
1

Vol.:(0123456789)

Scientific Reports | (2021) 11:2727 | https://doi.org/10.1038/s41598-021-82197-1

www.nature.com/scientificreports

Adaptive hyperparameter updating
for training restricted Boltzmann
machines on quantum annealers
Guanglei Xu1,2 & William S. Oates1,2*

Restricted Boltzmann Machines (RBMs) have been proposed for developing neural networks for a
variety of unsupervised machine learning applications such as image recognition, drug discovery,
and materials design. The Boltzmann probability distribution is used as a model to identify network
parameters by optimizing the likelihood of predicting an output given hidden states trained on
available data. Training such networks often requires sampling over a large probability space that
must be approximated during gradient based optimization. Quantum annealing has been proposed
as a means to search this space more efficiently which has been experimentally investigated on
D-Wave hardware. D-Wave implementation requires selection of an effective inverse temperature
or hyperparameter ( β ) within the Boltzmann distribution which can strongly influence optimization.
Here, we show how this parameter can be estimated as a hyperparameter applied to D-Wave
hardware during neural network training by maximizing the likelihood or minimizing the Shannon
entropy. We find both methods improve training RBMs based upon D-Wave hardware experimental
validation on an image recognition problem. Neural network image reconstruction errors are
evaluated using Bayesian uncertainty analysis which illustrate more than an order magnitude
lower image reconstruction error using the maximum likelihood over manually optimizing the
hyperparameter. The maximum likelihood method is also shown to out-perform minimizing the
Shannon entropy for image reconstruction.

Restricted Boltzmann Machines (RBMs) are commonly used as a fundamental building block for deep neural
networks in machine learning algorithms1. An RBM consists of a bipartite graph that contains two layers of nodes
that are fully connected with zero inter-layer connections; see Fig. 1. This graph structure contains unknown
parameters ( wij ) that act as the network edge weights between nodes. The additional nodal source parameters
are called the biases ( bi , cj ). An optimal set of weights and hidden layer biases are found through optimization
of a Boltzmann distribution of energies given a set of input data applied to the visible layer of the RBM. Training
such networks, via optimization and sampling, requires large computational resources as the size of the network
grows2.

Quantum annealing algorithms have been proposed to efficiently search over the large parameter space to
accelerate the RBM machine learning training process3. The RBM assumes data follows a Boltzmann distribu-
tion which contains a normalization term, i.e., the partition function. During gradient based optimization, this
term requires sampling over a large configuration space thus creating a bottleneck in the optimization process.
Approximations are typically introduced by sampling over a subspace. One popular method is contrastive diver-
gence where only one Markov step is taken per optimization step (i.e., an epoch)4. This algorithm, referred to as
CD-1 can be modified to take n steps (CD-n) and thus minimizes the effect of global optimization errors that
may occur using CD-1 with the trade-off of more computational requirements. These methods typically treat
the inverse temperature β in the Boltzmann distribution fixed to a value of 1. In contrast, recent research5 has
incorporated variable temperature into RBMs to enhance training and predictions from the neural network.
Quantum annealing hardware, based on quantum adiabatic optimization6, has been proposed to help address
this limitation by searching over a broader number of configurations using quantum algorithms to minimize
uncertainty in finding the global optimal solution. As quantum hardware grows in qubit size and connectivity,
larger RBMs may be implemented to handle larger amounts of information to provide more robust predictions
of complex systems which, in principle, cannot be done on classic computers.

OPEN

1Department of Mechanical Engineering, College of Engineering, Florida A&M-Florida State University,
Tallahassee, FL 32310, USA. 2Florida Center for Advanced Aero-Propulsion (FCAAP), Tallahassee, FL 32310,
USA. *email: woates@fsu.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-82197-1&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:2727 | https://doi.org/10.1038/s41598-021-82197-1

www.nature.com/scientificreports/

An optimization methodology has been proposed that takes advantage of adiabatic state transforma-
tion while carefully controlling the annealing schedule8. Annealing on the D-Wave starts with a ‘trans-
verse-field’ Hamiltonian ( Hd = −

∑N
i σ x

i  ) of transverse spins σ x
i over N qubits. The target Hamiltonian is

Hp =
∑

i,j Jijσ
z
i σ

z
j +

∑

i hiσ
z
i where Jij and hi are controllable parameters that are mapped to the RBM weights

( wij) and biases ( bi , ci ). Annealing starts by initiating the hardware to the ground state in Hd and then the system
evolves to Hp over a predefined schedule. This is done by starting in a superposition of σ x

i and ideally ending
in the ground state of Hp where the unknown σ z

i spin states are measured given some fixed Jij and hi values.
This annealing schedule follows H(s) = A(s)Hd + B(s)Hp where A(0) >> B(0) and B(1) >> A(1) where s is
some normalized time that is defined to be less than the decoherence time. It has been suggested that pausing
s at intermediate times between 0 and 1 increases the probability of reaching a global minimum9. However, the
pausing time depends on the spectrum of energy values of H(s) which are unknown for the machine learning
problem because the biases and weights change during training. Given this uncertainty, we evaluate a broad
range of pausing times to determine if any correlation exist between our hyperparameter updating schemes and
pausing times during RBM training.

Several methods have been considered to optimize β for generalizing machine learning training on D-Wave
hardware10–12. One simple method is to determine a fixed optimal value before the training10. This method
requires comparing the probability distributions between randomly generated graphs ( n+m nodes), which
are calculated from all possible configurations ( 2(n+m) ), and feedback from errors on D-Wave hardware. This
approach is limited to specific training tasks and results in significant computational difficulties when considering
large systems. The estimation of the effective temperature requires additional calculations from samples meas-
ured from D-Wave hardware. By regrouping all the R samples into K = ⌈

√
R⌉ bins, the K averaged energies are

used to obtain O(K2) data points (energy pairs) from linear regression to estimate the effective temperature. A
large amount of post processing is required during each iteration which can require considerable computational
resources. One recent article also performed effective temperature estimation by minimizing the difference
between the empirical distribution and the exact Boltzmann distribution12. However, the method can only be
done for sufficiently small problems.

Here we treat the unknown β as a hyperparameter that aims to accommodate measurement noise, hardware
imperfections, embedding errors used to map RBM graphs onto quantum hardware, and the working temperature
of the hardware. This hyperparameter is inferred by either: (1) maximizing the likelihood or (2) minimizing
Shannon’s entropy. These two methods treat β as an unknown hyperparameter that is updated at each classical
step of the RBM optimization (i.e., epoch) simultaneously along with the weights and biases. It is important to
note that this β is only applied onto D-Wave hardware which indirectly influences updates to the weights and
biases. The sigmoidal function and direct optimization of the weights and biases neglect the effect of the inverse
temperature essentially setting it to one. We find that these two methods outperform manually controlling β on
D-Wave hardware as done elsewhere10. All the results shown in our analyses were validated using 7× 7 pixelated
bars and stripes (BAS) random images. This size was based on a balance of the largest pixel density and a set of
hidden nodes that could be embedded within the D-Wave chimera graph structure. It included 49 visible nodes
and 25 hidden nodes. These 74 RBM nodes were embedded onto the D-Wave chimera graph using 668 qubits.
An example of a RBM that requires hardware embedding is shown in Fig. 2. When manually controlling β , we
consider fixed β values that give the lowest image reconstruction error again noting that this β is only applied on
the D-Wave hardware but not within the sigmoidal functions of the RBM. We then linearly ramp β from a low
value to the value giving the lowest reconstruction error for comparisons to maximum likelihood and minimum
Shannon entropy updating. For the maximum likelihood or minimum Shannon’s entropy approach, β is updated
after each epoch using information about the magnitude of energy output from D-Wave hardware. For the case
of maximum likelihood, β is updated based on the differences in the average energy while minimum Shannon
entropy updates β by reducing the variance of the D-Wave energy. It is shown that maximizing the likelihood
is about 23 times better than the linearly ramping method for any pausing time. Similarly, this method is also
more than 15 times better than minimizing Shannon’s entropy. In all cases, β increases per epoch; however, the
rate at which it increases significantly differs for each method.

In the following sections we first discuss details describing the optimization methodology and experimen-
tal implementation on D-Wave hardware. We then evaluate the results using Bayesian uncertainty analysis to

Figure 1.   Illustration of a Restricted Boltzmann Machine (RBM) bipartite graph where vi are visible nodes, hj
are hidden nodes and wij are the weights connecting the hidden and visible nodes.

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:2727 | https://doi.org/10.1038/s41598-021-82197-1

www.nature.com/scientificreports/

quantify differences in reconstruction error for the different hyperparameter updating methods. This is followed
concluding remarks and detailed derivations important for hardware implementation in the “Methods” section.

Results
Restricted Boltzmann Machines.  A brief description of the theory and application of RBMs for machine
learning is described in this section to support hyperparameter optimization. Core to its formulation is the
energy associated with the nodes and their interactions. The energy of this network is described by

where all variables have been previously described in the introduction and Fig. 1.
The RBM model assumes the probability of configurations with a specific energy value ( Ek ) follows the

Boltzmann distribution Pk =
e−Ek

Z
 where the distribution is normalized by the partition function Z =

∑

k

e−Ek

and k denotes the discrete number of different configurations of the nodal values of vi and hi.
The training procedure requires updating the biases and weights ( θ = [bi , ci ,wij] ) so that the visible nodes can

be reproduced through the conventional reconstruction process. This process entails inputs from the visible to
the hidden nodes which is then reconstructed as vi → hi → vreci where each → operation represents calculations
done by the sigmoid function13. In practical training, initial values of biases and weights can be set arbitrarily. In
this article, the biases are set to be initially zero and the weights are initially proportional to a normal distribution
with the small prefactor value of 0.01.

Instead of directly maximizing the Boltzmann distribution, we minimize its negative log-likelihood
( L(θ) = −

∑

k

logPk ) using the gradient descent algorithm assuming a continuous distribution. This is done

by taking variations of L(θ) with respect to θ according to

Additional details on this method can be found elsewhere3.
A general form of the updating scheme can be derive from the variation of L(θ) as

where the �·� represents the ensemble average value of the Boltzmann distribution. The first term is called the
positive phase and the second term is called the negative phase. The parameters θ may be updated according to

where η > 0 is the learning rate and E denotes the averaged energy calculation from the training data. From (4),
the biases and weights are explicitly

(1)E = −
∑

i

bivi −
∑

j

cjhj −
∑

i,j

wijvihj

(2)δL(θ) = −
∑

k

δ
(
log Pk

)
= −

∑

k

[
∑

θ

∂

∂θ

(
log Pk

)

]

· δθ = −
∑

θ

[
∑

k

∂

∂θ

(
log Pk

)

]

· δθ .

(3)
∂(− log Pk)

∂θ
= ∂Ek

∂θ
−

〈∂E

∂θ

〉

(4)δθ = −η

[
∂E

∂θ
−

〈∂E

∂θ

〉
]

Figure 2.   Illustration of a Restricted Boltzmann Machine (RBM) bipartite graph of size 6× 5 (left), and
embedded Chimera graph7 on D-Wave hardware (right).

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:2727 | https://doi.org/10.1038/s41598-021-82197-1

www.nature.com/scientificreports/

These ensemble averages often require large amount of computing power to reach high accuracy for large sets
of data (e.g., CD-n). On classical computers, contrastive divergence (CD) is often implemented to estimate
the ensemble average value. In comparison, the D-Wave quantum annealer is believed to follow a Boltzmann
distribution3, which can provide an alternative approach to calculate the ensemble average more efficiently.

Implementation on D‑Wave hardware.  Here we describe how the RBM energy is applied to D-Wave
hardware for this class of machine learning optimization problems. It is within this part of the algorithm that β
is introduced to accommodate statistical distributions on hardware. A class of optimization problems, known as
quadratic unconstrained binary optimization (QUBO), are described by a cost function

that can be applied to D-Wave architecture on its Chimera graph, where xi = {0, 1} for all i qubits. It is possible
to calculate an ensemble average by sampling the visible and hidden nodes on the RBM {vi , hi} that corresponds
to the D-Wave QUBO.

The QUBO is constructed from the transformation

where the hyperparameter β is introduced to construct a proper Boltzmann distribution such that βEDW = E.
When the QUBO matrix Qij is applied to the D-Wave quantum annealer, the output are vectors {vi , hi}

exhibit certain experimental energy spectra over EDW . This energy spectra is assumed to follow the Boltzmann
probability density function. We calculate the expectation values: 〈vi〉, 〈hi〉, 〈vihj〉 using 1000 samples from the
D-Wave machine. Each individual sample undertakes one annealing process. The annealing time is set to 6 µ s
with a pausing tpause = 2 µ s. We used the built-in minor-miner embedding algorithm14 to represent the RBM
graph on the Chimera graph7. The D-Wave machine uses a major voting algorithm to determine the logical
qubit values represented by each embedded chain. As previously discussed, RBM parameter updating is typically
conducted by manually optimizing the hyperparameter β to fixed values or linear ramping it over each epoch.
Since β can depend on many unknown factors3,10, we implement the adaptive schemes to update β concurrently
while updating the parameters within the RBM neural network.

Hyperparameter updating.  We present details on the three approaches used to vary β during RBM train-
ing. The methodologies are characterized by 1) manual control of β through linear ramping, 2) maximizing the
likelihood of the Boltzmann distribution and 3) minimizing the Shannon entropy. In all three cases, β is updated
per epoch either manually (case 1) or automatically (cases 2 or 3) while updating the weights and biases within
the neural network. Key relations are given here while additional details can be found in the “Methods” section.

In all cases, β is increased over the epochs with the goal of reducing errors associated with regenerating the
correct Bars and Stripes (BAS) images. This increase in β is loosely analogous to decreasing an effective tem-
perature such that the optimal or near optimal solution is frozen at the final epoch. We find that the rate and
magnitude of this increase in β is important for both faster training and reaching the lowest asymptotic error as
seen later in Fig. 4. We also emphasize that β is not directly involved in the reconstruction error nor is it used in
the sigmoidal function within the RBM.

Linearly hyperparameter ramping.  A series of test trials were conducted with constant values of β to
assess its effect on the steady-state error. As shown in Fig. 3, we find that different fixed values of β cause different
convergence rates and steady-state errors based on neural network training. Given this information, we linearly
varied β to improve the convergence rate and steady-state error for comparisons to the two adaptive schemes.

Figure 3 illustrates a trend of faster convergence to a steady-state error as β decreases from 3 to 2 followed
by a slower convergence of error when β = 1.5 . This set of data also shows a difference in the final error for
an epoch of 300. The lowest error was achieved when β = 2.5 ; however, it is unclear if the larger β values have
reached a steady state error at 300 epochs. This was not considered further as we focused on methodologies to
achieve faster convergence without significantly sacrificing steady-state error.

Linear ramping β from 1.5 to 3 describes training runs where β is linearly increased over the epochs ( iepoch )
according to β(iepoch) = 1.5+ 1.5iepoch/300 . By linearly increasing the hyperparameter, we find that the conver-
gence rate is approximately equivalent to the best rate for a constant β and it achieves practically the same steady-
state error. Although linear ramping is an improvement over a constant value, it requires a priori knowledge of
the range of values which may be problem dependent. Furthermore, a constant rate of increase of β is unlikely
optimal. Therefore, we present alternative methods to identify β during the training process.

(5)δbi = −η[−vi − �−vi�] = η[vi − �vi�]

(6)δcj = η[hj − �hj�]

(7)δwij = η[vihj − �vihj�].

(8)EDW =
∑

Qiixi +
∑

Qijxixj

(9)
Qii =

{
−bi/β if i ≤ M
−ci−M/β ifM < i ≤ M + N

Qij = −wij/β if i �= j

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:2727 | https://doi.org/10.1038/s41598-021-82197-1

www.nature.com/scientificreports/

Log‑likelihood maximization.  The quantum annealing process on the D-Wave machine results in a com-
plex qubit state which creates challenges in identifying an a priori optimal value for β . This is further complicated
over a set of training epochs where the weights and biases change their value to reduce the reconstruction errors.
This motivates alternatives that update β along with the weights and biases using a similar derivation as in (3).
To illustrate this method, we again assume the D-Wave quantum annealing follows a Boltzmann distribution
and define its energy distribution to be EDW = E/β . We delineate the assumed Boltzmann distribution of the
D-Wave annealer to be

where E is as same as that given in (1).
The derivative of the negative log-likelihood requires

To minimize the negative log-likelihood with the same strategy shown in (2)-(4), the increment of β averaged
overall all configurations becomes

where E =
∑N

i=1 E represents the averaged value over all configurations. In the training process, the increment
is set to δβ = η(EDW − �EDW �) to have a similar form as the other parameters in (4). As shown in Fig. 4, δβ is
relatively small in the beginning of training. Therefore, to compare this approach with the linear ramping cases,
we neglect the dependence of β within the relation δβ . The learning rate η was set to 0.1 which was the same as
that used to update the weights and biases in (4)–(7).

Shannon entropy minimization.  In the third approach, β is updated by minimizing Shannon’s entropy.
This drives the system away from the high temperature state that corresponds to a system with a uniformly
distributed configuration. Again using the gradient descent, we obtain an alternative scheme for updating β . We
implement the approach by defining Shannon’s entropy with the Boltzmann probability distribution as

(10)PDW = e−EDW

ZDW
= e−E/β

ZDW
and ZDW =

∑

e−EDW

(11)−∂(logPDW)

∂β
= − 1

β2
(E − �E�).

(12)δβ = −η

(

− 1

β2

)
(
E − �E�

)
= η

β

(
EDW − �EDW �

)

Figure 3.   Plot of reconstruction errors during training with different values of fixed β and linearly ramping β.

Figure 4.   Plots of varying the hyperparameter β using the three proposed schemes during training. The MaxLL
and MinSE given here are representative of all 16 training cases for a fixed spause value.

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:2727 | https://doi.org/10.1038/s41598-021-82197-1

www.nature.com/scientificreports/

The first derivative of the Shannon entropy with respect to β is

To minimize the Shannon entropy we update β using

We point out that a different learning rate η′ was applied relative to the previous RBM learning rate η in Eqs.
(4)–(7). During the training process, we use δβ = η′�(�EDW)2� for comparisons to linearly ramping β and maxi-
mizing the likelihood. As shown in Fig. 4, the squared energy terms may increase much faster than the mean
energy used in maximizing the likelihood. Therefore, η′ is set to be 10−3 of η . The formation of the QUBO which
is the input to the D-Wave hardware is related to β as previously given by (9). Therefore β scales the energy of the
QUBO which can also affect the learning rate of the RBM. In this situation, the value of β plays an important role
in the Boltzmann distribution that represents D-Wave hardware and RBM training. Limiting the learning rate of β
avoids very large values so that the QUBO energy in (9) remains larger than energy associated with thermal noise.

Bayesian statistical analysis.  The three techniques for updating the hyperparameter β are tested on the
D-Wave 2000Q5 machine. See the “Methods” section for details. All methods are evaluated by conducting unsu-
pervised training of 7× 7 pixels of black and white Bars and Stripes (BAS) images. A mini-batch of 500 images
was used within a total training set of 1000 images. This results in updating our weights and biases twice per
epoch over the entire 1000 image data set. The error of reproducing the images is evaluated on a set of non-
trained BAS images (i.e., testing set) using the sum of squares error

where we define Ntest = 1000 as the size of the testing set, vik and vrepik represent the white or black pixel values
for the testing images and the reproduced images, respectively. The calculations acquire 1000 samples from
D-Wave hardware for each epoch and we iterate over 300 epochs in total. This process is repeated 16 times
to build statistical estimates when β is manually controlled or updated using the maximum likelihood or the
minimum Shannon’s entropy approach.

The error at each epoch in (17) is modeled as an exponentially decaying function per epoch to quantify the
rate of convergence and the asymptotic error using Bayesian statistics15. As seen in Fig. 3, after approximately the
first 20 epochs, the decay in error is approximately an exponentially decaying function. Therefore, the following
function is used to model the error reduction over epochs

where the random parameters θ = [α,K , c] define the rate of decay of the error per epoch ( iepoch = [1, . . . ,N] ).
Through Bayesian inference, we identify the posterior distributions for θ and how its uncertainty propagates
to obtain statistical estimates of the asymptotic error from c and rate of convergence from α . We also note that
we neglect the first 20 epochs where little reduction in error is observed. The random parameters, θ  , are identi-
fied using the Markov Chain Monte Carlo (MCMC) method which is numerically implemented using Delayed
Rejection Adaptive Metropolis (DRAM)15,16. The parameter uncertainty contained in θ provides performance
metrics for each hyperparameter tuning method.

The error between (17) versus (18) is assumed to be independent and identically distributed (iid) over the
epochs which allows us to implement a Gaussian likelihood function in Bayes equation. The prior for all param-
eters is flat (non-informative) and DRAM is used to minimize the sum of square error according to

This is equivalent to maximizing the Gaussian likelihood function15. The discrepancies between the true error
and the modeling error is minimized by sampling the random parameters in θ  . We found that 10,000 samples
were sufficient to produce converged posterior distributions based on observations of the parameter chains and
choosing multiple initial guesses for θ .

The Bayesian uncertainty analyses provide quantified uncertainty on convergence rates and asymptotic error
estimates contained within posterior densities of α and c, respectively. An example of such analysis is illustrated
in Fig. 5. The error versus epochs illustrate that an exponential decay model provides a good estimate of the

(13)S = −
∑

i

Pi logPi

(14)Pi =
e−βEiDW

Z
and Z =

∑

i

e−βEiDW

(15)
∂S

∂β
= β

[
�EDW �2 − �E2DW �

]
= −β�(�EDW)2�

(16)δβ = −η′
∂S

∂β
= η′β�(�EDW)2�.

(17)Er = 1

Ntest

Ntest∑

k=1

49∑

i=1

(

vik − v
rep
ik

)2

(18)e(iepoch) = Ke−αiepoch + c

(19)emodel =
280∑

i

(Eri − ei)
2.

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:2727 | https://doi.org/10.1038/s41598-021-82197-1

www.nature.com/scientificreports/

behavior of the D-Wave trained RBM. This plot of image recognition error decay also includes 95% credible
and prediction intervals which calculate the uncertainty due to the θ parameters and the measurement noise
based on the 16 different D-Wave experiments conducted on each algorithm for updating β . The D-Wave pause
time described in the introduction was spause = 0.6 for this particular example; see the “Methods” section for
additional details on pausing. The three subplots illustrate the Bayesian posterior probabilities for the inverse
convergence rate α , the initial error based upon K, and the asymptotic error from c. The results show that the
maximum log likelihood method (MaxLL) gives the lowest asymptotic error followed by the minimization of
Shannon’s entropy (MinSE), and highest error for the linear ramping of β (linear). The maximum likelihood
method also has a slightly slower convergence rate as shown in the posterior densities for α while the convergence
rate was comparable for minimizing Shannon’s entropy and linearly ramping β . Recall from Fig. 4, the change in
β over the epochs for each method shows an increase in β is shown to increase over the epochs but at different
rates. The maximum likelihood method is the slowest to initially change β where its value is 1.5 for about the
first 120 epochs and then increases at the fastest rate.

Based on Bayesian analysis, we compare the overall performance of the three hyperparameter schemes using
the posterior densities for the asymptotic error (c). This is done for all different possible pausing values to quan-
tify if the hyperparameter updating is independent of the pausing scheme. Shown in Fig. 6, the mode and 95%

Figure 5.   Plots of the Bayesian uncertainty analysis for fitting 16 D-Wave training results to an exponential
decay function. All the plots are for spause = 0.6 . The legends correspond to linear ramping β (linear), maximum
log likelihood method (MaxLL), and the minimum Shannon entropy method (MinSE).

Figure 6.   Plot for the three different hyperparameter updating schemes. The red circles present errors of
training with linearly ramping β = 1.5 → 3 . The blue crosses present errors of training with maximizing
the log-likelihood. The black stars present errors of training when minimizing Shannon’s entropy. The marks
represent the mode value from each Bayesian posterior of c.

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:2727 | https://doi.org/10.1038/s41598-021-82197-1

www.nature.com/scientificreports/

probability interval limits of c are plotted. These limits were extracted from the posterior densities for c, as seen
by the example in Fig. 5 for spause = 0.6 . It is shown that the maximum likelihood method remains superior and
independent of the D-Wave pause time. On average, maximizing the log likelihood performs 23 times better
than linear ramping β and 16 times better than minimizing the Shannon’s entropy. While spause = 0.8 and 0.9 are
included here, we found that the D-Wave machine automatically pauses the annealing schedule at spause = 0.8
therefore there is no difference in these two cases beyond noise within the hardware.

Discussion
We have developed alternative methods to adaptively update the D-Wave hyperparamter β for unsupervised
machine learning problems using the Restricted Boltzmann Machine. We find that both maximizing the likeli-
hood and minimizing Shannon’s entropy reduces the steady-state error relative to linearly incrementing β . In both
adaptive schemes, no a priori information is needed for β which provides a more robust means to train neural
networks for different types of data-driven problems. By maximizing the likelihood, β is driven by the mean
differences in energy of the RBM. In the case of Shannon’s entropy minimization, updates in β are driven by the
variance of the RBM energy. This is because of the cancellation of average energy as detailed in the “Methods”
section. In the image recognition problem, β was found to continue to increase unbounded; however, this is
limited by finite temperatures on D-Wave hardware. In future work, it would be interesting to include the β−1
dependence on δβ in Eq. (12) to assess its effect on RBM error convergence rates and asymptotic error magnitude
for a broader range of data-driven problems.

Methods
Optimization details.  The derivation that leads to Eq. (3) is obtained from the following relations

The derivation of (11) which is used in the log-likelihood maximization is

Lastly, the derivation of (15) which is used in the minimum entropy method is

The first term 1© can be explicitly derived as

while the second term 2© is zero as seen from

Pausing scheme.  The D-Wave hardware uses superconducting QPUs to create a quantum Ising spin system
in a transverse field. The quantum Ising model has the Hamiltonian17

∂(− logP)

∂θ
= −∂(log P)

∂θ
= −

[
∂(log e−E)

∂θ
− ∂(logZ)

∂θ

]

= −
[
∂(−E)

∂θ
− 1

Z

∂Z

∂θ

]

= ∂E

∂θ
+ 1

Z

∂

∂θ

(∑

e−E
)

= ∂E

∂θ
+

∑ 1

Z

∂

∂θ

(
e−E

)
= ∂E

∂θ
+

∑ e−E

Z

∂(−E)

∂θ
= ∂E

∂θ
−

∑

P
∂E

∂θ
= ∂E

∂θ
−

〈∂E

∂θ

〉

∂(log PDW)

∂β
= −∂(log PDW)

∂β
= ∂EDW

∂β
−

〈∂EDW

∂β

〉
= ∂(E/β)

∂β
−

〈∂(E/β)

∂β

〉
= − 1

β2
(E − �E�)

∂S

∂β
= −

∑

i

∂

∂β

(
Pi logPi

)
= −

∑

i

(
∂Pi

∂β

)

log Pi

︸ ︷︷ ︸

1�

+−
∑

i

Pi

(
∂

∂β
logPi

)

︸ ︷︷ ︸

2�

1� = −
�

i

�
∂Pi

∂β

�

logPi = −
�

i

�
1

Z

∂

∂β

�
e−βEi

�
+ e−βEi

∂

∂β

�
1

Z

��

logPi = −
�

i

�
e−βEi

Z
(−Ei)+

e−βEi

−Z2

∂Z

∂β

�

log Pi

= −
�

i



−PiEi +
e−βEi

−Z2

�

j

∂

∂β

�
e−βEj

�



 logPi = −
�

i



−PiEi +
e−βEi

−Z2

�

j

e−βEj
�
−Ej

�



 log Pi

= −
�

i



−PiEi +
e−βEi

Z

�

j

e−βEj

Z

�
Ej
�



 log Pi = −
�

i

[−PiEi + Pi�E�] log Pi =
�

i

[Ei − �E�]Pi logPi

=
�

i

[Ei − �E�]Pi
�
log e−βEi − logZ

�
=

�

i

[Ei − �E�]Pi
�
−βEi − logZ

�

=
�

i

βPi[Ei�E� − E2i] −
�

i

[Ei − �E�]Pi logZ = β
�
�E�2 − �E2�

�
−

�

�E� logZ − �E� logZ
�

i

Pi

�

= β
�
�E�2 − �E2�

�

2� = −
∑

i

Pi
∂ log Pi

∂β
= −

∑

i

Pi
∂

∂β

(
log e−βEi − logZ

)
= −

∑

i

Pi

[
∂

∂β

(
e−βEi

)
− ∂

∂β
logZ

]

= −
∑

i

Pi(−Ei)−
∑

i

Pi

(

−∂ logZ

∂β

)

= �E� −
∑

Pi�E� = 0.

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:2727 | https://doi.org/10.1038/s41598-021-82197-1

www.nature.com/scientificreports/

where σ̂ are Pauli matrices operating on a qubit. A normalized unitless parameter s(t) = [0, 1] is introduced as a
function of annealing time. At the beginning of annealing, A(0) ≫ B(0) , which leads to a easily prepared ground
state of superposition states. At the end of annealing, A(1) ≪ B(1) , the eigenstates {↑,↓} of Hp , which consists
of σ z only, correspond to spin configurations of the classical Ising model {+1,−1} given by

that can be transformed to Eq. (8). The tool suit (Ocean18) provides control of annealing in terms of s(t)19. Instead
of a linear increase in s as a function of time, s first increases linearly and then is held constant for a pausing time
tpause before increasing linear again until s(tfinal) = 1.

It has been suggested that controlling the annealing scheme can reduce the effect of noise during the quantum
annealing processes8,9,20. The pausing scheme8 was used in this work to assess its effect on machine learning
training and interdependencies on the hyperparameter updating method. No interdependency was identified
as shown in Fig. 6.

Received: 12 September 2020; Accepted: 23 December 2020

References
	 1.	 Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
	 2.	 Sehayek, D. et al. Learnability scaling of quantum states: Restricted Boltzmann machines. Phys. Rev. B 100, 195125 (2019).
	 3.	 Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B. & Melko, R. Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018).
	 4.	 Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002).
	 5.	 Li, G. et al. Temperature based restricted Boltzmann machines. Sci. Rep. 6, 19133 (2016).
	 6.	 Childs, A. M., Farhi, E. & Preskill, J. Robustness of adiabatic quantum computation. Phys. Rev. A 65, 012322 (2001).
	 7.	 D-Wave QPU Architecture: Topologies—D-Wave System Documentation documentation. https​://docs.dwave​sys.com/docs/lates​

t/c_gs_4.html.
	 8.	 Marshall, J., Venturelli, D., Hen, I. & Rieffel, E. G. Power of pausing: Advancing understanding of thermalization in experimental

quantum annealers. Phys. Rev. Appl. 11, 044083. https​://doi.org/10.1103/PhysR​evApp​lied.11.04408​3 (2019).
	 9.	 Marshall, J., Rieffel, E. G. & Hen, I. Thermalization, freeze-out, and noise: Deciphering experimental quantum annealers. Phys.

Rev. Appl. 8, 064025. https​://doi.org/10.1103/PhysR​evApp​lied.8.06402​5 (2017).
	10.	 Adachi, S. H. & Henderson, M. P. Application of Quantum Annealing to Training of Deep Neural Networks. [quant-ph, stat]

(2015). arXiv​:1510.06356​.
	11.	 Benedetti, M., Realpe-Gómez, J., Biswas, R. & Perdomo-Ortiz, A. Quantum-assisted learning of hardware-embedded probabilistic

graphical models. Phys. Rev. X 7, 041052, https​://doi.org/10.1103/PhysR​evX.7.04105​2 (2017). Publisher: American Physical Society.
	12.	 Li, R. Y., Albash, T. & Lidar, D. A. Improved Boltzmann machines with error corrected quantum annealing. Quantum Sci.

Technol.https​://doi.org/10.1088/2058-9565/ab9aa​b (2020). arXiv​:1910.01283​.
	13.	 Bishop, C. M. Pattern Recognition and Machine Learning (Springer, New York, 2006).
	14.	 Cai, J., Macready, W. G. & Roy, A. A practical heuristic for finding graph minors. arXiv preprint arXiv​:1406.2741 (2014).
	15.	 Smith, R. Uncertainty Quantification: Theory, Implementation, and Applications (SIAM, Philadelphia, PA, 2014).
	16.	 Haario, H., Laine, M., Mira, A. & Saksman, E. D. R. A. M. Efficient adaptive MCMC. Stat. Comput. 16, 339–354 (2006).
	17.	 Background—D-Wave System Documentation documentation. https​://docs.dwave​sys.com/docs/lates​t/c_qpu_0.html.
	18.	 Ocean Software—D-Wave System Documentation documentation. https​://docs.dwave​sys.com/docs/lates​t/ocean​.html.
	19.	 Anneal Schedule Variations—D-Wave System Documentation documentation. https​://docs.dwave​sys.com/docs/lates​t/c_fd_as.html.
	20.	 Amin, M. H. Searching for quantum speedup in quasistatic quantum annealers. Phys. Rev. A 92, 052323. https​://doi.org/10.1103/

PhysR​evA.92.05232​3 (2015).

Acknowledgements
We greatly appreciate many fruitful discussions with Travis Humble at Oak Ridge National Laboratory. This
research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725. We also greatly appreciate the generous financial
support provided by Cummins, Inc.

Author contributions
W.S.O and G.X wrote the manuscript. G.X. conducted the calculations and hardware implementation. All authors
reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.S.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

(20)HIsing (s) = −A(s)

2

�

i

σ̂ x
i + B(s)

2




�

i

hiσ̂
z
i +

�

i>j

Jijσ̂
z
i σ̂

z
j





(21)EIsing = −
∑

i

hiSi −
∑

i>j

JijSiSj

https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://doi.org/10.1103/PhysRevApplied.11.044083
https://doi.org/10.1103/PhysRevApplied.8.064025
http://arxiv.org/abs/1510.06356
https://doi.org/10.1103/PhysRevX.7.041052
https://doi.org/10.1088/2058-9565/ab9aab
http://arxiv.org/abs/1910.01283
http://arxiv.org/abs/1406.2741
https://docs.dwavesys.com/docs/latest/c_qpu_0.html
https://docs.dwavesys.com/docs/latest/ocean.html
https://docs.dwavesys.com/docs/latest/c_fd_as.html
https://doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1103/PhysRevA.92.052323
www.nature.com/reprints

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:2727 | https://doi.org/10.1038/s41598-021-82197-1

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Adaptive hyperparameter updating for training restricted Boltzmann machines on quantum annealers
	Results
	Restricted Boltzmann Machines.
	Implementation on D-Wave hardware.
	Hyperparameter updating.
	Linearly hyperparameter ramping.
	Log-likelihood maximization.
	Shannon entropy minimization.
	Bayesian statistical analysis.

	Discussion
	Methods
	Optimization details.
	Pausing scheme.

	References
	Acknowledgements

