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Sharing genetic variants 
with the NGS pipeline is essential 
for effective genomic data sharing 
and reproducibility in health 
information exchange
Jeong Hoon Lee1,2, Solbi Kweon  2 & Yu Rang Park  2*

Genetic variants causing underlying pharmacogenetic and disease phenotypes have been used as 
the basis for clinical decision-making. However, due to the lack of standards for next-generation 
sequencing (NGS) pipelines, reproducing genetic variants among institutions is still difficult. The aim 
of this study is to show how many important variants for clinical decisions can be individually detected 
using different pipelines. Genetic variants were derived from 105 breast cancer patient target DNA 
sequences via three different variant-calling pipelines. HaplotypeCaller, Mutect2 tumor-only mode 
in the Genome Analysis ToolKit (GATK), and VarScan were used in variant calling from the sequence 
read data processed by the same NGS preprocessing tools using Variant Effect Predictor. GATK 
HaplotypeCaller, VarScan, and MuTect2 found 25,130, 16,972, and 4232 variants, comprising 1491, 
1400, and 321 annotated variants with ClinVar significance, respectively. The average number of 
ClinVar significant variants in the patients was 769.43, 16.50% of the variants were detected by only 
one variant caller. Despite variants with significant impact on clinical decision-making, the detected 
variants are different for each algorithm. To utilize genetic variants in the clinical field, a strict 
standard for NGS pipelines is essential.

Genome or exome sequencing using next-generation sequencing (NGS) technologies has now entered medical 
practice1. Genetic variant databases for clinical applications were built on numerous studies of human genetic 
variants affecting response to medications associated with diseases and phenotypes2–4. As guidelines for the 
interpretation of sequence variants have been established, clinical laboratories now perform genetic testing for 
therapeutic decision-making and disease prediction. Nonetheless, the construction of uniform standards for NGS 
pipelines is difficult because of various genetic testing techniques, different experimental goals, and numerous 
algorithms5. As a result, clinical laboratories and medical institutions have generated patients’ genetic variants 
through different sequencing protocols and NGS pipelines, leading to genetic variants that are not interoperable.

The current gold standard for variant-calling pipelines is the Genome Analysis Toolkit (GATK) Best Practices 
Workflow pipeline using HaplotypeCaller, which is considered to have the highest accuracy for single nucleotide 
polymorphisms (SNPs) and small insertions and deletions6,7. However, the development of numerous NGS 
sequencing technologies, such as Illumina and BGI, has caused data-specific effects, making it difficult to build 
a uniform pipeline8,9. Data-specific effects cause false positive detection due to unexpected systematic error 
patterns in the HaplotypeCaller algorithm using GATK Best Practices10. Therefore, it is difficult to build NGS 
pipeline guidelines and make genetic variants interoperable in clinical practice.

The importance of reliable genetic data communication between hospitals and clinical genomic data sharing 
to improving genetic health care is widely recognized, and the practice has been encouraged by both professional 
societies and funding agencies11. Before sharing genetic variant data derived from raw sequencing data, the 
validity of the variant-calling pipeline result must be verifiable. However, different NGS pipelines among institu-
tions produce different variant calling results despite the same raw sequencing data, causing serious problems in 
clinical decision-making and genetic variant sharing. Hence, diagnostic genetic tests used as a basis for clinical 
decision-making should be reproducible or replicable12.
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This study suggests that the pipeline throughout the variant-calling process, including raw sequencing data, 
should be shared for the reproducibility of the genetic variants as a laboratory test. Of the genetic variants called 
by different NGS pipelines, we quantified the important variants missed, which consequently affected clinical 
decision-making.

Results
Raw sequencing data were preprocessed using the GATK Best Practices-based NGS pipeline. Variant calling was 
performed using three different variant callers, GATK HC, VarScan, and MuTect2 tumor-only mode. Figure 1 
summarizes the NGS pipeline workflow for the preprocessing of raw sequencing data. The workflow includes 
information about the purpose of the process, name of the program, version, options, and additional input 
needed for each process. The command line for all data processing is available in the supplementary data.

The consequence of the called variants.  The counts of variants called by three variant callers, HC, Var-
Scan, and MuTect2 tumor-only mode, for aggregation of all patients are shown in Table 1. The number of called 
variants was highest with GATK HC, followed by VarScan and MuTect2. The average number of variants per 
person was 4152.362, 2925.257, and 159.219 in GATK HC, VarScan, and MuTect2, respectively. The truncation 
mutation, called the loss of function, is splice_acceptor_variant, splice_donor_variant, splice_region_variant, 
and stop_gained. The numbers of truncation mutations in GATK HC, VarScan, and MuTect2 variants were 5792 
(1.33%), 4676 (1.52%), and 287 (1.72%), respectively. Based on the GATK HC, the odds ratios of the truncation 
mutations for all VarScan and MuTect2 variants were 1.15 and 1.29, respectively.

The deleteriousness of the called variants.  To infer the importance of genetic variants, we annotated 
the deleterious values of the SIFT, PolyPhen, and CADD algorithms that predict the intolerance of the variant 
by the conservation between species. For variants called using GATK HC, MuTect2 and VarScan, 2224, 1960, 
and 40 variants were annotated with SIFT, 2345, 2078, and 41 with PolyPhen, and 435,999, 307,152, and 16,719 
with CADD, respectively (Fig. 2). Among the variants annotated using SIFT, 363 (16.32%), 342 (17.45%), and 
9 (22.50%) deleterious variants were observed with scores < 0.05 for GATK HC, VarScan, and MuTect2, respec-
tively. Of the variants with annotated PolyPhen scores, the numbers of deleterious variants with scores > 0.95 
were 120 (5.12%), 109 (5.25%), and 1 (2.44%) for GATK HC, VarScan, and MuTect2, respectively. Among the 

Figure 1.   Workflow scheme for NGS preprocessing showing the program names, versions used, options, 
parameters, and additional files required.
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variants annotated using CADD, the numbers of variants with scores > 15 were 16,364 (3.75%), 13,391 (4.36%), 
and 419 (2.51%) for GATK HC, VarScan, and MuTect2, and 7355 (1.69%), 6281 (2.04%), and 199 (1.19%) for 
deleterious variants with scores > 20, respectively.

ClinVar for clinical significance.  Table 2 shows the ClinVar annotations for clinical significance in com-
pliance with the variant-calling algorithms. The numbers of drug_response, likelypathogenic, pathogenic, pro-
tective, and risk_factor mutations, which are clinically important, were 1504 (3.07%), 134 (0.27%), 405 (0.83%), 
306 (0.62%), and 753 (1.54%) for GATK HC; 1354 (3.21%), 129 (0.31%), 364 (0.86%), 285 (0.68%), and 674 
(1.60%) for VarScan; and 19 (1.08%), 16 (0.91%), 21 (1.19%), 7 (0.40%), and 10 (0.57%) for MuTect2, respec-
tively. The average number of ClinVar significant variants of the patients was 769.43, the variants detected by 
only one caller were 16.5%, and those detected by two callers were 82.18%.

Table 1.   Distribution of consequences of genetic variants using three different variant callers.

Consequence GATK HC Varsha MuTect2

3_prime_UTR_variant 58,135 (13.33%) 52,305 (17.03%) 4013 (24.00%)

5_prime_UTR_variant 12,376 (2.84%) 9712 (3.16%) 444 (2.66%)

Downstream_gene_variant 42,903 (9.84%) 32,376 (10.54%) 1933 (11.56%)

Intron_variant 249,984 (57.34%) 156,050 (50.81%) 8259 (49.40%)

Missense_variant 2310 (0.53%) 2046 (0.67%) 35 (0.21%)

Non_coding_transcript_exon_variant 6349 (1.46%) 5702 (1.86%) 204 (1.22%)

Regulatory_region_variant 776 (0.18%) 681 (0.22%) 21 (0.13%)

Splice_acceptor_variant 12 (0.00%) 9 (0.00%) 0 (0.00%)

Splice_donor_variant 162 (0.04%) 63 (0.02%) 3 (0.02%)

Splice_region_variant 5302 (1.22%) 4350 (1.42%) 276 (1.65%)

Start_lost 0 (0.00%) 0 (0.00%) 1 (0.01%)

Stop_gained 316 (0.07%) 254 (0.08%) 8 (0.05%)

Stop_lost 5 (0.00%) 5 (0.00%) 1 (0.01%)

Synonymous_variant 28,813 (6.61%) 25,128 (8.18%) 467 (2.79%)

Upstream_gene_variant 28,555 (6.55%) 18,471 (6.01%) 1053 (6.30%)

Sum 435,998 (100.00%) 307,152 (100.00%) 16,718 (100.00%)

Figure 2.   The distribution of deleteriousness scores of genetic variants called by three different variant callers 
represented by boxplots.
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To visualize the distribution of differentially detected clinically significant variants, individual distributions of 
patients with mutations are presented in a Venn diagram. In Fig. 3, ClinVar is based on variants corresponding 
to drug_response, likely_pathogenic, pathogenic, protective, and risk_factor. Truncation is based on variations 
whose consequence is the loss of function. The SIFT score was 0.05 or less, the PolyPhen score was 0.85 or more, 
and the CADD score was 15 or more.

To characterize the differently called variants, we reviewed variants that included significant consequences, 
deleteriousness scores, and ClinVar annotations that GATK HC found but VarScan did not (Table 3). ABCA4 
is an ATP-binding cassette (ABC) transporter (OMIM 601691; GenBank U88667). Diseases associated with 
ABCA4 include age-related macular degeneration and Stargardt disease13,14. Diseases associated with DHCR7 
include Smith-Lemli-Opitz Syndrome and holoprosencephaly. There is much evidence associating the variant 

Table 2.   The distribution by the ClinVar category of genetic variants according to three different variant 
callers.

Clinical significance GATK HC VarScan MuTect2

Association 70 (0.14%) 67 (0.16%) 0 (0.00%)

Benign 31,816 (64.96%) 27,175 (64.50%) 1079 (61.20%)

Drug_response 1504 (3.07%) 1354 (3.21%) 19 (1.08%)

Likely_benign 8697 (17.76%) 7658 (18.18%) 404 (22.92%)

Likely_pathogenic 134 (0.27%) 129 (0.31%) 16 (0.91%)

Not_provided 3534 (7.22%) 2860 (6.79%) 78 (4.42%)

Other 276 (0.56%) 258 (0.61%) 5 (0.28%)

Pathogenic 405 (0.83%) 364 (0.86%) 21 (1.19%)

Protective 306 (0.62%) 285 (0.68%) 7 (0.40%)

Risk_factor 753 (1.54%) 674 (1.60%) 10 (0.57%)

Uncertain_significance 1483 (3.03%) 1305 (3.10%) 124 (7.03%)

Sum 48,978 (100.00%) 42,129 (100.00%) 1763 (100.00%)

Figure 3.   Summary of significant variants differently called by variant callers. (a) ClinVar annotated variants. 
(b) The consequences of truncation mutation. (c) Variants with deleterious sift scores < 0.05. (d) Variants with 
deleterious PolyPhen-2 scores > 0.85. (e) Variants with deleterious CADD scores > 15.
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rs11555217 with disease15,16. Diseases associated with CYP4V2 include Bietti crystalline corneoretinal dystrophy 
and telangiectatic osteogenic sarcoma17. Diseases associated with CFTR include cystic fibrosis and Vas Deferens 
congenital bilateral aplasia18. This gene is a target of FDA-approved drugs and is known to be associated with 
ivacaftor, glyburide, bumetanide, crofelemer, and lumacaftor drugs19–23.

Discussion
With advances in NGS technologies in the past several years, genome or exome sequencing is now practiced in 
medicine. However, different NGS pipelines among institutions produce different variant calling results despite 
the same raw sequencing data, causing serious problems in clinical decision-making and genetic variant sharing. 
Variant calling, which is the result of diagnostic genetic tests, should be reproducible or replicable for use as a 
basis for clinical decision-making12. In breast cancer, various genomic factors, such as EGFR, BRCA1/2, ESR1, 
PIK3CA, and TP53, greatly influence clinical decisions24. However, if this information is not reproducible and 
replicable among medical institutions, it can cause confusion when making clinical decisions. The development 
of numerous NGS sequencing technologies, such as Illumina and BGI, has caused data-specific effects, making 
it difficult to build a uniform pipeline8,9. Therefore, we suggest that the entire pipeline throughout the variant-
calling process, including raw sequencing data, should be shared to enhance the reproducibility of the genetic 
variants. All processing included in the NGS pipeline, such as the version of the programs, options, and addi-
tional files with each version, should be shared to reproduce or replicate the same genetic variant from the raw 
sequence. Of the genetic variants called by different NGS pipelines, we quantified how many important variants 
were missed, affecting clinical decision-making. As a result, we found that important variants affecting clinical 
decisions are found quite differently according to the variant-calling algorithm.

Several studies suggest that the result of variant calling differs by NGS preprocessing and variant-calling 
pipeline25,26. Moreover, the result of variant calling is different for different sequencers, despite using the same 
raw sequence data and NGS pipeline. Nevertheless, establishing a guideline with a uniform NGS pipeline for a 
single best practice is difficult because the performance of NGS pipelines differs by sequencer, purpose of the 
sequencing, and characteristics of the sample27. Therefore, there is the risk of making a clinical decision with a 
genetic variant in an institution that does not perform NGS pipeline because the institution cannot reproduce the 
result of the variant calling. Hence, details of the NGS pipeline for the entire variant-calling process are essential.

To evaluate the significance of the variants called by three different variant caller algorithms, GATK Haplo-
typeCaller, MuTect2, and VarScan, we used the consequence, deleteriousness score, and ClinVar classification. 
Consequences of variants, referred to as loss-of-function mutations, can be divided into truncation and non-
truncation mutations. Truncation mutations have a profound impact on the loss of gene function. SIFT, PolyPhen, 
and CADD scores are algorithms that measure deleteriousness of genes based on conservation and protein 
structure. ClinVar annotated variants are clinically significant genetic variants categorized into pathogenic, 
drug response, risk factor, and more, which are important information in making clinical decisions. Trunca-
tion mutations, deleterious variants, and clinically significant variants have different results depending on the 
variant-calling algorithm, even though they are variants that have a large effect on gene function (Fig. 3). Thus, 
NGS pipelines that produce different variant calling results can have a significant impact on clinical decisions 
based on genetic variants.

Our study has some limitations. We only measured variant differences based on variant callers. From the 
read alignment algorithm to the final variant-calling process within the entire NGS pipeline, various factors can 
affect variant calling. We could not test all of them due to the combination explosion, but we focused on variant 
calling. A replication study of the genetic testing pipeline used in hospitals is needed. From the NGS pipeline 
information used in hospitals, we need to test whether the variant calling results can be reproduced from the 
same raw sequence data.

In conclusion, our results show that clinically important variants are differently called by variant callers, thus 
affecting clinical decisions. This means that variant calling outcomes are not reproducible without detailed NGS 
pipeline information. Therefore, we suggest that the pipeline throughout the variant-calling process, including 
raw sequencing data, should be shared for effective genetic variant sharing and clinical decision-making.

Table 3.   The annotation information for clinically important variants that GATK HC found, but VarScan and 
MuTect2 were never found.

Symbol Existing_variation Consequence SIFT PolyPhen CADD ClinVar annotations

ABCA4 rs61750130 Missense_variant 0 0.716 28.1 Pathogenic, risk factor

ABCA4 rs140482171 Missense_variant 0.16 0.013 21.7 Likely pathogenic

DHCR7 rs11555217 Stop_gained 36 Pathogenic

ABCA4 rs1801581 Missense_variant 0.01 0.163 22.7 Pathogenic, risk factor

CYP4V2 rs199476189 Stop_gained <NA> <NA> 42 Pathogenic

CFTR rs121909021 Missense_variant 0.02 0.531 27.5 Pathogenic

CFTR rs78655421 Missense_variant 0 1 24.9 Pathogenic, drug response
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Methods
Raw sequencing samples.  Raw sequence files from massive parallel sequencing of blood DNA from 105 
breast cancer patients were downloaded from the NCBI Sequencing Read Archive (SRA) database (SRP174001). 
These targeted data were sequenced for the coding and regulatory regions of 509 genes selected from PharmGKB 
and Phenopedia, where a number of important variants are located for clinical decisions2,28. SRA files were 
downloaded using ’prepetch’ version 2.9.4 of the SRA Toolkit (https​://www.ncbi.nlm.nih.gov/sra/docs/toolk​itsof​
t/). The SRA files were converted to paired sequence FASTQ format files using fastq-dump of the SRA Toolkit 
(https​://ncbi.githu​b.io/sra-tools​/fastq​-dump.html). Quality assessment of the paired sequence reads was per-
formed using FastQC version 0.11.8, followed by adaptor removal and read trimming (http://www.bioin​forma​
tics.babra​ham.ac.uk/proje​cts/fastq​c/)29.

Pre‑processing of DNA resequencing data.  The raw FASTQ files and paired sequence data were 
aligned to the human genome hg38 assembly using the Burrows-Wheeler Aligner, BWA program, version 0.7.12, 
and were transformed into a sequence alignment map (SAM) format30. Using SAMtools version 1.9, sequence 
data in SAM format was compressed into Binary Alignment Map (BAM) format by view command, and the 
aligned sequence reads were sorted with leftmost coordinates by sort command. Read groups are added to 
aligned sequence files using the’ AddOrReplaceReadGroups’ module in Picard. Next, SAMtools was used to 
prepare index referencing and BAM files31. After preparing these files, GATK version 3.8 was used to perform 
Realigner Target Creator and Indel Realigner to locally realign regions containing insertions and deletions to 
correct misaligned reads6. Base quality scores were adjusted using GATK BaseRecalibrator with the dbSNP build 
138 and 1000-genome gold standard indels provided by the GATK Resource bundle standard files for working 
with human resequencing data (https​://softw​are.broad​insti​tute.org/gatk/downl​oad/bundl​e)32,33. The sequencing 
target section was extracted using the bedtools intersect version 2.26 with indexing34. Finally, Picard MarkDupli-
cates v1.93 was used to identify duplications with the option to flag and remove duplicate reads.

Small variant detection.  After preprocessing the DNA sequencing data, we detected single nucleotide 
variants (SNVs) using three algorithms. VarScan and GATK HaplotypeCaller (HC) were used to find genetic 
variants between the sample DNA sequence compared with the reference sequence35. Somatic variants were 
called using GATK MuTect236. Variants called by a mixture of germline and somatic variant calling tools were 
compared based on the assumption that NGS pipeline information was not properly shared during the com-
munication process for the genetic variant of the patient. Reference genome databases, dbSNP build 138, and 
COSMIC, a source of commonly mutated genes, were used for the variant-calling argument.

Genetic variant annotation.  The Ensembl Variant Effect Predictor (VEP) was used to determine the 
effect of genetic variants derived from the three variant callers, HC, MuTect2, and VarScan37. The mutation 
consequence, SIFT score, PolyPhen score, CADD score, and ClinVar annotations were determined to exam-
ine the effect of differently called variants on variant callers3,38–40. Consequences were divided into truncating 
and non-truncating mutations. While truncating mutations included nonsense mutations, frameshift deletions, 
frame shift insertions, and splice-site mutations, non-truncating mutations included missense mutations, in-
frame deletions, in-frame insertions, and nonstop mutations. To evaluate the significance of genetic variant 
effects, SIFT, PolyPhen, and CADD algorithms for predicting the deleteriousness of variants were used. SIFT 
score < 0.05, PolyPhen > 0.95, and CADD > 15 were defined as deleterious variants. The clinical significance of 
genetic variants was cataloged by making comparisons in ClinVar (http://www.ncbi.nlm.nih.gov/ClinV​ar/).
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