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Variants in NEB and RIF1 genes 
on chr2q23 are associated 
with skeletal muscle index 
in Koreans: genome‑wide 
association study
Kyung Jae Yoon1,2,3,4, Youbin Yi1, Jong Geol Do1, Hyung‑Lae Kim5, Yong‑Taek Lee1,2* & 
Han‑Na Kim2,4*

Although skeletal muscle plays a crucial role in metabolism and influences aging and chronic diseases, 
little is known about the genetic variations with skeletal muscle, especially in the Asian population. 
We performed a genome‑wide association study in 2,046 participants drawn from a population‑based 
study. Appendicular skeletal muscle mass was estimated based on appendicular lean soft tissue 
measured with a multi‑frequency bioelectrical impedance analyzer and divided by height squared to 
derive the skeletal muscle index (SMI). After conducting quality control and imputing the genotypes, 
we analyzed 6,391,983 autosomal SNPs. A genome‑wide significant association was found for the 
intronic variant rs138684936 in the NEB and RIF1 genes (β = 0.217, p = 6.83 × 10–9). These two genes 
are next to each other and are partially overlapped on chr2q23. We conducted extensive functional 
annotations to gain insight into the directional biological implication of significant genetic variants. A 
gene‑based analysis identified the significant TNFSF9 gene and confirmed the suggestive association 
of the NEB gene. Pathway analyses showed the significant association of regulation of multicellular 
organism growth gene‑set and the suggestive associations of pathways related to skeletal system 
development or skeleton morphogenesis with SMI. In conclusion, we identified a new genetic locus 
on chromosome 2 for SMI with genome‑wide significance. These results enhance the biological 
understanding of skeletal muscle mass and provide specific leads for functional experiments.

Since Rosenberg first coined the term sarcopenia in  19891, clinicians have been increasingly interested in skeletal 
muscle mass and strength, considering that these factors are associated with functional performance, metabolism, 
and even  survival2–4. Low skeletal muscle mass is related to metabolic problems including insulin resistance and 
cardiovascular  risk5,6 not only in the elderly but also in the general population (including young adults).

A recent European and Asian consensus provided the definition of  sarcopenia7,8, in which skeletal muscle 
mass was estimated with dual-energy X-ray absorptiometry (DEXA) or bioelectrical impedance analysis (BIA). 
BIA is one of the most useful methods for estimating the volume of skeletal muscle mass, especially given the 
inexpensiveness and reproducibility of this  technique9. As skeletal muscle mass is associated with body size, the 
European and Asian working groups for sarcopenia adjusted the skeletal muscle mass with the height  squared7,8.

Skeletal muscle mass is known to have a strong genetic determination, with a heritability of over 50%10. 
However, few studies have reported a genetic predisposition for skeletal muscle mass. In some  studies11–14, a 
genome-wide association study (GWAS) was performed for lean body mass, of which the main component is 
skeletal muscle. Although recent technical advances have allowed a GWAS to be used as an unbiased method for 
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screening the whole human genome for novel genes for skeletal muscle mass, most have been conducted exclu-
sively in Caucasian  populations14–17 and the results were not consistent. In contrast, a relatively small number 
of studies have been reported in Asian  populations11,18. Ethnic differences in skeletal muscle mass are known to 
 exist19. Previous studies reported that Asian people generally had less muscle mass than  Caucasians20,21.

While previous studies mainly focused on identifying candidate genes, the gene- and gene set-based 
approaches allows GWAS results to be integrated with genes in predefined human databases, offering a comple-
mentary approach to data interpretation. A gene-based GWAS on skeletal muscle mass was performed previously, 
but it was also a study in  Caucasians13.

We conducted a GWAS using single variants for skeletal muscle mass, which was represented by the skeletal 
muscle index (SMI, skeletal muscle mass divided by height squared) and also gene- and gene set-based analyses 
using the results of the GWAS in a Korean population. The purpose of this study was to identify the associa-
tions of specific genetic variations with the SMI and elucidate the biological mechanisms through functional 
annotation.

Results
Subject demographics. The study sample was comprised of 1,150 men and 896 women with a mean age of 
39.3 years (standard deviation [SD] 8.9), ranging from 20 to 69 years (Table 1). The mean skeletal muscle index 
(SMI) value was 9.7 kg/m2 (SD 1.5) in men and 9.3 kg/m2 (SD 1.5) in women. The average body mass index 
(BMI) was 24.4 kg/m2 (SD 2.8) in men and 21.6 kg/m2 (SD 2.8) in women (Table 1).

Single‑variant association analysis and functional annotation of associated variants for 
SMI. After the imputation of the genotypes, the number of single nucleotide polymorphisms (SNPs) included 
in the GWAS was 6,391,983 in 2046 individuals. The genomic inflation factor (λ) was 1.009, and no population 
stratification was observed in our dataset using principal component analysis (PCA) and the QQ plot (Supple-
mentary Figs. S1 and S2).

The results of single-variant association analysis for the SMI showed a genome-wide significance (p < 5 × 10–8) 
on chr2q23 (Fig. 1). The strongest associated SNP, rs138684936 (β = 0.217, minor allele frequency = 0.212, 

Table 1.  Baseline characteristics of the study population. The data are presented as means (standard 
deviation). a Skeletal muscle index (kg/m2) = skeletal muscle mass/height2.

Characteristics Men (n = 1150) Women (n = 896) Total (n = 2046)

Age (years) 39.9 (8.9) 38.7 (8.7) 39.3 (8.9)

Height (cm) 173.2 (5.7) 160.7 (5.1) 167.7 (8.2)

Weight (kg) 73.4 (9.6) 55.8 (7.7) 65.7 (12.4)

Body mass index (kg/m2) 24.4 (2.8) 21.6 (2.8) 23.2 (3.2)

Skeletal muscle index (kg/m2)a 9.7 (1.5) 9.3 (1.5) 9.5 (1.5)

Skeletal muscle mass (kg) 31.7 (3.5) 21.0 (2.5) 27.0 (6.1)

Muscle mass (kg) 53.2 (5.6) 36.7 (3.9) 46.0 (9.5)

Fat mass (kg) 17.0 (5.5) 16.7 (5.0) 16.9 (5.3)

Figure 1.  Manhattan plot of SNP-based GWAS for skeletal muscle index (SMI). The y-axis shows the -log10 
p-values for SNPs in the GWAS. The horizontal red dotted line represents the threshold of genome-wide 
significance (p = 5 × 10–8). The manhattan plot was generated using Functional Mapping and Annotation of 
Genome-Wide Association Studies (FUMA) v1.3.6 (https ://fuma.ctgla b.nl).

https://fuma.ctglab.nl
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p = 6.83 × 10–9), was located on the intron of the NEB gene, which encodes nebulin, a giant protein component 
of the cytoskeletal matrix that coexists with the thick and thin filaments within the sarcomeres of skeletal mus-
cle. We also observed suggestive associations with rs2586725 (β = − 0.216, p = 5.20 × 10–7) near RP11-25O3.1 
on chromosome 18 and rs8103412 (β = 0.137, p = 5.82 × 10–7) near TNFSF9 on chromosome 19. However, most 
SNPs except the FRK gene identified in previous GWA  studies11,12,14,17,18 for lean body mass were not significant 
in our sample (Supplementary Table S1). Variants in the FTO gene, rs17817964 and rs9936385, showed p-values 
of 0.066 and 0.065, respectively.

We used FUMA, a tool to functionally map and annotate GWAS results, and extracted significant independ-
ent SNPs and 87 candidate SNPs, which were in linkage disequilibrium (LD,  r2 > 0.6) with the independent lead 
SNPs. Of all the candidate SNPs, 71 were in intronic regions, seven were in exonic regions, five were in UTR3, 
three were in intergenic, and one was in the ncRNA intronic region, and they mapped to nine genes (Supple-
mentary Table S2). Most SNPs were also enriched for chromatin state 4, implying strong transcription. In the 
exonic regions, six SNPs were non-synonymous variants on NEB or RIF1 genes (Table 2). Among them, the 
SNPs with high combined annotation dependent depletion (CADD) scores were rs2288210 (CADD = 20) on 
exon 114 of NEB, rs7575451 (CADD = 16.93) on exon 171 of NEB, and rs2444263 (CADD = 12.39) on exon 22 
of RIF1, with GWAS p-values of 1.21 × 10–4, 5.50 × 10–6, and 6.11 × 10–6, respectively, in high LD  (r2 > 0.7) with 
the lead SNP (rs138684936).

To link the candidate SNPs to genes, we used three gene-mapping strategies, positional, expression qualitative 
trait loci (eQTL), and chromatin interaction mapping. Based on our GWAS results, positional gene mapping 
annotated SNPs to two genes by genomic location and functional annotation, eQTL mapping matched cis-eQTL 
SNPs to six genes whose expression levels they influence in one or more tissues, and 3D chromatin interac-
tion mapping mapped SNPs to five genes based on chromatin interaction such as HiC (Fig. 2, Supplementary 
Tables S3, S4, and S5). The RIF1 gene was implicated by all three mapping strategies, and the NEB gene was 
prioritized by both positional and eQTL mapping. RIF1 was mapped by eQTLs in several tissue types such as 
adipose subcutaneous, brain cortex, and esophagus muscularis. We found that our associated SNPs in NEB were 
not significant eQTLs in skeletal muscle even though NEB is predominantly expressed in skeletal muscle with 
the highest median transcripts per million (TPM = 846.4) from the GTEx v8 database (Supplementary Fig. S3). 
However, we found significant enrichment of alternative splicing QTL (sQTL) for NEB, and the 74 SNPs in or 
near NEB identified by the current GWAS were sQTLs in skeletal muscle and the atrial appendage from the 
GTEx (Supplementary Table S6). The lead SNP rs138684936 and variants in LD  (r2 > 0.6) contained the active 
transcription start site (TSS) of RIF1 and most variants overlapped with transcription and enhancer marks located 
in the regulatory regions for fat, muscle, and brain tissues (Fig. 3).

Phenome‑wide association study. The lead SNP associated with SMI and exonic SNPs in the Table2 
were further investigated using a PheWAS (phenome-wide association study) at the GWAS ATLAS resource. 
These SNPs were associated with multiple traits belong to the metabolic and immunological domains (Supple-
mentary Table S7). Generally, the pleiotropic effects were caused by one SNP associated with multiple correlated 
phenotypes. For example, the rs2444263 was significantly associated with estimated glomerular filtration rate 
(eGFR) and impedance of arm, age at menopause, and impedance of whole body, and trunk fat percentage, etc. 
(Bonferroni corrected p < 0.05, Supplementary Table S7). Genetic correlations were also found between the mul-
tiple traits associated with our top SNPs (Supplementary Fig. S4).

Table 2.  Exonic variants in the genomic loci associated with the SMI and in LD  (r2 > 0.6) with the independent 
genome-wide significant SNPs. SNP p-values were computed using the linear regression model of additive 
allelic effects in PLINK (N = 2046 individuals). See “Methods” for the definition of independent significant 
SNPs (IndSigSNP). rsID rs number of the SNP, CHR chromosome, BP base-pair position on hg19, MAF minor 
allele frequency, gwasP SNP p-value for the SMI GWAS, CADD combined annotation dependent depletion 
(CADD) computed based on 63 annotations. The higher the score, the more deleterious the SNP, RDB 
RegulomeDB score, which is a categorical score (from 1a to 7). 1a is the highest score for SNPs with the most 
biological evidence to be a regulatory element, minChrState the minimum 15-core chromatin state across 127 
tissue/cell types.

rsID CHR BP
Major/minor 
allele MAF gwasP beta r2 IndSigSNP Gene Exon Exonic function CADD RDB minChrState

rs2444263 2 152311570 A/G 0.244 6.11E−06 0.150 0.743 rs138684936 RIF1 22 Nonsynony-
mous 12.39 NA 4

rs2123465 2 152320118 A/G 0.242 6.11E−06 0.150 0.731 rs138684936 RIF1 30 Nonsynony-
mous 0.52 NA 3

rs2444257 2 152322095 T/A 0.238 6.13E−06 0.150 0.747 rs138684936 RIF1 30 Nonsynony-
mous 0.03 5 4

rs1065177 2 152331418 G/C 0.240 6.13E−06 0.150 0.759 rs138684936 RIF1 35 Nonsynony-
mous 3.52 5 2

rs7575451 2 152352843 G/C 0.249 5.50E−06 0.151 0.775 rs138684936 NEB 173 Nonsynony-
mous 16.93 6 4

rs2288210 2 152422076 G/C 0.224 1.21E−04 0.130 0.730 rs138684936 NEB 116 Nonsynony-
mous 20.00 7 4

rs6709886 2 152490219 G/A 0.227 6.59E−05 0.135 0.729 rs138684936 NEB 65 Synonymous 0.51 4 4
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Gene, and gene set, and tissue‑expression analysis for SMI using MAGMA. We performed a 
gene-based association analysis using all SNPs in the GWAS. Table 3 and Supplementary Fig. S5 show the ten 
top-ranked genes associated with the SMI (nominal p < 1 × 10–6). Of the total 18,870 genes, only TNFSF9 was 
significantly associated with the SMI (Bonferroni p < 0.05), but we also observed suggestive associations with 
NEB (nominal p = 6.53 × 10–5) and RIF1 (nominal p = 5.47 × 10–5).

The Multi-marker Analysis of GenoMic Annotation (MAGMA) gene-set analysis integrated within FUMA 
was performed for curated gene sets and gene ontology (GO) terms obtained from MsigDB. Using the gene-
based p-values, we next performed gene-set analysis using a total of 15,480 gene sets. The top-ranked biological 
processes were regulation of multicellular organism growth (from GO), presynaptic modulation of chemical synaptic 
transmission (GO), and cranial skeletal system development (GO), of which only the gene set for the regulation of 
multicellular organism growth was statistically significant after correcting for multiple comparisons (Bonferroni 
p = 0.036, Table 4). Supplementary Table S8 shows a detailed association of the genes and the number of SNPs 
mapped to the gene in the gene set for the regulation of multicellular organism growth. 

Figure 2.  Cross-locus interactions for genomic regions associated with SMI. Circos plot showing genomic risk 
loci on genes on chromosome 2 implicated by eQTL (green), chromatin interaction (CI; orange), or implicated 
by both eQTL and CI mapping (red). The outer layer shows a Manhattan plot containing the -log10-transformed 
p-value of each SNP in the GWAS. The circos plot was generated using FUMA v1.3.6 (https ://fuma.ctgla b.nl).

https://fuma.ctglab.nl
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To identify tissue specificity of the SMI, we performed tissue expression analysis by MAGMA integrated 
within FUMA to test the relationships between tissue-specific gene expression profiles and genes associated with 
SMI in 54 tissue types obtained from the Genotype-Tissue Expression (GTEx) Project. The SMI was significantly 
associated with genes expressed in the brain spinal cord cervical c-1 region (Bonferroni q = 0.039) (Fig. 4.).

Discussion
Here, we report the novel associations of skeletal muscle index (SMI) with loci in NEB and RIF1 on chr2q23 in 
Koreans. The strongest association among the significant SNPs was located in the intron of the NEB and RIF1 
genes with the lowest p-value of 6.83 × 10–9. The NEB gene encodes for nebulin, a giant protein component of 
the cytoskeletal matrix that coexists with the thick and thin filaments within the sarcomeres of skeletal  muscle22. 

Figure 3.  Regional plot and chromatin state on chromosome 2. (A) Regional plot of rs138684936 and SNPs in 
high LD  (r2 > 0.6) with the lead SNP. (B) Chromatin 15 state in fat, muscle, and brain tissues. (C) Legend for the 
15-core chromatin state. The regional plot was generated using FUMA v1.3.6 (https ://fuma.ctgla b.nl).

https://fuma.ctglab.nl
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Its critical role in muscle function became apparent when mutations in NEB were associated with autosomal 
recessive nemaline myopathy, a disease characterized by generalized skeletal muscle weakness and the pres-
ence of electron-dense protein accumulations (nemaline rods) seen on patient muscle biopsy  examination23,24. 
Although the important role of NEB for skeletal muscle is well known, to our knowledge, variants in NEB have 
not been reported in prior GWA studies of muscle-related phenotypes (whole-body or appendicular lean body 
mass) through a review of the GWAS catalog (https ://www.ebi.ac.uk/gwas/genes /NEB). The protein isoform sizes 
vary from 600 to 800 kD due to alternative splicing that is tissue-, species-, and developmental stage-specific. Of 
the 183 exons in the NEB gene, exons 63–66, 82–105, 143–144, and 166–177 are key regions where alternative 
splicing  occurs25. The alternatively spliced exons 166–177 express at least 20 different transcripts in the adult 
human tibialis anterior muscle alone. We found an association with the SMI in exons 65, 116, and 173 of NEB. 
Alternative splicing is a common mechanism used to create muscle proteins specific for different muscle types 
and muscles of different developmental  stages26,27. Alternatively, spliced exons in the 3′ end of the gene, as well 
as in the central region, account for the broad isoform diversity of  nebulin28,29. Extensive alternative splicing of 
NEB may explain the pathogenesis of muscle-related diseases.

Other associated variants were in the RIF1 gene, which is located next to the NEB and the genes partially 
overlap each other. The replication timing regulatory factor 1 (RIF1) gene encodes a protein that shares homol-
ogy with the yeast telomere-binding protein, repressor/activator protein 1 (RAP1) interacting factor 1. RIF1 is a 
highly conserved protein whose functions have diverged during the course of evolution from its primary role in 
telomere length maintenance to a broader role in DNA replication, DNA repair, and the maintenance of genomic 

Table 3.  Genes associated with the SMI by gene-based association analysis using MAGMA. Input 
SNPs were mapped to 18,870 protein-coding genes. CHR, chromosome; START/STOP, the annotation 
boundaries of the gene on that chromosome; NSNPS, the number of SNPs annotated to that gene that 
was found in the data; ZSTAT, the Z-value for the gene based on its (permutation) p-value; P, the gene 
p-value, using asymptotic sampling distribution; Bonferroni P, Bonferroni adjusted q-value (significant 
threshold = 0.05/18,870 = 2.65E−6).

Gene CHR START STOP NSNPS ZSTAT P Bonferroni Q

TNFSF9 19 6511010 6555931 27 5.058 2.12E−07 4.00E-03

CT62 15 71382583 71427833 35 4.3462 6.93E−06 1.31E-01

RIC8B 12 107148373 107303090 139 4.0769 2.28E−05 4.31E-01

RFX4 12 106956685 107176581 275 4.0594 2.46E−05 4.64E-01

RAB7A 3 128424965 128553639 232 4.0518 2.54E−05 4.80E-01

DRD4 11 617293 660706 126 4.0239 2.86E−05 5.40E-01

RP11-144F15.1 12 106869736 107188696 459 3.8714 5.41E−05 1

NEB 2 152321850 152611001 704 3.8254 6.53E−05 1

EDEM3 1 184639365 184744047 419 3.7221 9.88E−05 1

OR9G4 11 56490303 56531287 162 3.712 1.03E−04 1

Table 4.  Top ten ranked pathways associated with skeletal muscle mass. For MAGMA analysis, 15,480 gene 
sets (curated gene sets, 5497; gene ontology terms, 9983) from MsigDB v7.0 were used. GO gene ontology, 
GO_bp GO biological process, GO_mf GO molecular function, NGENES the number of genes in the data that 
was in the set, BETA the regression coefficient of the variable, BETA STD the semi-standardized regression 
coefficient, corresponding to the predicted change in Z-value given a change of one standard deviation in the 
predictor gene set/gene covariate (i.e., BETA divided by the variable’s standard deviation), SE the standard 
error of the regression coefficient, P p-value, Bonferroni Q Bonferroni adjusted q-value.

Gene sets NGENES BETA BETA STD SE P Bonferroni Q

GO_bp: regulation of multicellular organism growth 68 0.50 0.03 0.11 2.34.E−06 3.62E−02

GO_bp: presynaptic modulation of chemical synaptic transmis-
sion 13 1.15 0.03 0.28 2.62.E−05 4.06E−01

GO_bp: cranial skeletal system development 66 0.42 0.03 0.11 4.69.E−05 7.26E−01

GO_bp: regulation of organelle organization 1175 0.10 0.02 0.03 6.70.E−05 1.00

GO_bp: embryonic cranial skeleton morphogenesis 45 0.45 0.02 0.12 1.21.E−04 1.00

GO_bp: proline transport 9 1.06 0.02 0.29 1.24.E−04 1.00

GO_bp: epithelial structure maintenance 28 0.61 0.02 0.17 1.48.E−04 1.00

GO_bp: positive regulation of synaptic vesicle transport 11 0.98 0.02 0.28 2.38.E−04 1.00

GO_bp: apoptotic mitochondrial changes 112 0.28 0.02 0.08 2.54.E−04 1.00

GO_mf: norepinephrine binding 5 1.25 0.02 0.37 3.06.E−04 1.00

https://www.ebi.ac.uk/gwas/genes/NEB
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 integrity30. A number of studies have been conducted to evaluate telomere stabilization in skeletal muscle tissue, 
generally associated with aging and physical  activity31.

Both NEB and RIF1 genes are known to produce multiple transcript variants by alternate splicing. Alternative 
splicing of precursor mRNA is an essential mechanism to increase the complexity of gene expression and plays 
an important role in cellular differentiation and organism  development32. Singh et al. reported that alternative 
splicing substantially contributed to muscle homeostasis in  adults33. We found that the associated SNPs for the 
SMI were identified as sQTLs and the six nonsynonymous SNPs with high CADD scores were highly conserved, 
suggesting that they might be essential for the development and maintenance of skeletal muscle mass. We also 
identified pathways related to skeletal system development or skeleton morphogenesis associated with the SMI. 
Such a role was also supported by our extensive functional annotation, showing that rs138684936 and SNPs in 
high LD overlapped with potential regulatory regions for muscle, fat, and brain tissues.

It is also interesting to note that the TNFSF9 gene was the most significant in the gene analysis using MAGMA, 
and not the NEB or RIF1 genes where the top SNP resided, although NEB showed a suggestive significant p-value 
in MAGMA. The results in the mapped genes from FUMA and the gene-based test using MAGMA may be dif-
ferent because the FUMA uses only significant SNPs and SNPs in LD with the significant SNPs, but the MAGMA 
uses all SNPs for the gene-based test. TNF receptor superfamily member 9 (TNFRSF9), also known as CD137, 
is implicated in inflammatory diseases such as atherosclerosis and Crohn’s disease.

Tissue expression analysis of 54 tissue types showed significant associations between brain spinal cord cervi-
cal c-1 and the SMI, but not skeletal muscle. The spinal cord has been suggested to be associated with  aging34. 
Although many other measures of corticospinal communication appear unaffected by aging, the excitatory 
postsynaptic potential (EPSP) in spinal motoneurons, which is induced by fast-conducting descending volleys, 
show a linear decline with  age35,36. The number of spinal motor neurons declines with age, which is associated 
with an increase in the number of astrocytes and apparent alterations in the neuronal dendritic  networks37. These 
changes may cause reductions in muscle mass, strength, and performance with  aging34. In the current study, our 
subjects are relatively young (mean/SD, 39.3/8.9 years) because this cohort comprised middle-aged office workers 
and their  spouses38, and only 11 individuals were elderly (> 65 years). Janssen et al. have reported that men had 
significantly greater skeletal muscle mass than women with greater losses of skeletal muscle mass with  aging20. 
Age-associated loss of muscle mass appears inevitable and is likely the most significant contributing factor to the 
decline in muscle  strength39. Although we could not perform age-stratified analyses due to small sample size, the 
association of the RIF gene in the current study might support a link between skeletal muscle mass and aging.

It is important to note that the candidate loci were not consistent with previously reported loci for lean body 
mass. The SNPs reported in previous GWA  studies11,12,17,18, including the study by Zillikens et al.14 for lean body 
mass, were not significant in our sample. Although their study was the largest GWAS on lean body mass, most of 
the participants were Europeans and the main results showed that both the discovery and replication sets were 
the results of Europeans, although an Asian data set was  included14. They performed a GWAS using a European 
population whose body composition is known to be different from that of Asians. Usually, Asian people have 
less skeletal muscle than  Europeans20,21. Additionally, lean body mass, mainly skeletal muscle mass, was adjusted 
with height in Zillikens’ study, not with height squared. As skeletal muscle mass is largely influenced by body 
mass, the European and Asian working group for sarcopenia corrected the skeletal muscle mass using height 
 squared7,8. The different adjustments may contribute to the different results between our study and the previous 
trial. In the GWAS catalog of lean body mass (https ://www.ebi.ac.uk/gwas/efotr aits/EFO00 04995 ), there was 

Figure 4.  MAGMA tissue expression analysis of 54 tissue types from the genotype-tissue expression (GTEx) 
database. The bar plot was generated using FUMA v1.3.6 (https ://fuma.ctgla b.nl).

https://www.ebi.ac.uk/gwas/efotraits/EFO0004995
https://fuma.ctglab.nl
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no GWA study where both the discovery samples and the replication samples were East Asian. Furthermore, 
the rs138684936 that showed the strongest signal in this study has > 20% minor allele frequency in East Asian 
including our results, while the frequency of the allele is immensely rare in most European population (0.1–0.8%) 
or low in African (3%) based on the Genome Aggregation Database (gnomAD; https ://gnoma d.broad insti tute.
org). Therefore, further studies using East Asian samples are needed to confirm the observed associations for 
the NEB and RIF1 genes.

Interestingly, we observed the pleiotropic effect of the top SNPs using PheWAS. The SNPs significantly associ-
ated with metabolic phenotypes (eGFR, impedance measures of body composition, body fat ratio, etc.), immuno-
logical phenotypes (mean corpuscular hemoglobin concentration, etc.), and psychiatric phenotypes (frequency 
of tiredness, smoking, alcohol, etc.), indicating the multiple phenotypes may be genetically correlated with SMI.

Several limitations of the current study should be discussed. First of all, we did not confirm the associations 
in independent cohorts. Since the current study evaluated skeletal muscle mass by BIA, replication data should 
have BIA data but there are scanty GWAS data samples with BIA data. Without replication, the limited number 
of subjects available for analysis limited the value of the results. Our results did not support the associations 
reported in previous GWA studies. More studies using independent cohorts in East Asian populations are needed 
to confirm our results because there are few GWA studies in East Asians. However, the population in this study 
was Korean, so the generalization of our findings to other ethnicities, even for East Asians, is limited. Second, 
the definition of skeletal muscle mass, the largest component of lean body mass, was not identical across all 
previous studies, which may introduce inconsistencies into the results. Previous GWA studies were performed 
with lean body  mass11–14, which consisted of skeletal muscle mass, bone, skin, and connective  tissue40. Actually, 
skeletal muscle mass cannot be measured exactly, which was estimated based on lean body mass measured with 
DEXA or BIA in the clinical situation. As the European and Asian working group published the definition of 
sarcopenia in which skeletal muscle mass was divided by height  squared7,8, we used their methods in this study. 
Finally, the functional annotation should be underlined as only predictive, and the exact effect of the specific 
mutation should be verified in functional studies. Nevertheless, the combined strategies of functional annotation 
and gene-mapping provide extensive information on the likely consequences of relevant genetic variants and 
suggest a rich set of plausible gene targets and biological mechanisms for functional follow-up41.

In conclusion, we identified a new genetic locus on chromosome 2 for skeletal muscle mass with genome-wide 
significance, at least in Koreans. The current results shed light on the mechanism of skeletal muscle mass and 
urge further studies in East Asians to elucidate the pathophysiology of low skeletal muscle mass.

Methods
Subjects. The study population was comprised of a subset of Kangbuk Samsung Cohort Study (KSCS) par-
ticipants and consisted of men and women aged 18 years or older who underwent annual or biennial health 
 examinations38. After sample quality control for GWAS analysis, the remaining 2046 subjects consisted of 1150 
men and 896 women aged 20–69 years.

Anthropometric measurements. Data on demographic characteristics, smoking status, alcohol history, 
degree of physical activity, and history of hypertension, hyperlipidemia, and diabetes mellitus were collected by 
the examining physicians using standardized self-administered questionnaires. The individuals with smoking 
history were categorized into never, former, or current smokers. The individuals with alcohol consumption over 
20 g/day were defined as heavy drinkers. The degree of physical activity was evaluated using the International 
Physical Activity Questionnaire Short Form. Regular physical activity was defined as vigorous exercise more 
than three times/week for > 20 min per session or moderate exercise as more than five times/week for > 30 min 
per session.

The patient demographic data, specifically age, height and weight, and anthropometric data, including SMI, 
skeletal muscle mass, total muscle mass, fat mass, BMI, and waist circumference, were reviewed. Height, weight, 
and body composition were measured with a multi-frequency BIA by trained nurses while the subjects wore 
lightweight hospital gowns and no shoes. The BIA had 8-point tactile electrodes (InBody 720, Biospace Co., 
Seoul, Korea) and was previously validated for reproducibility and accuracy for body  composition9. Appendicular 
skeletal muscle mass was estimated based on appendicular lean body mass measured with the BIA and divided 
by height squared to derive the skeletal muscle index (SMI, kg/m2), based on the recommendation of the Asian 
Working Group for  Sarcopenia7 to use height-squared adjusted skeletal muscle mass, and a recent report dem-
onstrating that the height-squared adjusted skeletal muscle mass was better correlated with muscular function 
than body weight-adjusted skeletal muscle  mass42. BMI was calculated as BMI (kg/m2) = weight (kg)/height2  (m2).

Genome‑wide association analysis. Genotyping was performed with the Illumina Infinium Human-
Core BeadChips 12v1 kit (Illumina Inc., San Diego, CA, USA). In pre-imputation quality control (QC), SNP 
quality control procedures were conducted to eliminate ineligible SNPs (SNPs from mitochondria or X or Y 
chromosome, genotyping rate < 0.95, Hardy–Weinberg Equilibrium (HWE) p-value < 10–6, and minor allele fre-
quency (MAF) < 0.01), following which, 226,706 autosomal SNPs remained. Sample quality control for GWAS 
analysis was performed on the raw samples, in which 62 ineligible subjects were eliminated (missing rate > 0.04, 
mean heterozygosity >  ± 3 SD, individuals from the same family, and unmatched sex). Imputation was con-
ducted using reference panels from 1000 Genomes Phase 3 (v5) in the Michigan Imputation Server using 
Minimac4 (https ://imput ation serve r.sph.umich .edu/index .html). Post-imputation cutoffs were applied, which 
included MAF > 0.01, imputation quality  (R2) > 0.6, HWE p-value > 10–6, and SNP call rate > 0.98. The associa-
tions between GWAS SNPs and the SMI were analyzed with PLINK 1.90 beta software (https ://www.cog-genom 
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ics.org/plink /1.9/). Linear regression analysis for the SMI was performed with PLINK statistical software after 
adjusting for the effects of age, sex, and principal component (PC)1, PC2, and PC3.

Functional annotation. Functional annotation was conducted with SNP2GENE implemented in FUMA 
(v1.3.6)43. The FUMA platform was designed for prioritization, annotation, and the interpretation of GWAS 
results. As the first step, significant, independent SNPs in the GWAS summary statistics were identified based 
on their p-values (p < 5 × 10–8) and independence from each other  (r2 < 0.6 in the 1000G phase 3 EAS reference) 
within a 250 kb window. After that, the lead SNPs were identified in the significant, independent SNPs, which 
were independent of each other  (r2 < 0.1). SNPs that were in LD with the identified independent SNPs  (r2 ≥ 0.6) 
within a 250 kb window were selected as candidate SNPs and taken forward for further annotation.

FUMA annotates candidate SNPs in genomic risk loci based on functional consequences on genes (ANNO-
VAR)44, CADD  score45, potential regulatory functions (RegulomeDB scores, RDB)46, the effect on gene expression 
using eQTL of different tissue types (GTEx v8)47, and 3D chromatin interactions from Hi-C experiments of 21 
tissues/cell types, also embedded in the FUMA platform. The CADD score is the score of the deleteriousness of 
the SNPs. A score of 12.37 is the suggested deleterious threshold and higher scores are more deleterious. A CADD 
score of ≥ 10 indicates a variant predicted to be among the top 10% most deleterious substitutions involving the 
human genome, a score of ≥ 20 indicates a variant among the top 1% most deleterious, and so  forth45. Genes 
were mapped using positional mapping based on ANNOVAR annotations and maximum distance between 
SNPs and genes (default 10 kb), eQTL mapping, and 3D chromatin interaction mapping. Only significant eQTLs 
were used by default (FDR < 0.05). Chromatin interaction mapping was performed with significant chromatin 
interactions (defined as FDR < 1 × 10–6). We also used GTEx Analysis Release V8 (dbGaP Accession phs000424.
v8.p2) to investigate splicing QTL (sQTLs) for the SNPs in different tissue types on the GTEx Portal (https ://
gtexp ortal .org/).

Phenome‑wide association studies. We verified the association between the lead variant and exonic 
variants in high LD  (r2 > 0.6) with the lead variant and a wide range of phenotypes. We used the database con-
tains 4756 GWAS from 473 unique studies across 3302 unique traits and 28 domains at the GWAS ATLAS 
resource (https ://atlas .ctgla b.nl/PheWA S)48. The number of curated phenotypes and the significance threshold 
were 28 for rs138684936 (p < 1.79 × 10–3, 0.05/28), 277 for rs2444263 (p < 1.81 × 10–4, 0.05/277), 278 for rs2123465 
(p < 1.80 × 10–4, 0.05/278), 168 for rs2444257 (p < 2.98 × 10–4, 0.05/168), 172 for rs1065177 (p < 2.91 × 10–4, 
0.05/172), 167 for rs7575451 (p < 2.99 × 10–4, 0.05/167), 172 for rs2288210 (p < 2.91 × 10–4, 0.05/172), and 127 
for rs6709886 (p < 3.94 × 10–4, 0.05/127), respectively. Genetic correlations were computed for pair-wise GWASs 
with criteria as suggested previously using LD Score regression (LDSC)49 at the GWAS  ATLAS48,50.

Gene‑based and gene set enrichment analyses, and gene property analysis for tissue speci‑
ficity. The gene-based analysis was conducted with MAGMA v1.0751 with default settings implemented in 
FUMA. For FUMA, 15,480 gene sets (curated gene sets, 5497; GO terms, 9983) from MsigDB v7.0 were used. 
In the MAGMA gene-based analysis, the SNPs are mapped to protein-coding genes if they are located in the 
gene, and the resulting SNP p-values are combined into a gene test-statistic using the SNP-wise mean model. 
Bonferroni’s correction was performed for all tested gene sets. To identify tissue specificity of the phenotype, 
FUMA performs MAGMA gene-property analyses to test the relationships between tissue-specific gene expres-
sion profiles and disease-gene associations.

Statement of ethics. The Institutional Review Board of Kangbuk Samsung Hospital approved this study 
(IRB No. 2020-07-048). Written informed consent was obtained from all participants. The process of this 
research was conducted according to relevant guidelines and regulations.
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