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Adaptive hyperparameter updating 
for training restricted Boltzmann 
machines on quantum annealers
Guanglei Xu1,2 & William S. Oates1,2*

Restricted Boltzmann Machines (RBMs) have been proposed for developing neural networks for a 
variety of unsupervised machine learning applications such as image recognition, drug discovery, 
and materials design. The Boltzmann probability distribution is used as a model to identify network 
parameters by optimizing the likelihood of predicting an output given hidden states trained on 
available data. Training such networks often requires sampling over a large probability space that 
must be approximated during gradient based optimization. Quantum annealing has been proposed 
as a means to search this space more efficiently which has been experimentally investigated on 
D-Wave hardware. D-Wave implementation requires selection of an effective inverse temperature 
or hyperparameter ( β ) within the Boltzmann distribution which can strongly influence optimization. 
Here, we show how this parameter can be estimated as a hyperparameter applied to D-Wave 
hardware during neural network training by maximizing the likelihood or minimizing the Shannon 
entropy. We find both methods improve training RBMs based upon D-Wave hardware experimental 
validation on an image recognition problem. Neural network image reconstruction errors are 
evaluated using Bayesian uncertainty analysis which illustrate more than an order magnitude 
lower image reconstruction error using the maximum likelihood over manually optimizing the 
hyperparameter. The maximum likelihood method is also shown to out-perform minimizing the 
Shannon entropy for image reconstruction.

Restricted Boltzmann Machines (RBMs) are commonly used as a fundamental building block for deep neural 
networks in machine learning algorithms1. An RBM consists of a bipartite graph that contains two layers of nodes 
that are fully connected with zero inter-layer connections; see Fig. 1. This graph structure contains unknown 
parameters ( wij ) that act as the network edge weights between nodes. The additional nodal source parameters 
are called the biases ( bi , cj ). An optimal set of weights and hidden layer biases are found through optimization 
of a Boltzmann distribution of energies given a set of input data applied to the visible layer of the RBM. Training 
such networks, via optimization and sampling, requires large computational resources as the size of the network 
grows2.

Quantum annealing algorithms have been proposed to efficiently search over the large parameter space to 
accelerate the RBM machine learning training process3. The RBM assumes data follows a Boltzmann distribu-
tion which contains a normalization term, i.e., the partition function. During gradient based optimization, this 
term requires sampling over a large configuration space thus creating a bottleneck in the optimization process. 
Approximations are typically introduced by sampling over a subspace. One popular method is contrastive diver-
gence where only one Markov step is taken per optimization step (i.e., an epoch)4. This algorithm, referred to as 
CD-1 can be modified to take n steps (CD-n) and thus minimizes the effect of global optimization errors that 
may occur using CD-1 with the trade-off of more computational requirements. These methods typically treat 
the inverse temperature β in the Boltzmann distribution fixed to a value of 1. In contrast, recent research5 has 
incorporated variable temperature into RBMs to enhance training and predictions from the neural network. 
Quantum annealing hardware, based on quantum adiabatic optimization6, has been proposed to help address 
this limitation by searching over a broader number of configurations using quantum algorithms to minimize 
uncertainty in finding the global optimal solution. As quantum hardware grows in qubit size and connectivity, 
larger RBMs may be implemented to handle larger amounts of information to provide more robust predictions 
of complex systems which, in principle, cannot be done on classic computers.
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An optimization methodology has been proposed that takes advantage of adiabatic state transforma-
tion while carefully controlling the annealing schedule8. Annealing on the D-Wave starts with a ‘trans-
verse-field’ Hamiltonian ( Hd = −

∑N
i σ x

i  ) of transverse spins σ x
i  over N qubits. The target Hamiltonian is 

Hp =
∑

i,j Jijσ
z
i σ

z
j +

∑

i hiσ
z
i  where Jij and hi are controllable parameters that are mapped to the RBM weights 

( wij) and biases ( bi , ci ). Annealing starts by initiating the hardware to the ground state in Hd and then the system 
evolves to Hp over a predefined schedule. This is done by starting in a superposition of σ x

i  and ideally ending 
in the ground state of Hp where the unknown σ z

i  spin states are measured given some fixed Jij and hi values. 
This annealing schedule follows H(s) = A(s)Hd + B(s)Hp where A(0) >> B(0) and B(1) >> A(1) where s is 
some normalized time that is defined to be less than the decoherence time. It has been suggested that pausing 
s at intermediate times between 0 and 1 increases the probability of reaching a global minimum9. However, the 
pausing time depends on the spectrum of energy values of H(s) which are unknown for the machine learning 
problem because the biases and weights change during training. Given this uncertainty, we evaluate a broad 
range of pausing times to determine if any correlation exist between our hyperparameter updating schemes and 
pausing times during RBM training.

Several methods have been considered to optimize β for generalizing machine learning training on D-Wave 
hardware10–12. One simple method is to determine a fixed optimal value before the training10. This method 
requires comparing the probability distributions between randomly generated graphs ( n+m nodes), which 
are calculated from all possible configurations ( 2(n+m) ), and feedback from errors on D-Wave hardware. This 
approach is limited to specific training tasks and results in significant computational difficulties when considering 
large systems. The estimation of the effective temperature requires additional calculations from samples meas-
ured from D-Wave hardware. By regrouping all the R samples into K = ⌈

√
R⌉ bins, the K averaged energies are 

used to obtain O(K2) data points (energy pairs) from linear regression to estimate the effective temperature. A 
large amount of post processing is required during each iteration which can require considerable computational 
resources. One recent article also performed effective temperature estimation by minimizing the difference 
between the empirical distribution and the exact Boltzmann distribution12. However, the method can only be 
done for sufficiently small problems.

Here we treat the unknown β as a hyperparameter that aims to accommodate measurement noise, hardware 
imperfections, embedding errors used to map RBM graphs onto quantum hardware, and the working temperature 
of the hardware. This hyperparameter is inferred by either: (1) maximizing the likelihood or (2) minimizing 
Shannon’s entropy. These two methods treat β as an unknown hyperparameter that is updated at each classical 
step of the RBM optimization (i.e., epoch) simultaneously along with the weights and biases. It is important to 
note that this β is only applied onto D-Wave hardware which indirectly influences updates to the weights and 
biases. The sigmoidal function and direct optimization of the weights and biases neglect the effect of the inverse 
temperature essentially setting it to one. We find that these two methods outperform manually controlling β on 
D-Wave hardware as done elsewhere10. All the results shown in our analyses were validated using 7× 7 pixelated 
bars and stripes (BAS) random images. This size was based on a balance of the largest pixel density and a set of 
hidden nodes that could be embedded within the D-Wave chimera graph structure. It included 49 visible nodes 
and 25 hidden nodes. These 74 RBM nodes were embedded onto the D-Wave chimera graph using 668 qubits. 
An example of a RBM that requires hardware embedding is shown in Fig. 2. When manually controlling β , we 
consider fixed β values that give the lowest image reconstruction error again noting that this β is only applied on 
the D-Wave hardware but not within the sigmoidal functions of the RBM. We then linearly ramp β from a low 
value to the value giving the lowest reconstruction error for comparisons to maximum likelihood and minimum 
Shannon entropy updating. For the maximum likelihood or minimum Shannon’s entropy approach, β is updated 
after each epoch using information about the magnitude of energy output from D-Wave hardware. For the case 
of maximum likelihood, β is updated based on the differences in the average energy while minimum Shannon 
entropy updates β by reducing the variance of the D-Wave energy. It is shown that maximizing the likelihood 
is about 23 times better than the linearly ramping method for any pausing time. Similarly, this method is also 
more than 15 times better than minimizing Shannon’s entropy. In all cases, β increases per epoch; however, the 
rate at which it increases significantly differs for each method.

In the following sections we first discuss details describing the optimization methodology and experimen-
tal implementation on D-Wave hardware. We then evaluate the results using Bayesian uncertainty analysis to 

Figure 1.   Illustration of a Restricted Boltzmann Machine (RBM) bipartite graph where vi are visible nodes, hj 
are hidden nodes and wij are the weights connecting the hidden and visible nodes.
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quantify differences in reconstruction error for the different hyperparameter updating methods. This is followed 
concluding remarks and detailed derivations important for hardware implementation in the “Methods” section.

Results
Restricted Boltzmann Machines.  A brief description of the theory and application of RBMs for machine 
learning is described in this section to support hyperparameter optimization. Core to its formulation is the 
energy associated with the nodes and their interactions. The energy of this network is described by

where all variables have been previously described in the introduction and Fig. 1.
The RBM model assumes the probability of configurations with a specific energy value ( Ek ) follows the 

Boltzmann distribution Pk =
e−Ek

Z
 where the distribution is normalized by the partition function Z =

∑

k

e−Ek 

and k denotes the discrete number of different configurations of the nodal values of vi and hi.
The training procedure requires updating the biases and weights ( θ = [bi , ci ,wij] ) so that the visible nodes can 

be reproduced through the conventional reconstruction process. This process entails inputs from the visible to 
the hidden nodes which is then reconstructed as vi → hi → vreci  where each → operation represents calculations 
done by the sigmoid function13. In practical training, initial values of biases and weights can be set arbitrarily. In 
this article, the biases are set to be initially zero and the weights are initially proportional to a normal distribution 
with the small prefactor value of 0.01.

Instead of directly maximizing the Boltzmann distribution, we minimize its negative log-likelihood 
( L(θ) = −

∑

k

logPk ) using the gradient descent algorithm assuming a continuous distribution. This is done 

by taking variations of L(θ) with respect to θ according to

Additional details on this method can be found elsewhere3.
A general form of the updating scheme can be derive from the variation of L(θ) as

where the �·� represents the ensemble average value of the Boltzmann distribution. The first term is called the 
positive phase and the second term is called the negative phase. The parameters θ may be updated according to

where η > 0 is the learning rate and E denotes the averaged energy calculation from the training data. From (4), 
the biases and weights are explicitly

(1)E = −
∑

i

bivi −
∑

j

cjhj −
∑

i,j

wijvihj

(2)δL(θ) = −
∑

k

δ
(
log Pk

)
= −

∑

k

[
∑

θ

∂

∂θ

(
log Pk

)

]

· δθ = −
∑

θ

[
∑

k

∂

∂θ

(
log Pk

)

]

· δθ .

(3)
∂(− log Pk)

∂θ
= ∂Ek

∂θ
−

〈∂E

∂θ

〉

(4)δθ = −η

[
∂E

∂θ
−

〈∂E

∂θ

〉
]

Figure 2.   Illustration of a Restricted Boltzmann Machine (RBM) bipartite graph of size 6× 5 (left), and 
embedded Chimera graph7 on D-Wave hardware (right).
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These ensemble averages often require large amount of computing power to reach high accuracy for large sets 
of data (e.g., CD-n). On classical computers, contrastive divergence (CD) is often implemented to estimate 
the ensemble average value. In comparison, the D-Wave quantum annealer is believed to follow a Boltzmann 
distribution3, which can provide an alternative approach to calculate the ensemble average more efficiently.

Implementation on D‑Wave hardware.  Here we describe how the RBM energy is applied to D-Wave 
hardware for this class of machine learning optimization problems. It is within this part of the algorithm that β 
is introduced to accommodate statistical distributions on hardware. A class of optimization problems, known as 
quadratic unconstrained binary optimization (QUBO), are described by a cost function

that can be applied to D-Wave architecture on its Chimera graph, where xi = {0, 1} for all i qubits. It is possible 
to calculate an ensemble average by sampling the visible and hidden nodes on the RBM {vi , hi} that corresponds 
to the D-Wave QUBO.

The QUBO is constructed from the transformation

where the hyperparameter β is introduced to construct a proper Boltzmann distribution such that βEDW = E.
When the QUBO matrix Qij is applied to the D-Wave quantum annealer, the output are vectors {vi , hi} 

exhibit certain experimental energy spectra over EDW . This energy spectra is assumed to follow the Boltzmann 
probability density function. We calculate the expectation values: 〈vi〉, 〈hi〉, 〈vihj〉 using 1000 samples from the 
D-Wave machine. Each individual sample undertakes one annealing process. The annealing time is set to 6 µ s 
with a pausing tpause = 2 µ s. We used the built-in minor-miner embedding algorithm14 to represent the RBM 
graph on the Chimera graph7. The D-Wave machine uses a major voting algorithm to determine the logical 
qubit values represented by each embedded chain. As previously discussed, RBM parameter updating is typically 
conducted by manually optimizing the hyperparameter β to fixed values or linear ramping it over each epoch. 
Since β can depend on many unknown factors3,10, we implement the adaptive schemes to update β concurrently 
while updating the parameters within the RBM neural network.

Hyperparameter updating.  We present details on the three approaches used to vary β during RBM train-
ing. The methodologies are characterized by 1) manual control of β through linear ramping, 2) maximizing the 
likelihood of the Boltzmann distribution and 3) minimizing the Shannon entropy. In all three cases, β is updated 
per epoch either manually (case 1) or automatically (cases 2 or 3) while updating the weights and biases within 
the neural network. Key relations are given here while additional details can be found in the “Methods” section.

In all cases, β is increased over the epochs with the goal of reducing errors associated with regenerating the 
correct Bars and Stripes (BAS) images. This increase in β is loosely analogous to decreasing an effective tem-
perature such that the optimal or near optimal solution is frozen at the final epoch. We find that the rate and 
magnitude of this increase in β is important for both faster training and reaching the lowest asymptotic error as 
seen later in Fig. 4. We also emphasize that β is not directly involved in the reconstruction error nor is it used in 
the sigmoidal function within the RBM.

Linearly hyperparameter ramping.  A series of test trials were conducted with constant values of β to 
assess its effect on the steady-state error. As shown in Fig. 3, we find that different fixed values of β cause different 
convergence rates and steady-state errors based on neural network training. Given this information, we linearly 
varied β to improve the convergence rate and steady-state error for comparisons to the two adaptive schemes.

Figure 3 illustrates a trend of faster convergence to a steady-state error as β decreases from 3 to 2 followed 
by a slower convergence of error when β = 1.5 . This set of data also shows a difference in the final error for 
an epoch of 300. The lowest error was achieved when β = 2.5 ; however, it is unclear if the larger β values have 
reached a steady state error at 300 epochs. This was not considered further as we focused on methodologies to 
achieve faster convergence without significantly sacrificing steady-state error.

Linear ramping β from 1.5 to 3 describes training runs where β is linearly increased over the epochs ( iepoch ) 
according to β(iepoch) = 1.5+ 1.5iepoch/300 . By linearly increasing the hyperparameter, we find that the conver-
gence rate is approximately equivalent to the best rate for a constant β and it achieves practically the same steady-
state error. Although linear ramping is an improvement over a constant value, it requires a priori knowledge of 
the range of values which may be problem dependent. Furthermore, a constant rate of increase of β is unlikely 
optimal. Therefore, we present alternative methods to identify β during the training process.

(5)δbi = −η[−vi − �−vi�] = η[vi − �vi�]

(6)δcj = η[hj − �hj�]

(7)δwij = η[vihj − �vihj�].

(8)EDW =
∑

Qiixi +
∑

Qijxixj

(9)
Qii =

{
−bi/β if i ≤ M
−ci−M/β ifM < i ≤ M + N

Qij = −wij/β if i �= j
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Log‑likelihood maximization.  The quantum annealing process on the D-Wave machine results in a com-
plex qubit state which creates challenges in identifying an a priori optimal value for β . This is further complicated 
over a set of training epochs where the weights and biases change their value to reduce the reconstruction errors. 
This motivates alternatives that update β along with the weights and biases using a similar derivation as in (3). 
To illustrate this method, we again assume the D-Wave quantum annealing follows a Boltzmann distribution 
and define its energy distribution to be EDW = E/β . We delineate the assumed Boltzmann distribution of the 
D-Wave annealer to be

where E is as same as that given in (1).
The derivative of the negative log-likelihood requires

To minimize the negative log-likelihood with the same strategy shown in (2)-(4), the increment of β averaged 
overall all configurations becomes

where E =
∑N

i=1 E represents the averaged value over all configurations. In the training process, the increment 
is set to δβ = η(EDW − �EDW �) to have a similar form as the other parameters in (4). As shown in Fig. 4, δβ is 
relatively small in the beginning of training. Therefore, to compare this approach with the linear ramping cases, 
we neglect the dependence of β within the relation δβ . The learning rate η was set to 0.1 which was the same as 
that used to update the weights and biases in (4)–(7).

Shannon entropy minimization.  In the third approach, β is updated by minimizing Shannon’s entropy. 
This drives the system away from the high temperature state that corresponds to a system with a uniformly 
distributed configuration. Again using the gradient descent, we obtain an alternative scheme for updating β . We 
implement the approach by defining Shannon’s entropy with the Boltzmann probability distribution as

(10)PDW = e−EDW

ZDW
= e−E/β

ZDW
and ZDW =

∑

e−EDW

(11)−∂(logPDW )

∂β
= − 1

β2
(E − �E�).

(12)δβ = −η

(

− 1

β2

)
(
E − �E�

)
= η

β

(
EDW − �EDW �

)

Figure 3.   Plot of reconstruction errors during training with different values of fixed β and linearly ramping β.

Figure 4.   Plots of varying the hyperparameter β using the three proposed schemes during training. The MaxLL 
and MinSE given here are representative of all 16 training cases for a fixed spause value.
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The first derivative of the Shannon entropy with respect to β is

To minimize the Shannon entropy we update β using

We point out that a different learning rate η′ was applied relative to the previous RBM learning rate η in Eqs. 
(4)–(7). During the training process, we use δβ = η′�(�EDW )2� for comparisons to linearly ramping β and maxi-
mizing the likelihood. As shown in Fig. 4, the squared energy terms may increase much faster than the mean 
energy used in maximizing the likelihood. Therefore, η′ is set to be 10−3 of η . The formation of the QUBO which 
is the input to the D-Wave hardware is related to β as previously given by (9). Therefore β scales the energy of the 
QUBO which can also affect the learning rate of the RBM. In this situation, the value of β plays an important role 
in the Boltzmann distribution that represents D-Wave hardware and RBM training. Limiting the learning rate of β 
avoids very large values so that the QUBO energy in (9) remains larger than energy associated with thermal noise.

Bayesian statistical analysis.  The three techniques for updating the hyperparameter β are tested on the 
D-Wave 2000Q5 machine. See the “Methods” section for details. All methods are evaluated by conducting unsu-
pervised training of 7× 7 pixels of black and white Bars and Stripes (BAS) images. A mini-batch of 500 images 
was used within a total training set of 1000 images. This results in updating our weights and biases twice per 
epoch over the entire 1000 image data set. The error of reproducing the images is evaluated on a set of non-
trained BAS images (i.e., testing set) using the sum of squares error

where we define Ntest = 1000 as the size of the testing set, vik and vrepik  represent the white or black pixel values 
for the testing images and the reproduced images, respectively. The calculations acquire 1000 samples from 
D-Wave hardware for each epoch and we iterate over 300 epochs in total. This process is repeated 16 times 
to build statistical estimates when β is manually controlled or updated using the maximum likelihood or the 
minimum Shannon’s entropy approach.

The error at each epoch in (17) is modeled as an exponentially decaying function per epoch to quantify the 
rate of convergence and the asymptotic error using Bayesian statistics15. As seen in Fig. 3, after approximately the 
first 20 epochs, the decay in error is approximately an exponentially decaying function. Therefore, the following 
function is used to model the error reduction over epochs

where the random parameters θ = [α,K , c] define the rate of decay of the error per epoch ( iepoch = [1, . . . ,N] ). 
Through Bayesian inference, we identify the posterior distributions for θ  and how its uncertainty propagates 
to obtain statistical estimates of the asymptotic error from c and rate of convergence from α . We also note that 
we neglect the first 20 epochs where little reduction in error is observed. The random parameters, θ  , are identi-
fied using the Markov Chain Monte Carlo (MCMC) method which is numerically implemented using Delayed 
Rejection Adaptive Metropolis (DRAM)15,16. The parameter uncertainty contained in θ  provides performance 
metrics for each hyperparameter tuning method.

The error between (17) versus (18) is assumed to be independent and identically distributed (iid) over the 
epochs which allows us to implement a Gaussian likelihood function in Bayes equation. The prior for all param-
eters is flat (non-informative) and DRAM is used to minimize the sum of square error according to

This is equivalent to maximizing the Gaussian likelihood function15. The discrepancies between the true error 
and the modeling error is minimized by sampling the random parameters in θ  . We found that 10,000 samples 
were sufficient to produce converged posterior distributions based on observations of the parameter chains and 
choosing multiple initial guesses for θ .

The Bayesian uncertainty analyses provide quantified uncertainty on convergence rates and asymptotic error 
estimates contained within posterior densities of α and c, respectively. An example of such analysis is illustrated 
in Fig. 5. The error versus epochs illustrate that an exponential decay model provides a good estimate of the 

(13)S = −
∑

i

Pi logPi

(14)Pi =
e−βEiDW

Z
and Z =

∑

i

e−βEiDW

(15)
∂S

∂β
= β

[
�EDW �2 − �E2DW �

]
= −β�(�EDW )2�

(16)δβ = −η′
∂S

∂β
= η′β�(�EDW )2�.

(17)Er = 1

Ntest

Ntest∑

k=1

49∑

i=1

(

vik − v
rep
ik

)2

(18)e(iepoch) = Ke−αiepoch + c

(19)emodel =
280∑

i

(Eri − ei)
2.
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behavior of the D-Wave trained RBM. This plot of image recognition error decay also includes 95% credible 
and prediction intervals which calculate the uncertainty due to the θ  parameters and the measurement noise 
based on the 16 different D-Wave experiments conducted on each algorithm for updating β . The D-Wave pause 
time described in the introduction was spause = 0.6 for this particular example; see the “Methods” section for 
additional details on pausing. The three subplots illustrate the Bayesian posterior probabilities for the inverse 
convergence rate α , the initial error based upon K, and the asymptotic error from c. The results show that the 
maximum log likelihood method (MaxLL) gives the lowest asymptotic error followed by the minimization of 
Shannon’s entropy (MinSE), and highest error for the linear ramping of β (linear). The maximum likelihood 
method also has a slightly slower convergence rate as shown in the posterior densities for α while the convergence 
rate was comparable for minimizing Shannon’s entropy and linearly ramping β . Recall from Fig. 4, the change in 
β over the epochs for each method shows an increase in β is shown to increase over the epochs but at different 
rates. The maximum likelihood method is the slowest to initially change β where its value is 1.5 for about the 
first 120 epochs and then increases at the fastest rate.

Based on Bayesian analysis, we compare the overall performance of the three hyperparameter schemes using 
the posterior densities for the asymptotic error (c). This is done for all different possible pausing values to quan-
tify if the hyperparameter updating is independent of the pausing scheme. Shown in Fig. 6, the mode and 95% 

Figure 5.   Plots of the Bayesian uncertainty analysis for fitting 16 D-Wave training results to an exponential 
decay function. All the plots are for spause = 0.6 . The legends correspond to linear ramping β (linear), maximum 
log likelihood method (MaxLL), and the minimum Shannon entropy method (MinSE).

Figure 6.   Plot for the three different hyperparameter updating schemes. The red circles present errors of 
training with linearly ramping β = 1.5 → 3 . The blue crosses present errors of training with maximizing 
the log-likelihood. The black stars present errors of training when minimizing Shannon’s entropy. The marks 
represent the mode value from each Bayesian posterior of c.
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probability interval limits of c are plotted. These limits were extracted from the posterior densities for c, as seen 
by the example in Fig. 5 for spause = 0.6 . It is shown that the maximum likelihood method remains superior and 
independent of the D-Wave pause time. On average, maximizing the log likelihood performs 23 times better 
than linear ramping β and 16 times better than minimizing the Shannon’s entropy. While spause = 0.8 and 0.9 are 
included here, we found that the D-Wave machine automatically pauses the annealing schedule at spause = 0.8 
therefore there is no difference in these two cases beyond noise within the hardware.

Discussion
We have developed alternative methods to adaptively update the D-Wave hyperparamter β for unsupervised 
machine learning problems using the Restricted Boltzmann Machine. We find that both maximizing the likeli-
hood and minimizing Shannon’s entropy reduces the steady-state error relative to linearly incrementing β . In both 
adaptive schemes, no a priori information is needed for β which provides a more robust means to train neural 
networks for different types of data-driven problems. By maximizing the likelihood, β is driven by the mean 
differences in energy of the RBM. In the case of Shannon’s entropy minimization, updates in β are driven by the 
variance of the RBM energy. This is because of the cancellation of average energy as detailed in the “Methods” 
section. In the image recognition problem, β was found to continue to increase unbounded; however, this is 
limited by finite temperatures on D-Wave hardware. In future work, it would be interesting to include the β−1 
dependence on δβ in Eq. (12) to assess its effect on RBM error convergence rates and asymptotic error magnitude 
for a broader range of data-driven problems.

Methods
Optimization details.  The derivation that leads to Eq. (3) is obtained from the following relations

The derivation of (11) which is used in the log-likelihood maximization is

Lastly, the derivation of (15) which is used in the minimum entropy method is

The first term 1© can be explicitly derived as

while the second term 2© is zero as seen from

Pausing scheme.  The D-Wave hardware uses superconducting QPUs to create a quantum Ising spin system 
in a transverse field. The quantum Ising model has the Hamiltonian17

∂(− logP)

∂θ
= −∂(log P)
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= −
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where σ̂ are Pauli matrices operating on a qubit. A normalized unitless parameter s(t) = [0, 1] is introduced as a 
function of annealing time. At the beginning of annealing, A(0) ≫ B(0) , which leads to a easily prepared ground 
state of superposition states. At the end of annealing, A(1) ≪ B(1) , the eigenstates {↑,↓} of Hp , which consists 
of σ z only, correspond to spin configurations of the classical Ising model {+1,−1} given by

that can be transformed to Eq. (8). The tool suit (Ocean18) provides control of annealing in terms of s(t)19. Instead 
of a linear increase in s as a function of time, s first increases linearly and then is held constant for a pausing time 
tpause before increasing linear again until s(tfinal) = 1.

It has been suggested that controlling the annealing scheme can reduce the effect of noise during the quantum 
annealing processes8,9,20. The pausing scheme8 was used in this work to assess its effect on machine learning 
training and interdependencies on the hyperparameter updating method. No interdependency was identified 
as shown in Fig. 6.
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