Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interface atom mobility and charge transfer effects on CuO and Cu2O formation on Cu3Pd(111) and Cu3Pt(111)

Abstract

We bombarded \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) with a 2.3 eV hyperthermal oxygen molecular beam (HOMB) source, and characterized the corresponding (oxide) surfaces with synchrotron-radiation X-ray photoemission spectroscopy (SR-XPS). At \(300\,\text{K}\), CuO forms on both \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\). When we increase the surface temperature to \(500\,\text{K}\), \(\mbox{$\text{Cu}_{2}\text{O}$}\) also forms on \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\), but not on \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\). For comparison, \(\mbox{$\text{Cu}_{2}\text{O}$}\) forms even at \(300\,\text{K}\) on Cu(111). On \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\), \(\mbox{$\text{Cu}_{2}\text{O}$}\) forms only after \(500\,\text{K}\), and no oxides can be found at \(300\,\text{K}\). We ascribe this difference in Cu oxide formation to the mobility of the interfacial species (Cu/Pd/Pt) and charge transfer between the surface Cu oxides and subsurface species (Cu/Pd/Pt).

Introduction

Metal oxides have long attracted researchers’ attention, particularly the role of metal valence electrons in determining structure and properties1,2. Manganese (Mn) in Mn oxides, for example, can take more than one oxidation state (mixed valency). \({\text {MnO}}_{x}\) exhibit better catalytic activity than MnO3. Copper (Cu) oxides also attract particular attention, due to their utility, industrial applications, abundance, low-cost, and non-toxicity. \(\mbox{$\text{Cu}_{2}\text{O}$}\) and CuO, two of the most common forms of Cu oxides, find applications as anodes in lithium ion battery4 and solar cells5. Copper oxides are also expected to be used as catalysts for CO6, NO dissociation7, adsorption of \({\text {H}}_{2}\)8, \({\text {O}}_{2}\)9,10,11, and \(\mbox{$\text{H}_{2}\text{O}$}\)12,13. Similarly, the catalytic reactivities of Cu oxides vary with the Cu oxidation state. Several factors determine oxide formation on the surface, e.g., translational and internal (vibration and rotation) energies of impinging \({\text {O}}_{2}\), surface temperature, and surface electronic state14. Alloying allows for a simple way to vary the surface electronic state and the corresponding reactivity. For example, by alloying Cu with gold (Au) and tuning the surface composition, previous studies tried to enhance the activity and selectivity of Cu–Au nanoparticle catalysts for \({\text {CO}}_{2}\) reduction15,16. On \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\), the presence of (the “inert”) Au hinders \({\text {O}}_{2}\) dissociative adsorption, as compared to Cu(111)17,18,19,20. At surface temperature \(T_{{\rm S}} = 300\,\text{K}\), Au-rich layers, formed between the bulk and surface, prevents Cu oxide formation further into bulk. Atom diffusion at \(T_{\rm S} = 500\,\text{K}\) promotes \(\mbox{$\text{Cu}_{2}\text{O}$}\) formation, but leaves a protective Au-rich layer that prevents further oxidation into the bulk. On the other hand, Cu–palladium (Pd) alloys synergetically enhanced \({\text {CO}}_{2}\) hydrogenation to alcohol, as compared to mono-metallic catalysts21,22. Cu–platinum (Pt) alloys, viz., \(\mbox{$\text{Pt}_{34.5}\text{Cu}_{65.5}$}\), also showed superior methanol oxidation and oxygen reduction performance23. Moreover, single Pt atoms at the Cu metal-oxide interface promote the reduction of \(\mbox{$\text{Cu}_{2}\text{O}$}\) by \({\text {H}}_{2}\) exposure24. These results indicate that choosing the right alloy components strongly affect reactivity. Here, we report on how alloying Cu with Pd and Pt, elements known to be more reactive than Au, affects oxidation of the corresponding surfaces. We bombarded \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) with a 2.3 eV hyperthermal oxygen molecular beam (HOMB) source, and characterized the corresponding (oxidized) surfaces using X-ray photoemission spectroscopy (XPS) in conjunction with synchrotron radiation (SR). We found that the presence of interfacial Pd and Pt, between surface Cu oxides and bulk, suppresses atomic diffusion and induces charge transfer near the interface. These result in the formation of protective layers that prevent Cu oxidation further into the bulk. These also account for the difference in Cu valencies and resulting oxidation states (Cu oxide species formed) on \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), as compared to Cu(111) and \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\).

Results

Pd and Pt (surface) concentration profiles

In Table 1, we show the corresponding experimental and calculated layer concentration profiles \(x_{n}\) (in units of \(\%\)-Pd or \(\%\)-Pt) for clean \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\). To experimentally determine the corresponding Pd and Pt layer concentrations \(x_{n}\), of the nth layer from the vacuum, we followed the method described in previous studies17, using the photoelectron detection angle dependence of the intensities of the bulk (B-) and surface (S-) components of the Pd-3d and Pt-4f XPS spectra. (For more details on the procedures, analyses, and calculations, cf., Section S.1 in the supplementary information.)

Figure 1
figure1

O uptake curves for \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) after 2.3 eV HOMB irradiation at \(T_{\rm S} = 300\) and \(500\,\text{K}\). For reference, O uptake curves taken after thermal \({\text {O}}_{2}\) exposure, and O uptake curves for Cu(111) and \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\) after 2.3 eV HOMB irradiation, are also shown.

On the \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\), our experimental analyses (calculation results) show a Pd concentration of \(x_{1}\)= 44 (50) (cf., first two rows, Table 1), which is greater than the bulk value of \(x_{\rm bulk} = 25\). This indicates Pd segregation onto the surface, resulting in a Pd-rich surface.

On the \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), our experimental analyses show \(x_{1}\) = 23, \(x_{2}\) = 33, and \(x_{3}\) = 88 (cf., third row, Table 1). This indicates Pt segregation onto the 2nd and 3rd layers (Pt-rich 2nd and 3rd layers). Previous studies using low energy ion scattering (LEIS) 25 report similar results, viz., \(x_{1}\) = 20, \(x_{2}\) = 31 (cf., fourth row, Table 1). For comparison, low energy electron diffraction (LEED) studies26 report \(x_{1}\) = 28, \(x_{2}\) = 8, \(x_{3}\) = 48, and \(x_{4}\) = 8 (cf., fifth row, Table 1). On the other hand, calculation results show \(100\%\)-Pt segregation onto the 1st (surface) layer, and \(50\%\) Pt segregation onto the 3rd layer. Regardless, both experiment and theory show (on the average) similar Pt concentrations from the 1st to the 3rd layer, viz., \(48\%\) and \(50\%\), respectively.

Table 1 Layer concentration profiles \(x_{n}\) (in units of \(\%\)-Pd or \(\%\)-Pt) for clean \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\).
Table 2 Oxides species formed on Cu and Cu-based alloys after 2.3 eV HOMB irradiation at \(T_{{\rm S}}=300\,\text{K}\).

LEED patterns

The clean \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) exhibits a (\(2 \times 2\)) LEED pattern with some spot splittings (cf., Fig. S.4(a) in the supplementary information), which we ascribe to the presence of structural anti-phase domains on the surface (considering the \(44\%\)-Pd surface segregation and three rotationally symmetric domains). For comparison, the clean \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) exhibits a (\(1 \times 1\)) LEED pattern, indicating random distribution of \(23\%\)-Pt atoms on the 1st layer.

Oxygen uptake curves

In Fig. 1, we show the O uptake curves for \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) produced by integrating a series of O-1s XPS spectra measured after 2.3 eV HOMB irradiation at \(T_{\rm S} = 300\) and \(500\,\text{K}\) (also cf., Fig. S.6 in supplementary information). We determined the oxygen coverage by comparing Cu(100)-\((2\sqrt{2} \times \sqrt{2})\)-O and Cu(110)-(2 \(\times\) 1)-O27 and also cross-checked by using the intensity ratios of O-1s/Pd-3d and O-1s/Pt-4f. For comparison, we also show the O uptake curves taken after thermal \({\text {O}}_{2}\) exposure, and the O uptake curves for Cu(111) and \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\) taken after 2.3 eV HOMB irradiation. Comparing the results of HOMB irradiation and thermal \({\text {O}}_{2}\) exposure, we confirm the need for higher translational energies to realize effective oxide formation. However, following procedures previously reported for determining Au concentrations on the oxidized \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\)17, we were not able to consistently obtain the Pd and Pt concentrations. This may be due to the presence of Cu oxide islands on the corresponding surfaces, whereas only homogeneous adsorbed-O forms on \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\)17,28.

Cu-\(L_{3}M_{4,5}M_{4,5}\) and Cu-2p spectra

In Fig. 2, we show the Cu-\(L_{3}M_{4,5}M_{4,5}\) AES (Auger electron spectroscopy) and Cu-2p XPS spectra of the corresponding Cu oxides formed on \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\). For reference, note the \(\mbox{$\text{Cu}_{2}\text{O}$}\) features appearing at ca. 917 eV kinetic energy (cf., bulk \(\mbox{$\text{Cu}_{2}\text{O}$}\) peak, Fig. 2a). From Fig. 2a, we find prominent \(\mbox{$\text{Cu}_{2}\text{O}$}\) formation only for \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) oxidized at \(T_{\rm S} = 500\,\text{K}\). On the other hand, in Fig. 2b, we find characteristics of CuO (cf., shoulder at ca. 936 eV and satellite peaks between ca. 939 eV and 946 eV29) for both \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) oxidized at \(T_{\rm S} = 300\,\text{K}\). We also see that these CuO features persist at \(T_{\rm S} = 500\,\text{K}\) for \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), but disappear for \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\). On \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), AES spectra analyses indicate CuO formation only, both at \(T_{\rm S} = 300\,\text{K}\) and \(500\,\text{K}\). On \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\), AES spectra analyses indicate CuO formation at \(T_{\rm S} = 300\,\text{K}\) and \(\mbox{$\text{Cu}_{2}\text{O}$}\) formation at \(T_{\rm S} = 500\,\text{K}\). (Pd-3d and Pt-4f XPS spectra analyses also indicate that only Cu oxidation occurs on both \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), cf., Section S.4 in supplementary information). In Table 2, we show a summary of oxides formed on the Cu and Cu-based alloy surfaces studied.

Figure 2
figure2

(a) Cu-\(L_{3}M_{4,5}M_{4,5}\) AES and (b) Cu-2p XPS spectra of \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), taken after 2.3 eV HOMB irradiation at \(T_{\rm S}= 300\,\text{K}\) and \(500\,\text{K}\), at a photoelectron detection angle \(\theta =70^{\circ }\) from the surface normal. For \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\), corresponding AES spectra for O-coverages of 0 ML (clean), 0.76 ML at \(300\,\text{K}\), and 1.8 ML at \(500\,\text{K}\), are shown. Similarly, for \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), corresponding AES spectra for O-coverages of 0 ML (clean), 0.49 ML at \(300\,\text{K}\), 0.53 ML at \(500\,\text{K}\), are shown. Bulk \(\mbox{$\text{Cu}_{2}\text{O}$}\) spectra also shown in (a) for reference, with dashed vertical line indicating characteristic \(\mbox{$\text{Cu}_{2}\text{O}$}\) peak position.

In Fig. 3, we show the effect of annealing on the corresponding Cu-\(L_{3}M_{4,5}M_{4,5}\) AES and Cu-2p spectra of \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) oxidized at \(T_{\rm S} = 300\,\text{K}\). We see enhanced \(\mbox{$\text{Cu}_{2}\text{O}$}\) features from the Cu-\(L_{3}M_{4,5}M_{4,5}\) spectra, and diminished CuO features from the Cu-2p. (The fitted O-1s XPS spectra also show enhanced \(\mbox{$\text{Cu}_{2}\text{O}$}\) features and diminished CuO features, cf., Fig. S.9 in supplementary information). This suggests the reduction of CuO into \(\mbox{$\text{Cu}_{2}\text{O}$}\) at high \(T_{\rm S}\). However, a lingering CuO peak remains on \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), even after the annealing at \(T_{\rm S} = 600\,\text{K}\), which we no longer see on \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\). We found that annealing at \(T_{\rm S} = 650\,\text{K}\) completes the reduction from CuO to \(\mbox{$\text{Cu}_{2}\text{O}$}\) on the \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\). Therefore, we conclude more stable CuO formation on \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) as compared to \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\). Similar effect can be observed for Cu(410) oxidation at lower \(T_{\rm S}\). After 2.2 eV HOMB irradiation, CuO forms on Cu(410) at \(T_{\rm S} = 100\,\text{K}\)30. Annealing at \(T_{\rm S} = 273\,\text{K}\) reduces CuO into \(\mbox{$\text{Cu}_{2}\text{O}$}\). Alloying increases the corresponding transition temperature from CuO to \(\mbox{$\text{Cu}_{2}\text{O}$}\). CuO persists even at \(T_{\rm S} = 300\,\text{K}\).

Figure 3
figure3

(a) Cu-\(L_{3}M_{4,5}M_{4,5}\) AES and (b) Cu-2p spectra of \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), taken after 2.3 eV HOMB irradiation at \(T_{\rm S} = 300\,\text {K}\), and after annealing at \(600\,\text{K}\) and \(650\,\text{K}\), at a photoelectron detection angle of \(70^{\circ }\) from the surface normal. \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) has 0.50 ML CuO-coverage and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) has ca. 0.50 ML CuO-coverage, before annealing. Characteristic \(\mbox{$\text{Cu}_{2}\text{O}$}\) peak position indicated as dashed vertical line in (a), for reference.

Discussions

\({\text {O}}_{2}\) Dissociation, CuO and \(\mbox{$\text{Cu}_{2}\text{O}$}\) formation on Cu and Cu alloys in the early stage of oxidation

The position of the surface d-band center relative to the Fermi level31,32 has often been used to qualitatively discuss reactivity of dissociative adsorption. The deeper the surface d-band center, the less reactive the surface. From XPS measurements, in order of increasing depth with respect to the vacuum level (viz., in order of decreasing reactivity), we have \(\mbox{$\text{Cu}_{3}\text{Pd}$}\) (\(-2.7~\text {eV}\)), \(\mbox{$\text{Cu}_{3}\text{Pt}$}\) (\(-2.9~\text {eV}\)), Cu (\(-3.1~\text {eV}\)), and finally \(\mbox{$\text{Cu}_{3}\text{Au}$}\) (\(-3.7~\text {eV}\)) (also cf., Fig. S.10 in supplementary information, and Ref.33). However, the uptake curves in Fig. 1 show different tendency of reactivity. We see O-coverages lower than what we would expect from the d-band for both \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\).

Figure 4
figure4

Calculated charge distribution difference for 0.5 ML-O adsorbed on \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), for layer concentrations (a) (\(x_1, x_2, x_{3-7}\)) = (0, 0, 25) and (b) (\(x_1, x_2, x_{3-7}\)) = (0, 100, 25). We obtained (a) and (b) by subtracting the charge distributions of bulk slab and O atoms from that of O-adsorbed slab. We can see a relatively higher electron gain around Pt in the second layer (b) than that around Cu (a). The electronegative O atoms are relatively far from the Pt subsurface layer. Thus, we associate the charge gain of Pt with the charge loss of surface Cu atoms.

Now, let us consider what the uptake curves taken at \(T_{\rm S} = 300\,\text{K}\) and \(500\,\text{K}\) tell us (cf., Fig. 1). Here, we discuss the early stage of oxidation where only the dissociative adsorption of \({\text {O}}_2\) occurs on Cu(111). Note that on Cu(111) and \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\), previous HOMB irradiation studies at 2.3 eV34 report that direct \({\text {O}}_{2}\) dissociative adsorption dominates at the early stage of oxidation, and Cu oxide (\(\mbox{$\text{Cu}_{2}\text{O}$}\)) subsequently forms above \(\sim 10^{17} \text {molecules} \, {\text {cm}}^{-2}\). In comparison, \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) show Cu oxide (CuO) formation above ca. 8–\(60 \times 10^{15}~\text {molecules}\,{\text {cm}}^{-2}\) as shown in Fig. S.8 in supplementary information. In other words, Cu oxide forms earlier on \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) than on Cu(111). Taking this into account, we can interpret the reactivity below \(\sim 10^{17} \, \text {molecules}\,{\text {cm}}^{-2}\) as follows. The inactive CuO formed at an early stage of oxidation makes \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) more robust to further oxidation of bulk Cu, while further bulk Cu is lost through \(\mbox{$\text{Cu}_{2}\text{O}$}\) formation on Cu(111). The earlier CuO formation at ca. \(8\times 10^{15}~\text {molecules}\,{\text {cm}}^{-2}\) further indicates a more robust \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) than \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\). So, based on the corresponding O uptake curves, we have Cu(111), \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\), \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\)20, and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), in order of decreasing susceptibility to Cu loss (i.e., \(\mbox{$\text{Cu}_{2}\text{O}$}\) formation).

The protective layer

The difference in efficiency of oxide formation between Cu and Cu alloy surfaces can be ascribed to the resulting protective layer of Pd (Pt) layer formed at the interface between the bulk and surface Cu oxide (cf., e.g., \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\)20). As mentioned in S.4 in supplementary information, only Cu oxidation occurs on \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\). Previous studies also show that only Cu oxide forms on Cu-Pt alloy28 and Cu deposited on Pt(111)35. The selective Cu oxidation results in Pd- and Pt-rich interface layers. We see a steep O uptake curve, coming from \(\mbox{$\text{Cu}_{2}\text{O}$}\) formation34, for Cu(111) at \(T_{\rm S} = 300\,\text{K}\) (cf., Fig. 1 (left-panel), region above ca. \(10^{17}~\text {molecules}\,{\text {cm}}^{-2}\)). On Cu(111), \(\mbox{$\text{Cu}_{2}\text{O}$}\) formation occurs due to collision induced absorption (CIA)36. On \(\mbox{$\text{Cu}_{3}\text{Au}$}\), the inert Au interface layer prevents O atoms from diffusing further into the bulk by CIA process. As a result, Cu oxide hardly forms at \(300\,\text{K}\)17,18,19,20. Here, we find that the interface Pd- and Pt- layers also prevent O diffusion further into the bulk to realize the CIA process. It also prevents Cu diffusion from the bulk to the surface CuO.

Mobility/diffusion

At \(T_{\rm S} = 500\,\text{K}\), we expect that the increased temperature would enhance atom diffusion, allowing for Cu oxide formation further into the bulk. On \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\), \(\mbox{$\text{Cu}_{2}\text{O}$}\) forms at \(500\,\text{K}\)19. \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) also has a steeper O uptake curve at \(500\,\text{K}\) than at \(300\,\text{K}\) (cf., above \(10^{17}~\text {molecules}\,{\text {cm}}^{-2}\) in Fig. 1). However, \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) remains relatively inactive, even at \(500\,\text{K}\). This is because of the presence of less mobile Pt at the interface. In Cu, Pd has an activation/diffusion barriers of ca. 0.88 eV37, Au has 1.1 eV38, and Pt has 1.51 eV39. This is consistent with the reactivity observed above ca. \(10^{17}~\text {molecules}\,{\text {cm}}^{-2}\) at \(500\,\text{K}\), i.e., the region where mainly CuO forms. The interface Pt suppresses Cu oxide growth into the bulk even at \(723\,\text{K}\)28. Cu diffusion through the Pd (Pt) interface would also be unlikely considering the high Cu diffusion barriers (ca. 2.5 eV in Pd, 2.75 eV in Pt, and 2.0 eV in Au)40. As expected, these differences in diffusion barriers affect the kind of Cu oxides formed on the Cu alloy surfaces.

At \(100\,\text{K}\), metastable CuO forms on Cu(410)30. The low temperature suppresses O diffusion from the surface to the bulk (and also Cu diffusion from the bulk to the surface), while collision induced absorption (CIA) allows for a continuous supply of O atoms to the surface. We can expect similar effects on the Cu-Pd and Cu-Pt alloy surfaces.

At \(300\,\text{K}\), the presence of Pd or Pt at the corresponding interfaces suppresses the diffusion of O and Cu, while CIA allows for a continuous supply of O atoms on the surface. Similarly, on \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\) at 300 K, O atoms adsorbed on surface cannot diffuse into bulk due to the interface Au17,18. As a result, no Cu oxides form on \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\) at \(300\,\text{K}\).

At \(500\,\text{K}\), enhanced diffusion allows oxidation further into the bulk of \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\), and we find growth of the thermodynamically more stable \(\mbox{$\text{Cu}_{2}\text{O}$}\). On the other hand, CuO persists on \(\mbox{$\text{Cu}_{3}\text{Pt}$}\) at \(500\,\text{K}\) because of the higher Pt diffusion barrier. As shown in Fig. 3, \(\mbox{$\text{Cu}_{2}\text{O}$}\) forms after annealing (after the HOMB irradiation at \(300\,\text{K}\)). Higher \(T_{\rm S}\) enables O diffusion further into the bulk and further Cu supply to the surface CuO. This occurs at \(T_{\rm S} = 650\,\text{K}\) on \(\mbox{$\text{Cu}_{3}\text{Pt}$}\), and \(T_{\rm S} = 600\,\text{K}\) on \(\mbox{$\text{Cu}_{3}\text{Pd}$}\). The less diffusive Pt present at the interface prevents further \(\mbox{$\text{Cu}_{2}\text{O}$}\) formation as compared to Pd. At \(T_{\rm S} = 723\,\text{K}\), \(\mbox{$\text{Cu}_{2}\text{O}$}\) islands grow on Cu-Pt alloy. However, the oxide does not grow deeper into bulk even at high temperature because of less diffusivity of Pt28.

Charge distribution

In Fig. 4, for 0.5 ML-O adsorbed on \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), we see that in the early stage of oxidation, Cu segregates to the surface and oxidized to form CuO. The charge distribution also shows that the more electronegative Pt competes with O for the Cu electrons. This, together with the mobility arguments presented earlier, accounts for why \(\mbox{$\text{Cu}_{2}\text{O}$}\) easily forms on Cu(111) and not on Cu-alloys. Note that this could also consistently explain previous reports for that electron transfer from the metal substrate (Au, Ni, Mo, Cu, V) to the metal oxide resulted in \({\text {Mo}}^{6+}\) reduction to \({\text {Mo}}^{4+}\) and/or \({\text {Mo}}^{5+}\) near the interface41. Conversely, in our case, electron transfer results in \({\text {Cu}}^{+}\) oxidation to \({\text {Cu}}^{2+}\) as shown in Fig. S.11 in supplementary information. Additionally, the presence of single Pt atoms at the Cu metal-oxide interface weakens Cu-O bond24, consistent with the preferential formation of CuO (Cu–O: 0.188 and 0.196 nm) than \(\mbox{$\text{Cu}_{2}\text{O}$}\) (Cu–O: 0.185 nm) on Pt interface42.

Summary and conclusions

In conclusion, we studied the oxidation of \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), using 2.3 eV hyperthermal oxygen molecular beam (HOMB) source, and synchrotron-radiation X-ray photoemission spectroscopy (SR-XPS) for surface characterization. We determined the Pd- and Pt- layer profiles of \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) from the corresponding Pd-3d and Pt-4f spectra. At \(300\,\text{K}\), we found mainly (only) the presence of CuO on both \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\). At \(500\,\text{K}\), we found \(\mbox{$\text{Cu}_{2}\text{O}$}\) on \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\), and only CuO on \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\). For comparison, at \(300\,\text{K}\), \(\mbox{$\text{Cu}_{2}\text{O}$}\) forms on Cu(111), and no oxides form on \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\). The early formation of Cu oxides on \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) results in hindered reactivity (susceptibility) to further oxidation into the bulk (resulting in the formation of \(\mbox{$\text{Cu}_{2}\text{O}$}\)) as compared to Cu. Cu oxide formation depends on the Cu alloy component and temperature. We ascribe this difference/preference of Cu oxide species to the mobility of the interfacial Cu/Pd/Pt, and the charge transfer between the initial (pre-oxidized) surface (Cu) and subsurface (Cu, Pd, or Pt) species. The presence of \(\mbox{$\text{Cu}_{2}\text{O}$}\) and metastable CuO at the Pd and Pt interface could play an important role in catalytic reactions. We showed that we can control the oxidation state of the surface metal oxide by alloying, which in turn would allow us to control the catalytic reactivity of the oxides.

Method

Experiments

We performed all experiments with the surface reaction analysis apparatus (SUREAC 2000) built at BL23SU in SPring-817,18,19,20,43,44, with the base pressure of \(<2\times 10^{-8}\) Pa. Briefly, our surface reaction analysis chamber has an electron energy analyzer (OMICRON EA125-5MCD) and a Mg/Al-K\(\alpha\) twin-anode x-ray source (OMICRON DAR400). We also have a quadrupole mass spectrometer, for monitoring the molecular beam, located opposite to the HOMB (hyperthermal oxygen molecular beam) source. We purchased \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) samples from SPL and MaTeck, respectively. We cleaned the \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) samples by repeated sputtering with Ar\(^{+}\) and annealing for 20 min (\(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\): 1.0 keV, \(723\,\text{K}\), \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\): 0.5 keV, \(773\,\text{K}\)), until the impurities were no longer detectable by SR-XPS (synchrotron-radiation X-ray photoemission spectroscopy). We generated a HOMB by the free expansion of mixed gas of \({\text {O}}_2\), He and/or Ar from a nozzle with a small orifice. The translational energy of HOMB, \(E_{SG}\) can be expressed as:

$$\begin{aligned} E_{SG}= & {} S^2\cdot R \cdot T_0 \cdot \frac{m_{SG}}{m_{s}}, \end{aligned}$$
(1)

where S (= 1.557) is a factor that is expressed by using the Mach number, R (= \(8.617 \times 10^{-5} \, {\text {eV}} \cdot \, {\text {K}}^{-1}\)) is gas constant, \(T_0\) is the nozzle temperature, \(m_{SG}\) is the mass of the reactant gas (\({\text {O}}_2\)) and \(m_s\) is the reduced mass of the mixed gas (He and/or Ar). By changing the gas mixing ratios at the nozzle and nozzle temperature \(T_0\), we can control the kinetic energy of the incident HOMB, \(E_{SG}\). The detailed explanation for HOMB generation is shown in Refs.45,46. We set the nozzle temperature to \(1400\,\text{K}\), obtaining a 2.3 eV HOMB. We irradiate the sample surface with a HOMB (along the surface normal) at \(T_{\rm S} = 300\) and \(500\,\text{K}\). The pressure during the HOMB irradiation is about \(1 \times 10^{-5}\) Pa. The oxidation by the scattered \({\text {O}}_2\) which causes the pressure increase is not important because the percentage of \({\text {O}}_2\) in the gas is only 1% for the 2.3 eV HOMB, and the oxidation by thermal \({\text {O}}_2\) is less reactive than by HOMB as shown in Fig. 1. After each irradiation, we then obtained the corresponding high-resolution SR-XPS spectra at \(T_{\rm S} = 300\,\text{K}\), at detection angles of \(\theta\) = 0\(^\circ\) and 70\(^\circ\) from the surface normal, using a monochromatic SR beam with a photon energy of 1100 eV. We performed the HOMB irradiations at \(T_{\rm S} = 300\) and \(500\,\text{K}\).

Theoretical calculations

We performed density functional theory (DFT)-based total energy calculations as implemented in the Vienna Ab Initio Simulation Package47,48, within the generalized gradient approximation (GGA)49, using plane waves (600 eV cutoff energy) and the projector augmented wave method50. To model \(\mbox{$\text{Cu}_{3}\text{Pd}(111)$}\) and \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\), we used slabs. Each slab has seven fcc(111) layers, separated by ca. 1.50 nm (\(\mbox{$\text{Cu}_{3}\text{Pd}$}\)) and 0.7 nm (\(\mbox{$\text{Cu}_{3}\text{Pt}$}\)) vacuum, repeated in a supercell geometry (shown in Fig. S.2). We also applied dipole corrections. Each layer in the slab contains 4 atoms, so that the composition (of Pd or Pt) can be varied in steps of \(25\%\). Convergence tests for k-point meshes and cutoff energy values were performed (cf., Table. S.1). We have chosen sufficiently large supercells so as to avoid interaction between adsorbates in the neighboring supercells. We performed Brillouin zone integration using the Monkhorst-Pack special k-point sampling technique51, with \(8 \times 8 \times 1\) (\(\mbox{$\text{Cu}_{3}\text{Pd}$}\)) and \(6 \times 6 \times 1\) (\(\mbox{$\text{Cu}_{3}\text{Pt}$}\)) sampling meshes. We kept the bottom five (four) layers of \(\mbox{$\text{Cu}_{3}\text{Pd}$}\) (\(\mbox{$\text{Cu}_{3}\text{Pt}$}\)), which comprise the unsegregated layers having bulk stoichiometry, viz., \(25\%\)-Pd (or Pt) \(75\%\)-Cu in the \({\text {L1}}_{2}\) ordered structure, fixed to the optimized theoretical bulk lattice constant 0.3723 nm (0.3730 nm). We allowed the top three layers, which constitute the segregated layers, viz., the first surface layer, the second-, and third-(sub-surface) layers, to relax. In addition to calculations for the slab, we also carried out similar calculations for bulk Cu, bulk Pd, bulk Pt, bulk \(\mbox{$\text{Cu}_{3}\text{Pd}$}\) and bulk \(\mbox{$\text{Cu}_{3}\text{Pt}$}\).

Data availavility

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Additional data related to this paper may be requested from the authors.

References

  1. 1.

    Rao, C. N. R. Transition metal oxides. Annu. Rev. Phys. Chem. 40, 291–326 (1989).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Chavali, M. S. & Nikolova, M. P. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1, 607 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    Indra, A. et al. Active mixed-valent \({\text{MnO}}_{x}\) water oxidation catalysts through partial oxidation (corrosion) of nanostructured MnO particles. Angew. Chem. Int. Ed. 52, 13206–13210 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Park, J. C., Kim, J., Kwon, H. & Song, H. Gram-scale synthesis of \(\mbox{$\text{Cu}_{2}\text{O}$}\) nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 21, 803–807 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Wong, T. K. S., Zhuk, S., Masudy-Panah, S. & Dalapati, G. K. Current status and future prospects of copper oxide heterojunction solar cells. Materials 9, 271 (2016).

    ADS  CAS  PubMed Central  Article  PubMed  Google Scholar 

  6. 6.

    Zedan, A. F., Mohamed, A. T., El-Shall, M. S., AlQaradawi, S. Y. & AlJaber, A. S. Tailoring the reducibility and catalytic activity of CuO nanoparticles for low temperature CO oxidation. RSC Adv. 8, 19499–19511 (2018).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Kishi, H. et al. A theoretical study of the reactivity of \(\mbox{$\text{Cu}_{2}\text{O}(111)$}\) surfaces: the case of NO dissociation. J. Phys. Condens. Matter 24, 262001 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  8. 8.

    Yu, X., Zhang, X., Wang, H., Wang, Z. & Feng, G. High-coverage \({\text{H}}_{2}\) adsorption on the reconstructed \(\mbox{$\text{Cu}_{2}\text{O}(111)$}\) surface. J. Phys. Chem. C 121, 22081–22091 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Yu, X., Zhang, X., Tian, X., Wang, S. & Feng, G. Density functional theory calculations on oxygen adsorption on the \(\mbox{$\text{Cu}_{2}\text{O}$}\) surfaces. Appl. Surf. Sci. 324, 53–60 (2015).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Yu, X., Zhang, X., Wang, S. & Feng, G. A first principle study on the magnetic properties of \(\mbox{$\text{Cu}_{2}\text{O}$}\) surfaces. Curr. Appl. Phys. 15, 1303–1311 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Yu, X., Zhao, C., Zhang, T. & Liu, Z. Molecular and dissociative \({\text{O}}_{2}\) adsorption on the \(\mbox{$\text{Cu}_{2}\text{O}(111)$}\) surface. Phys. Chem. Chem. Phys. 20, 20352–20362 (2018).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Yu, X., Zhang, X., Wang, S. & Feng, G. A computational study on water adsorption on \(\mbox{$\text{Cu}_{2}\text{O}(111)$}\) surfaces: The effects of coverage and oxygen defect. Appl. Surf. Sci. 343, 33–40 (2015).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Yu, X. & Zhang, X. High coverage water adsorption on CuO(011) surface. Phys. Chem. Chem. Phys. 19, 18652–18659 (2017).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Montemore, M. M., van Spronsen, M. A., Madix, R. J. & Friend, C. M. \({\text{O}}_{2}\) activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 118, 2816–2862 (2017).

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5, 1–8 (2014).

    Google Scholar 

  16. 16.

    Liu, K. et al. Electronic effects determine the selectivity of planar Au–Cu bimetallic thin films for electrochemical \({\text{CO}}_{2}\) reduction. ACS Appl. Mater. Interfaces 11, 16546–16555 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Tsuda, Y. et al. Initial stages of \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\) oxidation: oxygen induced Cu segregation and the protective Au layer profile. Phys. Chem. Chem. Phys. 16, 3815–3822 (2014).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Oka, K. et al. The effects of alloying and segregation for the reactivity and diffusion of oxygen on \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\). Phys. Chem. Chem. Phys. 16, 19702–19711 (2014).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Tsuda, Y., Yoshigoe, A., Teraoka, Y. & Okada, M. Surface temperature dependence of oxidation of \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\) by an energetic oxygen molecule. Mater. Res. Express 3, 035014 (2016).

    ADS  Article  CAS  Google Scholar 

  20. 20.

    Okada, M. et al. Experimental and theoretical studies on oxidation of Cu–Au alloy surfaces: effect of bulk Au concentration. Sci. Rep. 6, 31101 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Jiang, X., Koizumi, N., Guo, X. & Song, C. Bimetallic Pd–Cu catalysts for selective \({\text{CO}}_{2}\) hydrogenation to methanol. Appl. Catal. B Environ. 170, 173–185 (2015).

    Article  CAS  Google Scholar 

  22. 22.

    Bai, S. et al. Highly active and selective hydrogenation of \({\text{CO}}_{2}\) to ethanol by ordered Pd-Cu nanoparticles. J. Am. Chem. Soc. 139, 6827–6830 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Li, C. et al. Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale 10, 4670–4674 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Schilling, A. C. et al. Accelerated Cu2O reduction by single pt atoms at the metal-oxide interface. ACS Catal. 10, 4215–4226 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    Shen, Y. G., O’Connor, D. J., Wandelt, K. & MacDonald, R. J. Studies of surface composition and structure of \(\mbox{$\text{Cu}_{3}\text{Pt}(111)$}\) by low energy alkali ion scattering. Surf. Sci. 328, 21–31 (1995).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Gauthier, Y. et al. An unusual composition profile: a LEED-TBIM study of \(\mbox{$\text{Pt}_{25}\text{Cu}_{75}$}\)(111). Surf. Sci. 527, 71–79 (2003).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Okada, M. et al. Actively controlled oxidation of Cu\(\{100\}\) with hyperthermal \({\text{O}}_2\) molecular beam. J. Chem. Phys. 119, 6994–6997 (2003).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Luo, L. et al. Comparative study of the alloying effect on the initial oxidation of Cu–Au(100) and Cu–Pt(100). Appl. Phys. Lett. 104, 121601 (2014).

    ADS  Article  CAS  Google Scholar 

  29. 29.

    Ghijsen, J. et al. Electronic structure of \(\mbox{$\text{Cu}_{2}\text{O}$}\) and CuO. Phys. Rev. B 38, 11322–11330 (1988).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Okada, M. et al. X-ray photoemission study of the temperature-dependent CuO formation on Cu(410) using an energetic \({\text{O}}_{2}\) molecular beam. Phys. Rev. B 75, 233413 (2007).

    ADS  Article  CAS  Google Scholar 

  31. 31.

    Goto, K. et al. (eds) Exercises in Quantum Mechanics-Detailed Explanation, Theory and Application 376–377 (Kyoritsu Publishing, Bunkyo-ku, 1982).

    Google Scholar 

  32. 32.

    Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    ADS  CAS  Article  Google Scholar 

  33. 33.

    Ruban, A., Hammer, B., Stoltze, P., Skriver, H. L. & Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A Chem. 115, 421–429 (1997).

    CAS  Article  Google Scholar 

  34. 34.

    Moritani, K. et al. Photoemission study of the translational energy induced oxidation processes on Cu(111). J. Vac. Sci. Technol. A Vacuum Surfaces Films 22, 1625–1630 (2004).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Gloystein, A. & Nilius, N. Copper oxidation on Pt(111)- More than a surface oxide?. J. Phys. Chem. C 123, 26939–26946 (2019).

    CAS  Article  Google Scholar 

  36. 36.

    Okada, M. et al. Actively controlled oxidation of Cu\(\{100\}\) with hyperthermal \({\text{O}}_{2}\) molecular beam. J. Chem. Phys. 119, 6994–6997 (2003).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Grant, M. L., Swartzentruber, B. S., Bartelt, N. C. & Hannon, J. B. Diffusion kinetics in the Pd/Cu(001) surface alloy. Phys. Rev. Lett. 86, 4588–4591 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  38. 38.

    Aleshin, A. N., Bokstein, B. S., Egorov, V. K. & Kurkin, P. V. Grain boundary and bulk diffusion in Au-Cu thin films. In Defect and Diffus. Forum, vol. 95, 457–462 (Trans Tech Publ, 1993).

  39. 39.

    Aleshin, A. N., Egorov, V. K., Bokstein, B. S. & Kurkin, P. V. Study of Pt diffusion in thin copper films under two kinetic regimes. J. Appl. Phys. 77, 6239–6243 (1995).

    ADS  CAS  Article  Google Scholar 

  40. 40.

    Wu, H., Mayeshiba, T. & Morgan, D. High-throughput ab-initio dilute solute diffusion database. Sci. Data 3, 1–11 (2016).

    Article  Google Scholar 

  41. 41.

    Greiner, M. T., Chai, L., Helander, M. G., Tang, W.-M. & Lu, Z.-H. Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of \({\text{MO}}_{3}\). Adv. Funct. Mater. 23, 215–226 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Ching, W. Y., Xu, Y.-N. & Wong, K. W. Ground-state and optical properties of \({\text{Cu}}_{2}\)O and CuO crystals. Phys. Rev. B 40, 7684–7695 (1989).

    ADS  CAS  Article  Google Scholar 

  43. 43.

    Okada, M. et al. Protective layer formation during oxidation of \(\mbox{$\text{Cu}_{3}\text{Au}(111)$}\) using hyperthermal \({\text{O}}_{2}\) molecular beam. Appl. Phys. Lett. 89, 201912 (2006).

    ADS  Article  CAS  Google Scholar 

  44. 44.

    Okada, M. et al. Comparative study of oxidation on Cu and \(\mbox{$\text{Cu}_{3}\text{Au}$}\) surfaces with a hyperthermal \({\text{O}}_{2}\) molecular beam. Surf. Sci. 600, 4228–4232 (2006).

    ADS  CAS  Article  Google Scholar 

  45. 45.

    Okada, M. & Teraoka, Y. Molecular-Beam Controlled Chemical Reactions on Si Surfaces. In Encyclopedia of Semiconductor Nanotechnology Vol. 4 (ed. Umar, A.) 61–111 (American Scientific Publishers, Los Angeles, 2017).

    Google Scholar 

  46. 46.

    Ogawa, S. et al. Gas barrier properties of chemical vapor-deposited graphene to oxygen imparted with sub-electronvolt kinetic energy. J. Phys. Chem. Lett. 11, 9159–9164 (2020).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  48. 48.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS  CAS  Article  Google Scholar 

  49. 49.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    ADS  CAS  Google Scholar 

  50. 50.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    ADS  Article  Google Scholar 

  51. 51.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst 44, 1272–1276 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge MEXT for a Grant-in-Aid for Scientific Research (JP15KT0062, JP26248006, JP20H02638, JP17H01057, JP17K06818, JP20K21171). This work was also financially supported by The Sumitomo Foundation and The Murata Science Foundation. The synchrotron radiation experiments were performed at BL23SU in SPring-8, with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Atomic Energy Agency (JAEA) (Proposal Nos. 2019B3801, 2019A3831, 2019A3801, 2018B3831, 2018B3801, 2018A3831, 2018A3801, 2017B3801, 2017A3801). This work was performed under the Shared Use Program of JAEA Facilities (Proposal Nos. 2019A-E13, 2018B-E12, 2018A-E17) with the approval of Nanotechnology Platform project supported by the Ministry of Education, Culture, Sports, Science and Technology. We are grateful for the assistance given by Naoyuki Shimode, Shizuka Nishi, Hikaru Yoshida and all the staffs at BL23SU in SPring-8. Structures and related figures appearing in the manuscript and in the Supplmentary information were drawn using the VESTA package52.

Author information

Affiliations

Authors

Contributions

M.O. conceived and directed the research. Y.T., T.M., A.Y. and M.O. performed all the experiments. Y.T. and M.O. carried out the data analyses. Y.T., J.S.G. and W.A.D. performed the theoretical calculations. All authors contributed to the manuscript preparation.

Corresponding authors

Correspondence to Yasutaka Tsuda, Wilson Agerico Diño or Michio Okada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsuda, Y., Gueriba, J.S., Makino, T. et al. Interface atom mobility and charge transfer effects on CuO and Cu2O formation on Cu3Pd(111) and Cu3Pt(111). Sci Rep 11, 3906 (2021). https://doi.org/10.1038/s41598-021-82180-w

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing