resulting pair of bands 
are gapped out; especially, the two bands p(1) and s(0) never cross. Similarly to this case of the σz-conserving 
interactions, the above results still hold in the case of the σz-non-conserving interactions. All of the above condi-
tions of band crossings are proved rigorously (see Supplementary Note 3).

DSM states and edge states. First, we examine the 1D-band, E(kx) , and concomitant edge states obtained 
under the boundary condition A. These edge states are either topologically trivial or non-trivial; hereafter, it is 
understood that the term of the Tamm  state43 is used exclusively to mean a trivial state bound on an edge to 
distinguish it from a non-trivial one. Figures 4a–c, 5a–c, and 6a–c show the spectra of E(kx) in the decreas-
ing order of Fx . It is seen that all the DSM states delimits the boundary of a topological phase transition (see 
Figs. 4b,  5b,  6b). It should be noted that the DSM states observed at FX2

x  and FX1
x  coincide with edge states with 

linear and nodeful dispersions (see Figs. 5b, 6b, respectively), differing from that observed at FŴx  (see Fig. 4b). 
Such edge states are termed the Dirac–Tamm state hereafter just for the sake of convenience of making a distinc-
tion from other Tamm states. As regards the Dirac–Tamm state at FX2

x  , with the slight increase of Fx to make a 
gap open, this is transformed into an unequivocally topological edge state with its band structure kept almost 
as it stands (see Fig. 5a), while with the change of Fx in the opposite direction, this becomes nodeless with two 

Figure 2.  Band inversion and band crossing. (a) Shown are Ep(1)(kx) and Es(−1)(kx) for kx = 0 as a function of 
Fx . The two quasienergy bands p(1) and s(−1) (shown by red and blue lines, respectively) cross when Fx is fine-
tuned at the positions of I and II. Shown are the zero modes (Dirac nodes) by a yellow solid line. (b) The same as 
the (a) but for kx = π . The two quasienergy bands cross when Fx is fine-tuned at the position of III.
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flat dispersions (see Fig. 5c). As regards the Dirac–Tamm state at FX1
x  , with the slight increase of Fx , this is trans-

formed into a nodeless edge state (see Fig. 6a), while with the slight decrease of Fx , this becomes unequivocally 
topologically trivial (see Fig. 6c).

Next, we examine the 1D-band, E(ky) , and concomitant edge states obtained under the boundary condi-
tion B. Figure 7 shows the two representative quasienergy bands at FX2

x  and FX1
x  . Differing from the quasienergy 

bands shown in Fig. 5b/6b, a Dirac–Tamm state is faint and undiscernible at the X̄ ′
2/X̄

′
1 point, though a linear 

and nodeful dispersion is still discernible around the X̄ ′
1/X̄

′
2 . According to these results, it is evident that the 

specification of the imposed boundary condition is crucial for the discussion of the edge states. Discussion of 
the origin of such difference will be deepened below.

The topological nature of these edge states is evaluated in terms of the Chern number of the lower band, 
denoted as αL , where EαL (k) ≤ EF = 0 ; this number is independent of the boundary conditions. It is confirmed 
that the non-zero values of CαL = 1 are obtained in FX2

x < Fx < FŴx  and Fx < FX1
x  , otherwise this vanishes. 

Thus, we verify that the edge state observed in FX1
x < Fx < FX2

x  is a Tamm state (see Figs. 5c,  6a). Further, the 
Dirac–Tamm states at FX1

x  and FX2
x  are also considered Tamm states, since their respective net Chern numbers 

are  zero10.

Interband polarization. To understand the manifestation of the edge states seen in Figs.  4, 5, 6 and 7 
and the boundary-condition dependence, a macroscopic polarization of the present system, that is, an induced 
dipole moment, is examined. This is given by

for state αL , where x is the x-component of position vector of electron. Here, PkαL (t) represents the associated 
microscopic interband polarization corresponding to an off-diagonal element of a reduced density matrix, and 
[PkαL (t)]sp = [PkαL (t)]ps because of Xsp = Xps

54. The interband polarization in the ω-domain is introduced as: 

(6)DkαL (t) = ��kαL (t)|x|�kαL (t)� =
∑

bb′(b �=b′)

[PkαL (t)]bb′Xb′b

Figure 3.  Quasienergy dispersion of 2D-bulk band E(k) . (a) Shown is E(k) at FIx , where Ep(1)(k) and Es(−1)(k) 
are degenerate at the Ŵ point (open yellow circle). (b) The same as the (a) but at FIIx  with the degeneracy at the X2 
point (open yellow circle) and the nearly degenerate valleys between the Ŵ and X1 points (open blue circle). (c) 
The same as the (a) but at FIIIx  with the degeneracy at the X1 point open yellow circle) and the nearly degenerate 
valleys between the X2 and M points (open blue circle). (d) Shown are the high-symmetry points of Ŵ,X2,X1 
and M in the 2D-BZ with their projection onto the kx-axis denoted as Ŵ̄, X̄2, X̄1 and M̄ , and onto the ky-axis 
denoted as Ŵ̄′, X̄ ′

2, X̄
′
1 and M̄ ′ respectively.
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P̃
(N)
kαL

(ω) = (0|DkαL (t)|N)/Xsp with P̃(−N)
kαL

(ω) = [P̃
(N)
kαL

(ω)]∗ . Below, we examine D̃(k) ≡ Re[P̃
(1)
kαL

(ω)] as a function 
of k in the 2D-BZ; neither P̃(N �=±1)

kαL
(ω) nor Im[P̃

(±1)
kαL

(ω)] show significant variance in the BZ with the change in 
Fx . It is stated that D̃(k) precisely reflects the degree of parity hybridization in the 2D-BZ that results from the 
I-symmetry breaking.

The calculated results of D̃(k) are shown in Figs. 4d–f, 5d–f, and 6d–f along with E(kx) in the vicinity of 
FŴx , F

X2
x  , and FX1

x  , respectively, where a black solid line shows a contour indicating the boundary of D̃(k) = 0 , 
which is hereafter termed as the zero contour. It is readily seen that the zero-contour projected onto the kx-axis 
coincides with the segment of the 1D-BZ at which an edge state manifests itself irrespective of being topologi-
cal or not. To be more specific, the edge state is discerned where a vertical line that is parallel to the ky-axis at 
a certain kx crosses the zero contour twice. For instance, as seen in Fig. 6f, the vertical line crosses this contour 
twice except around the Ŵ̄-point, and the edge state emerges in the corresponding range of kx . It is remarked that 
another contour indicating D̃(k) = 0 is discerned around the M-points in Fig. 4d–f, which is shown by a black 
dashed line; this causes no edge state and is attributed to an anticrossing between bands of s(−1) and p(2) where 
the difference of the respective photon numbers is an odd number.

The above relation of the zero contour with the formation of edge state is straightforward applied to the case 
of the boundary condition B. By projecting D̃(k) ’s shown in Figs. 4, 5 and 6 onto the ky-direction, the existence of 
edge states and their forms of manifestation are examined. According to this, it is speculated that in the regions 
of Fx > FX2

x  and Fx < FX1
x  , edge states with the similar patterns to those in the case of the boundary condition 

A emerge. In the rest of the regions, edge states exist with the shape of ∞ having nodes and antinodes in the 
whole 1D-BZ. The various forms of these edge states are schematically depicted in Supplementary Figure 2. By 
comparing the 1D-bands shown in Fig. 7a, b with the above-speculated results, it is found that most parts of 
the ∞-shaped edge states are merged into the bulk continuum, and the Dirac–Tamm states are not discernible 
around the X̄ ′

2 and X̄ ′
1 points, respectively; though the linear and nodeful dispersions remain just around the X̄ ′

1 
and X̄ ′

2 points, respectively. Therefore, it is stated that the Dirac–Tamm states exist in the case of the boundary 
condition A, whereas not in the case of the boundary condition B.

Figure 4.  Quasienergy dispersion of E(kx) and interband polarization D̃(k) in the vicinity of FŴx  . (a) 
Shown are Ep(1)(kx) and Es(−1)(kx) as functions of kx at Fx = 3.82× 10−4 (1.96MV/cm) (Fx > FŴx ) . 
The two quasienergy bands p(1) and s(−1) are shown by red and blue lines, respectively. (b) 
The same as the (a) but at FŴx = 3.73× 10−4 (1.92MV/cm) . (c) The same as the (a) but at 
Fx = 3.62× 10−4 (1.86MV/cm) (FX2

x < Fx < FŴx ) . Inset: the expanded view of these two bands in the vicinity 
of the Ŵ̄-point. (d) Shown is a contour map D̃(k) in the (kx , ky)-plane at Fx given by (a). Contours indicating the 
boundary of D̃(k) = 0 are shown by black dashed lines. (e) The same as the (d) but at FŴx  . Besides, a pinhole 
indicating D̃(k) = 0 at the Ŵ-point is shown by a black filled circle. The vertical dashed line shows the projection 
of D̃(k) = 0 (the pinhole) onto the kx-axis shown in the (b). (f) The same as the (d) but at Fx given by (c). 
Contours indicating the boundary of D̃(k) = 0 are shown by black solid and dashed lines. The vertical dashed 
lines show the projection of D̃(k) = 0 (the zero contour) onto the kx-axis shown in the (c).
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Nearly fourfold degeneracy and boundary‑condition dependence. Here we examine the origin of 
the above-mentioned boundary-condition dependence, based on the two anticrossings located in between the 
X1 and Ŵ points and the X2 and M points seen in Fig. 3b and c, respectively. The I-symmetry breaking causes 
band anisotropy of E(k) , namely, the dependence of band width on the direction of k , to form the anticrossing 
near the X1(2)-point when a gap closes at the X2(1)-point. Even if the gap opens, the anticrossing is sustained in 
a certain range of Fx with moving in the 2D-BZ, differing from the accidental fourfold degeneracies at the high-
symmetry points; these are lifted by slight changes of Fx.

Such a property is seen in Figs. 5 and 6, as follows. The anticrossing along the X1 − Ŵ line is found in E(kx) ’s 
shown in Figs. 5a–c and 6a, and merges into the crossing at the X̄1 point, as shown in Fig. 6b. The anticrossing 
along the X2 −M line is found in E(kx) ’s shown in Figs. 5c and 6a–c, and merges into the crossing at the X̄2 
point, as shown in Fig. 5b. Thus, these anticrossings are stable against the change of Fx and look nearly fourfold 
degenerate because of quite small energy separation of the order of 1meV. Hereafter, for the sake of convenience, 
very local regions of k over which the anticrossings extend along the X1 − Ŵ and X2 −M lines are termed V1 
and V2 points, respectively; further the terms of V̄1 and V̄2 points are used as the projection onto the kx-direc-
tion, respectively.

The singular property around the V1 and V2 points is confirmed by seeing the variance of D̃(kx , 0) and 
D̃(kx ,±π) with respect to kx . For instance, in Fig. 5f, these functions traverse the zero contours with steep 
changes at the V1 and V2 points, respectively (see Supplementary Figure 3). Such behavior is attributed to an adi-
abatic interchange of the constituent of wavefunction �kαL (t) between p(1) and s(−1) at these points. This makes 
�kαL (t) almost discontinuous, leading to an abrupt change of parity with the traverse of kx at these points. In 
other words, diabolic-like points are formed at the V1 and V2 points as if monopoles of Berry curvature  existed55.

The existence of the nearly fourfold degeneracies causes more involved edge-state structure within the gap in 
Eα(kx) than that in Eα(ky) . By connecting the points of V̄1 and V̄2 in different manners, all of the topological edge 
states, the Dirac–Tamm states, and Tamm states seen in Figs. 5a–c and 6a–c are formed in the close vicinity of 
Eα(kx) = EF , whether there is a Dirac node or not in an edge state. Besides their topological natures depending 
on the change of Fx , all these edge states are considered to have the same properties pertinent to the degree of 
localization of confined electron owing to the same manner of formation; though the Dirac–Tamm states become 
delocalized just around a local kx-region where bands cross, due to couplings with continuum of Floquet DSM 
phases (see Supplementary Note 4). On the other hand, just topological edge states manifest themselves in Eα(ky) 

Figure 5.  Quasienergy dispersion of E(kx) and interband polarization D̃(k) in the vicinity of FX2
x  . (a) Shown 

are Ep(1)(kx) and Es(−1)(kx) as functions of kx at Fx = 2.14× 10−4 (1.10MV/cm) (FX2
x < Fx < FŴx ) . The two 

quasienergy bands p(1) and s(−1) are shown by red and blue lines, respectively. Inset: the expanded view of 
these two bands in the vicinity of the X̄2-point. (b) The same as the (a) but at FX2

x = 2.04× 10−4 (1.05MV/cm) . 
(c) The same as the (a) but at Fx = 1.94× 10−4 (997 kV/cm) (FX1

x < Fx < FX2
x ) . (d) Shown is a contour map 

D̃(k) in the (kx , ky)-plane at Fx given by (a). The vertical dashed lines show the projection of D̃(k) = 0 (the 
zero contour) onto the kx-axis shown in the (a). (e) The same as the (d) but at FX2

x  and with the zero contour 
projected onto the kx-axis shown in the (b). (f) The same as the (d) but at Fx given by (c) and with the zero 
contour projected onto the kx-axis shown in the (c).
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Figure 6.  Quasienergy dispersion of E(kx) and interband polarization D̃(k) in the vicinity of FX1
x  . (a) Shown 

are Ep(1)(kx) and Es(−1)(kx) as functions of kx at Fx = 1.89× 10−4 (974 kV/cm) (FX1
x < Fx < FX2

x ) . The two 
quasienergy bands p(1) and s(−1) are shown by red and blue lines, respectively. Inset: the expanded view of 
these two bands in the vicinity of the X̄1-point. (b) The same as the (a) but at FX1

x = 1.80× 10−4 (927 kV/cm) . 
(c) The same as the (a) but at Fx = 1.69× 10−4 (871 kV/cm) (Fx < FX1

x ) . (d) Shown is a contour map D̃(k) in 
the (kx , ky)-plane at Fx given by (a). The vertical dashed lines show the projection of D̃(k) = 0 (the zero contour) 
onto the kx-axis shown in the (a). (e) The same as the (d) but at FX1

x  and with the zero contour projected onto the 
kx-axis shown in the (b). (f) The same as the (d) but at Fx given by (c) and with the zero contour projected onto 
the kx-axis shown in the (c).

Figure 7.  Quasienergy dispersion of E(ky) at FX2
x  and FX1

x  . (a) Shown are Ep(1)(ky) and Es(−1)(ky) as functions of 
ky at FX2

x = 2.04× 10−4 (1.05MV/cm) . The two quasienergy bands p(1) and s(−1) are shown by red and blue 
lines, respectively. Insets: the expanded view of these two bands in the vicinity of the Ŵ̄′(X̄ ′

1)-point (left) and the 
X̄ ′
2-point (right). (b) The same as the (a) but at FX1

x = 1.80× 10−4 (927 kV/cm).
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without the effect of the nearly fourfold degeneracies at the points of V1 and V2 (see Fig. 7 and Supplementary 
Figure 2). Therefore, it is concluded that the existence of the nearly fourfold degeneracies is a key effect which 
governs the manifestation of the Dirac–Tamm states and the Tamm states under the boundary condition A.

Discussion
This work shows that the nearly resonant laser-excitation combined with the OSE gives rise to the fourfold 
accidental degeneracies at the high-symmetry points, and the resulting Floquet DSM states host unconven-
tional Dirac–Tamm states that are transformable into either topological edge states or Tamm states with the 
change of Fx just under the boundary condition A, differing from the results under the boundary condition B. 
A stress is put on the existence of the nearly fourfold degeneracies at the V1 and V2 points that arise from the 
I-symmetry breaking, because these remain stable against the change of Fx in a certain region of it and fulfills 
the key role of understanding the different boundary-condition dependence of the edge states. Such boundary-
condition dependence of the present system is reminiscent of graphene with the zigzag and armchair boundary 
 conditions6–8; actually, the Tamm states have almost flat energy dispersion connecting the two points of V1 and 
V2 , while graphene has a zigzag edge state with a flat dispersion between the K and K ′ points.

In addition, this study is also related with rapidly noticed studies on the interrelation between a Tamm state 
and a topological edge state, because the state-of-the-art techniques of fabrication of optical waveguide arrays 
and photonic crystals have made it possible to create both edge states by mimicking the one-dimensional Su-
Schriefer-Hegger  model44–46,49,56 and more complicated  systems47,48,50. In this study, both of the edge states are 
transformed in a continuous manner as a function of the single parameter Fx without changing the composition 
and structure of the system, which draws a sharp distinction from these existing studies.

Finally, we make comments on the possibility of observing the present findings. Here, the variance of Fx is 
around the order of 1MV/cm, leading to high-density electron excitation with dephasing and population relaxa-
tion times of the order of a few hundred fs. Thus, ultrashort pulse irradiation with ω ≈ 300 meV ( T ≈ 14 fs) and 
temporal width of the order of 100 fs is required for realizing band inversion between Es(−1)(k) and Ep(1)(k) to 
form various types of the edge states. It would be possible to confirm the manifestation of these states by virtue 
of the optoelectronic technique of measuring quasimetallic photoconductivity produced by pulse  irradiation57, 
which has been utilized for the time-resolved measurement of light-induced Hall effect in  graphene58,59. In addi-
tion, it is remarked that due to the many-body Coulomb interaction resulting from intense photoexcitation of 
electrons, the Floquet bands and the values of Fx at which the band inversion and crossing occur are somewhat 
modified by the renormalization of carrier energy and Rabi  energy54.

Methods
Numerical calculations for a wavefunction �kα(t) of Floquet state α and the associated quasienergy Eα(k) are 
implemented by relying on the Fourier-Floquet expansion of Eq. (4), followed by diagonalizing the Floquet matrix 
L̃nn′(k,ω) . The explicit expressions of matrix elements of it are given in Supplementary Note 2. The maximum 
number of photons (Np) incorporated in this calculation is three, namely, n, n′ = −Np ∼ Np , and the numerical 
convergence is checked by using a greater value of Np . The following material parameters in the units of a.u. are 
employed for actual  calculations60: ǫs = −ǫp = 0.01, tss = tpp = 0.001, tsp = 0.002, a = 12.21 , and Xsp = 34.63 . 
ω and Eg are set to be 0.0114 and 0.012, respectively. Further, the Chern number of a lower band αL is evaluated 
by calculating

where the Berry connection is defined by aαL (k) = − i
T

∫ T
0
dt ��kαL (t)|∇k�kαL (t)�.
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