
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2675  | https://doi.org/10.1038/s41598-021-81892-3

www.nature.com/scientificreports

Comparative gene expression 
analysis reveals that multiple 
mechanisms regulate the weeping 
trait in Prunus mume
Lulu Li1,2, Yichi Zhang1,2, Tangchun Zheng1*, Xiaokang Zhuo1, Ping Li1, Like Qiu1, 
Weichao Liu1, Jia Wang1, Tangren Cheng1 & Qixiang Zhang1*

Prunus mume (also known as Mei) is an important ornamental plant that is popular with Asians. 
The weeping trait in P. mume has attracted the attention of researchers for its high ornamental 
value. However, the formation of the weeping trait of woody plants is a complex process and the 
molecular basis of weeping stem development is unclear. Here, the morphological and histochemical 
characteristics and transcriptome profiles of upright and weeping stems from P. mume were 
studied. Significant alterations in the histochemical characteristics of upright and weeping stems 
were observed, and the absence of phloem fibres and less xylem in weeping stems might be 
responsible for their inability to resist gravity and to grow downward. Transcriptome analysis showed 
that differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis and 
phytohormone signal transduction pathways. To investigate the differential responses to hormones, 
upright and weeping stems were treated with IAA (auxin) and GA3 (gibberellin A3), respectively, 
and the results revealed that weeping stems had a weaker IAA response ability and reduced upward 
bending angles than upright stems. On the contrary, weeping stems had increased upward bending 
angles than upright stems with GA3 treatment. Compared to upright stems, interestingly, DEGs 
associated with diterpenoid biosynthesis and phenylpropanoid biosynthesis were significantly 
enriched after being treated with IAA, and expression levels of genes associated with phenylpropanoid 
biosynthesis, ABC transporters, glycosylphosphatidylinositol (GPI)—anchor biosynthesis were 
altered after being treated with GA3 in weeping stems. Those results reveal that multiple molecular 
mechanisms regulate the formation of weeping trait in P. mume, which lays a theoretical foundation 
for the cultivation of new varieties.

Plant architecture, which is closely associated with stem and bud development, is an important ornamental 
characteristic of woody plants. According to the direction of growth of the stem, ornamental woody plants can 
be divided into three types, straight-stem (stems grow upward), pendulous-stem (stems grow horizontally or 
downward) and tortuous-stem types (stems grow twisting naturally)1. Pendulous-stem (weeping) plants have 
high ornamental value during the leaf expansion period and after defoliation because of their naturally weeping 
stems and peculiar shape. Plants with the pendulous-branched (weeping) trait are observed in the herbaceous 
plant Arabidopsis2 and many woody species, such as willow (Salix matsudana)3, Prunus persica4, and Morus 
alba5,6. However, the phenotype of weeping traits is complicated. The direction of plant branch growth is to 
adapt to the stimulus of external environment, such as gravity, light, and mechanical forces. In response to these 
environmental stimuli, a large number of factors (genetic background, hormone, and nutrition, etc.) regulate cell 
division and growth leading to the formation of specific branch architecture7. Thus, the mechanism of the forma-
tion of weeping trait is diverse in different species. The weeping trait of willow is caused by the lack of mechanical 
support due to the excessive elongation of the stem3. Several studies have demonstrated that abnormal geotropic 
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growth is involved in weeping phenotypes. The weeping trait in peach is caused by the mutation in WEEP gene 
which resulted in abnormal gravitropic perception8. Similarly, in Arabidopsis sgr3-1 mutant, the lateral branches 
of the inflorescence stem grow horizontally or downwards. Mutation of the SGR3 (SHOOT GRAVITROPISM 3) 
gene causes a defect in vacuole function or may interfere with amyloplast movement, resulting in a reduced ability 
to sense gravity2. LAZY1 gene promotes narrow branch angel and weeping trait in multiple woody species, such 
as poplar9, birch10, and apple11 by regulating gravitropic response pathways. In addition, abnormal phototropic 
growth can also contribute to weeping trait in some species9–11. Studies of Arabidopsis, maize, and rice have 
shown that LAZY genes are involved in modulating gravitropism through regulating polar auxin transport12–15. 
Overexpression of TAC1 (TILLER ANGLE CONTROL 1), another IGT family gene in Arabidopsis, plum, peach, 
and poplar, results in widening their branch angles in response to light and photosynthetic signals9,16,17. Moreover, 
phytohormones have vital roles in stem development and weeping trait formation. Transcriptome analysis of 
weeping and upright branches in willow showed that a large number of genes in hormone signal transduction, 
auxin and gibberellin (GA) biosynthesis pathways display differential expression and those genes may regulate 
the stem elongation and weeping trait3. In P. persica (peach), GA3 content increased from the base to the tip of a 
weeping branch where the GA content was higher than that at the tip of a standard branch, and the distribution 
of lignin was consistent with that of GA, indicating that the biosynthesis of lignin may be regulated by GA in 
peach. Additionally, an uneven distribution of GA in the adaxial and lower shoots results in uneven development 
of secondary xylem, leading to the weeping trait in P. persica4.

Prunus mume, a famous woody ornamental plant, is adopted in gardens as an important landscape plant due 
to its rich flower colors and branch types. P. mume ‘Fentai Chuizhi’ and P. mume ‘Liuban’ are weeping and upright 
varieties, respectively. And the branch growth models of weeping and upright branches based on the angle at 
multiple points on a branch have been established, and the models showed that there were significant differences 
in directions of branch growth during stem elongation stage between weeping and upright stems18. In addition, 
when the upright and weeping buds are grafted to the same rootstock at the same angle, two kinds of stem still 
grow in different directions19. Our previous studies have been performed to mine the molecular markers of 
weeping traits in P. mume. Quantitative trait locus (QTL) analysis of F1 generation of P. mume ‘Liuban’ × ‘Fentai 
Chuizhi’ showed that the weeping trait might be controlled by one major gene and several minor genes, and the 
major gene pl was located in the region of 10.54–11.68 Mb on chromosome 720. Resequencing analysis of more 
than 330 varieties of P. mume showed that several candidate genes on chromosome 7 are related to the weeping 
trait21. However, the weeping trait in P. mume was complex and its molecular mechanism and regulatory networks 
remain to be investigated. In this study, we analyzed the transcriptome profiles and phytohormone response in 
the upright and weeping stems using RNA sequencing combined with morphological observation, by which 
to reveal the mechanism of the weeping trait as well as hormone control of the shoot architecture in P. mume.

Results
Morphological and histochemical characteristics of the weeping population.  The F1 population 
of P. mume ‘Liuban’ (upright type) × ‘Fentai Chuizhi’ (weeping type) revealed an obvious separation of branch 
type characters22. The grafting progenies of F1 population that display upright and weeping trait were selected 
to observe the branch angle, respectively. Stem angles were observed 400 min on the distal side of the branch. 
As showed in Supplementary video 1, the deviation angles of upright branches changed rapidly at the range of 
0–150 min and exhibited no significant changes since 150 min, while deviation angles of weeping stems signifi-
cantly changed during 0–300 min and barely changed after 300 min (Supplementary video 1). Different contents 
(1 mg/L, 2 mg/L, 3 mg/L) of IAA and GA3 were applied on the adaxial side of two stem types to observe the angle 
changes after 400 min (Table S1). When the hormone concentration was 1 mg/L, neither of the branch devia-
tion angle changes was obvious. It was abandoned, as the inconducive to the observation and measurement of 
angle changes. When the hormone concentration was 3 mg/L, angle changes of weeping stems coated with IAA 
were nearly 90°, which suggested that the excessive concentration of exogenous hormones might have a negative 
impact on the growth and development of the internal structure of the stem. Therefore, the angles of weeping 
and upright stems were measured after being treated with 2 mg/L IAA or GA3 for 6 h. The change in the devia-
tion angle of the horizontal branch from the direction of gravity is positive ( +) and negative (−).

As showed in Table 1 and Fig. 1, the angle of straight and pendulous stems differed significantly after 6 h in 
different treatments. After laying both stems horizontally for 6 h, both upright and weeping stems could grow 
by bending upward slightly, which is the direction of the light source. However, the angle of upright stem (( +) 
2.92 ± 0.11) was significantly larger than that of weeping stem (( +) 0.91 ± 0.07) (Table 1, Fig. 1c). The angle of 
upright stem with IAA treatment was significantly greater than that of upright stem. On the contrary, deviation 
angle of upright stem was significantly smaller than that of upright stem after GA3 treatment.

Table 1.   Differences between upright and weeping stems in response to 2 mg/L IAA and GA3 treatments. The 
data showed the deviation angle of the stem from the horizontal direction, ( +) represents bending in a negative 
gravity direction. Different letters indicate a significant difference (P < 0.05) based on one-way ANOVA. Error 
bars represent one standard error of the mean (n = 42).

Upright stem (°) Weeping stem (°) Weeping/Upright Ratio (%)

CK ( +) 2.92 ± 0.11a ( +) 0.91 ± 0.07b 31.2

IAA ( +) 10.73 ± 0.25a ( +) 1.65 ± 0.17b 15.4

GA3 ( +) 9.00 ± 0.29b ( +) 13.99 ± 0.31a 155.4
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Paraffin sectioning and safranin green staining were conducted to further reveal the differences in histological 
structures between upright and weeping stems. As showed in Fig. 2a,b, the cross-sections of upright and weeping 
stems were both circular. Compared to upright stem, the xylem area and phloem fibre area of weeping stem have 
small proportions, while the phloem area accounts for a large proportion (Fig. 2c,d,g). In annual upright stem, 
the phloem fibre cells in the fibre bundle are arranged neatly and have thicker lignified cell wall that were stained 
red with saffron (Fig. 2c), while the phloem fibre cells were disorganized with different shapes and sizes, and 
some cells have no lignified cell wall in weeping stem (Fig. 2d). Phloroglucinol—HCl staining analysis yielded 
similar results (Fig. 2e,f,g).

Transcriptomic data in upright and weeping stems.  RNA samples from untreated upright (Uut) and 
weeping stem (Wut) and samples from weeping and upright stem after 6 h of water (Wmock and Umock), IAA (UIAA 
and WIAA) or GA3 (UGA and WGA) treatment were extracted to generate cDNA libraries, respectively. Through 
transcriptome sequencing analysis, a total of 81.48 million clean reads were generated. The effective data of each 
library was more than 6.24 Gb, and the Q30 base percentage was 95%, indicating that the sequencing quality was 
reliable (Table S2). More than 79% of the highly quality reads from individual samples could be mapped on the 
genome of P. mume. A total of 19, 512 genes were identified accounting 92.83% of all reference genes (21, 019). 
And more than 93% of genes were already known and about 6% of genes were new (Table S3). More details of 
RNA-seq reads, genome alignment, and gene number are shown in Table S2 and Table S3. All the raw read data 
were deposited in the Genome Sequence Archive under project ID PRJCA001723.

Differentially expressed genes in upright and weeping stems of P. mume.  We analysed unigene 
expression in eight libraries (Uut, Wut, Wmock, Umock, UIAA, WIAA, UGA, and WGA) and normalized the values using 
fragments per kilobase million (FPKM). In order to investigate the influences of 6 h of horizontal placement on 
stems, we sampled after placing weeping and upright stems horizontally and treated them with water for 6 h as 
Wmock and Umock, respectively. A total of 86 DEGs were identified in Wmock vs. Umock (Table S4). Venn diagram 
analysis showed that Wut vs. Uut and Wmock vs. Umock shared 121 DEGs, and 365 DEGs existed specifically in 
Wmock vs. Umock (Fig. S1a). KEGG analysis of 365 DEGs that existed specifically in Wmock vs. Umock indicated 
that genes in glutathione metabolism (ko00480), metabolic pathways (ko01100), and linoleic acid metabolism 
(ko00591) pathways were significantly enriched, suggesting that the upright and weeping stems were different in 
response to in vitro culture conditions (Fig. S1a, Fig. S2a).

There were 317 DEGs in Uut vs. Wut, represented by the differences between upright and weeping stems 
(Table S5). WIAA vs. UIAA and WGA vs. UGA represented the differences in response to IAA and GA3 between 
upright and weeping stems, respectively. There were 896 and 1, 312 DEGs in WIAA vs. UIAA and WGA vs. UGA, 
respectively (Fig. S1a,b, Tables S6, and S7). The clustered expression patterns of all DEGs between upright and 
weeping stems upon different treatments were created based on their log2 expression level values (FPKM) using 
STEM software23. Expression trend analysis split the DEGs in the three comparisons (Wut vs. Uut, WIAA vs. UIAA, 
WGA vs. UGA) into 20 clusters: profile 0 – profile 19 with distinct expression patterns (Fig. S1c,d; Table S8). There 
are six trend models (profile 2/15/4/19/0/18) that changed significantly (p < 0.05). Genes in profile 2 (237) and 
profile 4 (160) were down-regulated in Wut, while genes in profile 15 (257), profile 19 (167), profile 0 (167), and 

Figure 1.   Morphological and hormone responsive characteristics of upright and weeping stems of P. mume. (a) 
Morphological characteristics of grafting progenies of F1 population with the upright trait; (b) Morphological 
characteristics of grafting progenies of F1 population with the weeping trait; (c) Changes in angles of upright 
and weeping stems in different treatments; Uut, upright stem; Wut, weeping stem; UIAA, upright stem with IAA 
treatment; WIAA, weeping stem with IAA treatment; UGA, upright stem with GA3 treatment; WGA, weeping stem 
with GA3 treatment.
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profile 18 (148) were up-regulated in Wut compared to Uut, showing that those genes may involve in regulating the 
formation of branch type in P. mume. Genes in profile 15 showed high transcript levels in Wut, WIAA, and WGA, 
indicating that those genes were up-regulated in weeping stem in response to control, IAA or GA3 treatment. In 

Figure 2.   Histochemical characteristics of upright and weeping stems of P. mume. (a) Cross-section of 
elongating annual stems with the upright trait; (b) Cross-section of elongating annual shoots with the weeping 
trait; (c) Enlargement of the section in the black box of a; (d) Enlargement of the section in the black box of 
b; (e) Phloroglucinol-HCL staining of the middle segment of upright stem; (f) Phloroglucinol-HCL staining 
of the middle segment of weep stem; (g) The area ratios of xylem, phloem, pith, and phloem fibre tissues to 
cross-sectional area in the middle of elongating annual upright and weeping stems. Single and double asterisks 
represent P < 0.05 and P < 0.01, respectively. Error bars represent one standard error of the mean (n = 3). Ep, 
epidermal cell; Co, cortex; Ph, phloem; Pf, phloem fibre; Xy, xylem; Pi, pith.
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contrast to profile 15, profile 4 included genes that were down-regulated in Wut, WIAA, and WGA. Genes in profile 
4 and profile 15 might participate in the branch architecture regulated by IAA and GA3 in P. mume.

GO and KEGG analysis of DEGs in upright and weeping stems.  To examine putative functional 
differences between upright and weeping stems, we conducted GO, KEGG, and MapMan annotation with 316 
DEGs from Wut vs. Uut. DEGs were mainly divided into three GO categories: biological processes, cell com-
ponents and molecular functions (Fig. 3a). Metabolic process (GO: 0008152), single-organism process (GO: 
0044699), and cellular process (GO: 0009987) were the most highly represented groups in the biological pro-
cess category. Within the cellular component category, DEGs that corresponded to membrane (GO: 0016020) 
were the most abundant and catalytic activity (GO: 0003824) and binding (GO: 0005488) were the most abun-
dant classes in the molecular function category. We further identified enriched GO terms in three categories 
that were over-represented (P < 0.05) in DEGs of Wut vs. Uut, the results are shown in Table S9. Many genes 
involved in protein phosphorylation (GO: 0006468) and phosphorylation (GO: 0016310) have obvious differ-
ences in biological processes, and DEGs involved in hydrolase activity, acting on glycosyl bonds (GO: 0016798), 
alpha-1,4-glucosidase activity (GO: 0004558), and alpha-glucosidase activity (GO: 0090599) were enriched in 
molecular functions, suggesting that there might be differences in carbohydrate metabolism between upright 
and weeping stems. The DEGs in Wut vs. Uut were then subjected to KEGG pathway mapping, and the top 20 
enriched pathways are shown in Fig. 3b. KEGG annotations showed that the pathways of plant hormone signal 
transduction (ko04075), biosynthesis of secondary metabolites (ko01110) and phenylpropanoid biosynthesis 
(ko00940) were enriched in Wut vs. Uut, indicating that weeping and upright stems are different in hormone sen-
sitivity and phenylpropanoid biosynthesis (Table S10). MapMan bins of “Metabolism_overview” showed similar 
results (Fig. S3a).

Cluster analysis of genes involved in phenylpropanoid biosynthesis, cell wall biosynthesis, and 
phytohormone signaling.  The putative functional homologues of nine genes encoding enzymes involved 
in phenylpropanoid biosynthesis were recognized, and their expression patterns in four tissues are shown in 
Fig. 3c. Three genes involved in phenylpropanoid biosynthesis were up-regulated, including Pm002468 (CAD, 
CINNAMYL ALCOHOL DEHYDROGENASE), Pm025459 (POD, peroxidase), and Pm004132 (POD), and six 
genes were down-regulated (Pm012038 (F5H, ferulate 5-hydroxylase), Pm008602 (CCR1, Cinnamoyl CoA reduc-
tase 1), Pm010608 (CAD), Pm021214 (CAD), Pm019026 (POD), and Pm008809 (POD)) in Wut compared to Uut.

Plant cell walls are composed of cellulose, hemicellulose, pectin, xylan, and cell wall proteins. Additionally, 
numerous genes related to cellulose, hemicellulose, pectin, and lignin biosynthesis were differentially expressed 
in Wut vs. Uut. A total of eight DEGs were identified to be involved in cell wall in Wut vs. Uut (Fig. 3d). The CSL 
(cellulose synthase-like) gene encoding cellulose synthase-like proteins is an important gene related to cellu-
lose biosynthesis in the cell wall. CSL gene (Pm015115) was down-regulated in weeping stem. Pm023949 (cel-
lulose synthase-like, EG) gene associated with cellulose degradation was also down-regulated in Wut. Instead 
of Pm023569 (PE, pectinesterase), other genes encoding pectin degradation-related proteins (Pm027000 and 
Pm025897), and expansin proteins (Pm019059 and Pm023337) were both down-regulated in weeping stem 
(Fig. 3d). These results suggested significant differences among plant cell wall biosynthesis and degradation 
between upright and weeping stems.

Compared with upright stem, 14 genes involved in phytohormone metabolism and signal transduction were 
differentially expressed (Fig. 3e). Among them, eight DEGs were related to IAA signal transduction, ARG7s 
(Pm021879, Pm021884, Pm021062, Pm021877, Pm021896) and SAUR20 (Pm021015) were down-regulated while 
two GH3.1s (Pm002438, Pm021243) were up-regulated in weeping stems. In addition, GA metabolism gene 
Pm012245 (AOP1) were down-regulated in weeping stems, two ABA biosynthesis genes (Pm001442, Pm00705) 
and three ABA signaling genes (Pm027014, Pm026107, Pm010048) were altered in weeping stems.

Cluster analysis of differentially expressed transcription factors.  Transcription factors (TFs) play 
diverse roles in regulating the activity of many metabolic pathways during plant growth and development. A 
total of 135 TFs were differentially expressed in Wut vs. Uut (Table S11), which represented putative regulators of 
the weeping trait (57 up-regulated and 78 down-regulated in Wut) (Fig. 4). Among the differentially expressed 
TFs, the largest 11 groups of TFs with differential expression were MYB (23), NAC (15), ERF (11), bHLH (9), 
MIKC (9), LBD (8), WRKY (7), C2H2 (7), and C2-like (6), bZIP (6), and GRAS (6).

Differences in response to IAA and GA3 treatments.  In order to investigate the influences of 6 h of 
horizontal placement and water treatment on stems, we sampled after placing weeping and upright stems hori-
zontally and treated them with water for 6 h as Wmock and Umock, respectively. WIAA vs. Wmock and UIAA vs. Umock 
reflected the response of weeping and upright stems to auxin (Fig. S2b, c). Ribosome, plant hormone signal 
transduction, ribosome biosynthesis in eukaryotes, and biosynthesis of secondary metabolites were the four 
pathways with the most significant enrichment in both WIAA vs. Wmock and UIAA vs. Umock. It is worth noting that 
several GA biosynthesis genes, such as GA20OX3, GA3OX1, KAO1, were up-regulated in both WIAA vs. Wmock 
and UIAA vs. Umock, suggesting that IAA treatment might contribute to the GA synthesis in P. mume (Fig. S2 b, c, 
Tables S12–15). However, genes related to ABC transporters were enriched in UIAA vs. Umock but not in WIAA vs. 
Wmock, and phenylpropamoid biosynthesis genes were enriched in WIAA vs. Wmock but not in UIAA vs. Umock (Fig. 
S2 b, c, Table S12-15). Similarly, WGA vs. Wmock and UGA vs. Umock reflected the response of weeping and upright 
stems to gibberellin (Fig. S2d, e, Table S16-19). ABC transporter biosynthesis genes were significantly enriched 
in UGA vs. Umock rather than in WGA vs. Wmock. Those differences were further reflected in comparison of WIAA 
vs. UIAA and WGA vs. UGA.
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Figure 3.   GO, KEGG cluster and enrichment pathway analysis. (a) GO category enrichment of DEGs in Wut 
vs. Uut. (b) KEGG category enrichment of DEGs in Wut vs. Uut; The y-axis indicates the pathway, and the x-axis 
indicates the enrichment factors corresponding to the pathway. The dot size represents the number of DEGs in 
the pathway, and the dot colour represents the P-value. (c) Clustering of DEGs involved in phenylpropanoid 
biosynthesis in upright and weeping stems of P. mume. F5H, ferulate 5-hydroxylase; 4CL, 4 coumarate CoA 
ligase; HCT, hydroxycinnamoyl transferase; CCoAOMT, Caffeoyl-CoA O-methytransferase; CCR​, Cinnamoyl 
CoA reductase; CAD, cinnamyl alcohol dehydrogenase; PLR, pinoresinol-lariciresinol reductase; POD, peroxidase. 
The red numbers represent the number of DEGs. (d) Clustering of DEGs involved in plant cell wall formation 
in upright and weeping stems of P. mume. CSLB, cellulose synthase-like B; EG, cellulose synthase-like; PE, 
pectinesterase; PG, polygalacturonase; XTL, xyloglucan galactosyltransferase; EXP, expensin; (e) Clustering of 
DEGs involved in phytohormones in upright and weeping stems of P. mume. ARG​, indole-3-acetic acid-induced 
protein; SAUR, auxin-responsive protein; GH3.1, indole-3-acetic acid-amido synthetase; AOP1, 2-oxoglutarate-
dependent dioxygenase AOP1; ABA2, ABA deficient 2; CYP707A2, cytochrome P450, family 707, subfamily A, 
polypeptide 2; PP2C, Protein phosphatase 2C; USP, universal stress protein; LOX, lipoxygenase. Red and blue 
indicate up- and down-regulated genes, respectively (fold change).
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A total of 896 and 1, 311 DEGs were found in WIAA vs. UIAA and WGA vs. UGA, respectively (Fig. S1a, b). 
KEGG pathway enrichment analysis showed that diterpenoid biosynthesis (ko00904) and phenylpropanoid 
biosynthesis (ko00940) were significantly enriched pathways in WIAA vs. UIAA, but not in Wut vs. Uut and Wmock vs. 
Umock (Fig. 5, Fig. S2). Most of IAA signal transduction genes (ARG7s, IAA30, GH3.1, and SAUR71), GA-related 
genes (GA20OX3s, GA20OX1, GA30OX1s, GA20OX2, GA2OX8, AOP1, GAIs, and RGL) and phenylpropanoid 
biosynthesis genes (F5H, CCoAOMT, CCR​, CADs, and POD) were down-regulated in WIAA (weeping stem on 
IAA treatment) compared to UIAA (Fig. 6a). Those results above suggested different responses to IAA treatment 
between weeping and upright stems. 

Genes involved in GA metabolism (GA20OX3s, GA2OX8, and AOP1) and GA signal transduction (GAI) gene, 
were both down-regulated in WGA compared to UGA (Fig. 6b, Table S7). In addition, pathways of ABC transport-
ers (ko02010), glycosylphosphatidylinositol (GPI)-anchor biosynthesis (ko00563) were enriched in WGA vs. UGA 
rather than in Wut vs. Uut and Wmock vs. Umock (Fig. 5a,b). Nine genes encoding ABC transporters, including four 
ABCB genes that were reported to participate in the hormone transport, having changed transcript levels in WGA 
vs. UGA, while only three ABC transporter genes (ABCB10, ABCB26, ABCF4) changed in WIAA vs. UIAA. Four 
genes related to GPI—anchor biosynthesis were up-regulated in WGA (PIGO, PIGT, PIGX, and PIGL). Whole-
wide genome predicted GPI-anchored proteins including proteins involved in cellulose metabolism (EG, CSL, 
COBRA-like), pectin metabolism (UGDH, PG, PE, PL, PEM), lignin biosynthesis (laccase-7), and ABC transporter 
(ABCB4) (Table S20). Moreover, the expression of four and two genes related to cellulose and pectin catabolism 
changed in WIAA vs. UIAA, respectively (Fig. 6a); the expression of eight and five genes related to cellulose and 
pectin metabolism changed, respectively, in WIAA vs. UIAA (Fig. 6b).

Validating gene expression patterns by qRT‑PCR.  To further validate the expression patterns of can-
didate genes, qRT-PCR was performed. Ten genes involved in phenylpropanoid metabolism (Pm021214), flavo-
noid metabolism (Pm023086), cell wall metabolism (Pm027000, Pm025897, Pm019059, Pm015115, Pm023949) 
as well as hormone metabolism and signal transduction (Pm021879, Pm021015, Pm012245) pathways, and two 
genes (Pm024167, Pm024165) located on the region of 10.56–11.68 Mb of chromosome 7, which were reported 

Figure 4.   Clustering of differentially expressed transcription factors in upright and weeping stems of P. mume. 
Red and blue indicate up- and down-regulated genes, respectively, in the three comparisons (log10-fold change).
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to be closely related to weeping traits, were selected to examine their expression levels in upright and weep-
ing stems of P. mume (Fig. S4). The expression patterns of all 12 genes, Pm021214 (CAD), Pm023086 (PLR), 
Pm027000 (PE), Pm025897 (PG), Pm019059 (EXP), Pm015115 (CSL), Pm023949 (EG), Pm021879 (AGR7), 
Pm021015 (SAUR20), Pm012245 (AOP1), Pm024167 (SWEET4), and Pm024165 (NPL6), were in accordance 
with the trend of the expression data obtained by RNA-Seq.

Discussion
Prunus mume with weeping trait has highly ornamental and economic value because of its unique and weeping 
branch type. We found very different responses to IAA and GA3 between upright and weeping stems, and the 
weeping stem was deficient in phloem fibres and less developed in xylem compared with the upright stem. Moreo-
ver, the results of transcriptome analysis also suggested that several genes involved in cellulose, pectin and lignin 
biosynthesis, as well as multiple hormone metabolism and signal transduction pathway genes, were differentially 
expressed between the two stem types. Furthermore, after application of IAA, genes related to phenylpropanoid 
biosynthesis pathways have lower transcript levels in weeping stems, and most of IAA signal transduction genes, 
including ARG7s, IAA30, GH3.1, and SAUR71, have lower transcript levels in weeping stems than in upright 
stems. These results may be related with smaller angles of weeping stems responded to IAA treatment. After 
application of GA3, GAI, a gene of DELLA family that encodes a GA signal suppressor, has higher transcript levels 
in weeping stems than in upright stems, which is consistent with the results that weeping stems changed smaller 
angles than upright stems to respond to GA3 treatment. In addition, the transcript levels of phenylpropanoid 
biosynthesis, ABC transporters, and Glycosylphosphatidylinositol (GPI)—anchor biosynthesis genes vary in 
UGA and WGA, and these genes may contribute to the differences in GA response between two stem types of P. 
mume. Thus, pendulous-stem traits may be due to the inability to respond to plant hormone signals normally and 
abnormal development of xylem and phloem fibres, thus resulting in reduced mechanical support and inability 
to keep growing upright. A hypothetical model for weeping trait formation in P. mume is summarized as Fig. 7.

Stem cross-sections displayed that although phloem portion of weeping stem increased, the xylem and 
phloem fibre portion of weeping stem was reduced compared with upright stem (Fig. 2). Instead of playing a 
mechanical support role, plant fibre with constitutively formed tertiary cell wall (G3 layer) inside the secondary 
cell wall was also reported to serve as ‘plant muscles’ and pull upward stem by fibre-cell shortening24,25. Mellero-
wicz et al. (2008) suggested that the structure of noncellulosic polysaccharides, such as hemicellulose and pectin, 
entrapped by laterally interacting cellulose microfibrils results in the tension to underpin the unique mechanical 
properties of fibres25. Xyloglucan, a kind of hemicellulose, was reported to be involved in restoring the vertical 
position of inclined poplar trees25. Although hemicellulose and cellulose contents are not significantly different 
in the abaxial side between weeping and upright stems, in the adaxial side, hemicellulose and cellulose contents 
in weeping stems were both higher than in upright stems26. The expression of several genes involved in cellulose 
(Pm0150015, Pm023949) and pectin (Pm023569, Pm027000, Pm025897) metabolism as well as other cell wall 
proteins (Pm019059, Pm023337) changed in weeping stems.

Lignin is another material that provides mechanical strength in the walls of sclerenchyma cells, such as 
tracheary elements26. In upright stems, the lignin content in the abaxial side is higher than that in adaxial side, 
which presented an opposite trend in weeping stem. In the adaxial side, the lignin content of weeping branches 
was higher than that in upright ones; in the abaxial side, the lignin content in weeping stems was lower than that 
in upright stems26. Transcriptome analysis also suggested that a number of genes related to lignin biosynthesis, 
such as F5Hs, CCR​, CADs, POD, were down-regulated in weeping stems (Wut vs. Uut), which may lead to lower 
lignin contents in weeping stems27–30. These results suggested that secondary growth changed, resulting in fewer 
xylem and phloem fibres in weeping stems. The decrease in xylem and phloem fibres in stems may reduce the 
mechanical support and affect the negative geotropic growth in weeping stems. MYB, NAC, AP2/ERF, bHLH, 

Figure 5.   KEGG analyses reveal the differences in response of upright and weeping stems to IAA and GA 
treatments. (a) KEGG category enrichment of DEGs in WIAA vs. UIAA. (b) KEGG category enrichment of DEGs 
in WGA vs. UGA. The y-axis indicates the pathway, and the x-axis indicates the enrichment factors corresponding 
to the pathway. The dot size represents the number of DEGs in the pathway, and the dot colour represents the 
P-value.
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LBD, WRKY, C2H2 were the transcription factor families with the largest number of DEGs between weeping 
and upright stems that might be involved in regulating weeping stem formation. The biosynthesis of lignin and 
cellulose is spatially and temporally regulated and is strongly associated with the sclerenchyma cell differentiation 

Figure 6.   Clustering of DEGs in several pathways enriched in WIAA vs. UIAA and WGA vs. UGA. (a) DEGs 
involved in phytohormones, cell wall, flavonoid, and phenylpropanoid metabolism in WIAA vs. UIAA. (b) 
DEGs involved in phytohormones, cell wall, ABC transporter, Glycosylphophatidylinositol (GPI)—anchor, 
phenylpropanoid metabolism in WGA vs. UGA. Red and blue indicate up- and down-regulated genes, respectively 
(fold change). ARG​, indole-3-acetic acid-induced protein; GH3.1, indole-3-acetic acid-amido synthetase; SAUR​
, auxin-responsive protein; UGT74E2, uridine diphosphate glycosyltransferase 74E2; TAA1, L-trytophan-pyruvate 
aminotransferase; GA20OX3, gibberellin 20 oxidase 2; GA3OX1, gibberellin 3 oxidase 1; GA2OX8, gibberellin 
2-beta-dioxygenase 8; AOP1, inactive 2-oxoglutarate-dependent dioxygenase AOP2; GAI, gibberellic acid 
insensitive; RGL, RGA (repressor of GA)-like; USP, universal stress protein: ABA2, ABA deficient 2; UGT71B6, 
UDP-glucosyl transferase 71B6; CKX3, cytokinin oxidase 3; UGT85A1, uridine diphosphate glycosyltransferase 
85A1; UGT​, UDP-glucosyl transferase; IPT5, adenylate isopentenyltransferase 5; ARR​, response regulator; AHP: 
histidine-containing phosphotransfer 4; UGT74F2, UDP-glucosyltransferase F2; ERF098, ethylene-responsive 
transcription factor 098; ACO1, ACC oxidase 1; SQE3, squalene epoxidase 3; CYP72A8, cytochrome P450, family 
72, subfamily A, polypeptide 8; BGLU, β-glucosidase; EG, cellulose synthase-like; COBL, COBRA-like protein; 
CSLG, cellulose synthase-like G; XTH, xyloglucan endotransglucosylase; Xln, endo-1,4-beta-xylanase; Xyl, beta-
xylosidase; PL, pectate lyase; PE, pectinesterase; PG, polygalacturonase; PMEI, pectinesterase inhibitor; PNP, plant 
natriuretic peptide; EXP, expansin; AGP, arabinogalactan protein; ERG, glycine-rich cell wall structural protein; 
SKS, SKU5 similar 5; UGT79B6, UDP-glycosyltransferase 79B6-like; DFR, dihydroflavonol-4-reductase-like; 
DFRA, anthocyanidin reductase-like; UGT94E5, beta-D-glucosyl crocetin beta-1,6-glucosyltransferase-like; PKS5, 
polyketide synthase 5-like; BIS1, 3,5-dihydroxybiphenyl synthase-like; SRG1, protein DMR6-LIKE OXYGENASE 
2-like; AS, hydroquinone glucosyltransferase-like; CYP71A1, cytochrome P450 CYP736A12-like; SRG1, senescence-
related gene 1; CODM, codeine O-demethylase-like; H6H, protein DOWNY MILDEW RESISTANCE 6-like; 
FLS, flavonol synthase/flavanone 3-hydroxylase-like; GT7, UDP-glucose flavonoid 3-O-glucosyltransferase 7-like; 
F5H, ferulate 5-hydroxylase; CCoAOMT, Caffeoyl-CoA O-methytransferase; CCR​, Cinnamoyl CoA reductase; 
CAD, cinnamyl alcohol dehydrogenase; POD, peroxidase; 4CL, 4 coumarate CoA ligase; HCT, hydroxycinnamoyl 
transferase; ABC: ATP Binding Cassette transporter; PIG, phosphatidylinositol-glycan biosynthesis protein. Red and 
blue indicate up- and down-regulated genes, respectively (fold change).
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during plant growth and development. Previous studies have reported that several transcription factors, such as 
WRKY31–33, bHLH34, and C2H2-type zinc finger proteins35, MYB36,37, and NAC38,39, can regulate the temporal 
and spatial expression of secondary cell wall synthesis genes. There are 23 MYB, 15 NAC, and seven WRKY, nine 
bHLH and seven C2H2 DEGs in Wut vs. Uut, respectively.

Plant architecture is controlled by auxin and gibberellin3,4,6,26. Auxin plays key roles in regulating meristem 
development and secondary growth processes. A large number of genes associated with auxin and gibberellin 
show altered expression levels in S. matsudana with the weeping trait3. Distribution of GA in adaxial and abaxial 
shoots is uneven in weeping mulberry (Morus alba var. pendula) and P. persica var. pendula with the weeping 
trait4, 6. These findings have suggested that auxin and gibberellin are associated with weeping trait in multiple 
plants. Zhang et al. analyzed the hormone contents of upright and weeping stems in P. mume by LC–MS/MS26. 
In annual stems, IAA contents in weeping stems were higher than that in upright stems both in abaxial side 
and adaxial side. Although GA3 contents were not different between weeping and upright branches in base, the 
contents in the tip and middle of weeping branches were higher than that in upright branches. GA3 contents in 
the tip were higher than that in the middle and base of both weeping and upright branches24.

In P. mume, weeping stems had smaller and larger angles than upright stems in response to IAA and GA3 
treatment, respectively. Additionally, transcriptome analysis also suggested that multiple hormone metabolism 
and signal transduction pathway genes were differentially expressed between two stem types. The differences in 
hormone content, hormone responses, and transcriptome between weeping and upright stems showed that IAA 
and GA participated in the formation of weeping trait in P. mume.

Auxin is a typical phytohormone involved in plant developmental processes such as embryo morphogenesis, 
cell division and elongation, vascular tissue differentiation, lateral root initiation, geotropism and phototropism, 
among others40–46. Previous studies have revealed that IAA, ARG, GH3.1, and SAURs are key proteins affect-
ing gravitropic and auxin-mediated growth responses in Arabidopsis42–44. The asymmetric expression of SAUR​ 
genes in Arabidopsis facilitates gravitropism and phototropism of hypocotyls by promoting cell elongation45, 

46. Several SAUR family genes, including ARG7s (indole-3-acetic acid-induced protein) (Pm021879, Pm021884, 
Pm021062, Pm021877, Pm021896) and SAUR20 (SMALL AUXIN UP RNA 20, Pm021015), were down-regulated 
in weeping stems (Wut vs. Uut) (Fig. 4). GH3 genes, encoding IAA conjugating enzyme, participates in regulat-
ing auxin homeostasis. Overexpression of GH3 genes reduced auxin levels and causes a dwarfed phenotype in 
Arabidopsis47. Two GH3.1 genes (Pm002438, Pm021243) were up-regulated in weeping stems. Following IAA 
treatment, the transcript levels of six auxin-related genes in weeping stems were lower than that in upright stems 
(WIAA vs UIAA), including IAA30 (Pm012868), ARGs (Pm021896, Pm021657), GH3.1 (Pm002438), and SAURs 
(Pm021658, Pm013099). LAZY1 and TAC1 were reported to regulate weeping traits by regulating polar auxin 
transport and light signal response in multiple species12–17, their expression levels were not significantly different 
between upright and weeping stems, but those genes still possibly contribute to the weeping trait via differential 
expression between adaxial and abaxial sides of the branch or their protein function is affected by gene muta-
tion, such as single-nucleotide polymorphisms (SNPs) and insertion/deletion (indel) variants in weeping stems. 
For example, compared to standard peach growth habit, a variable simple sequence repeat (SSR) located within 
TAC1 was disrupted and contributed to the protein structure changed in pillar peach trees48. In rice, an important 
mutation from AGGA to GGGA in the splicing site of the intron resulted in a tac1 mutant with compact plant 
architecture and narrower tiller angle49.

Previous studies showed that auxin can promote the GA biosynthesis by maintaining the transcript level 
of PsGA3ox1 in shoots of pea (Pisum sativum)50. After applying IAA instead of water on the stem, several GA 
biosynthesis genes were both up-regulated and diterpenoid biosynthesis pathways were enriched in WIAA vs. 
Wmock and UIAA vs. Umock, suggesting that IAA treatment may promote the GA synthesis in two kinds of stems 
(Table S12, Table S14, Fig. S2b, c). The diterpenoid biosynthesis genes were enriched and GA synthesis genes 

Figure 7.   Summary of transcription-level regulation of the formation of the weeping trait in P. mume. The 
solid black line indicates direct control, the black dotted line indicates indirect regulation, and the solid blue line 
indicates post-transcriptional modification of proteins.
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were down-regulated in WIAA vs. UIAA (Fig. 6a), indicating that IAA promotes GA synthesis in different degrees 
between weeping and upright stems.

Gibberellins (GAs) affect plant architecture by stimulating cell elongation and division in the stem51. GA 
metabolism gene AOP1, a homologous gene of At1g52800 gene which encodes a 2-oxoglutarate-dependent 
dioxygenase AOP1 that is similar to gibberellin 20-oxidase52, was up-regulated in weeping stems. A putative 
gene encoding 2OG—Fe(II) oxygenase controlled the columnar—type growth in apple53. In addition, GA2OX8, 
a homologous gene of AtGA2OX8 in Arabidopsis, was down-regulated in weeping stems. AtGA2OX8 can nega-
tively regulate the synthesis of bioactive GA via 2β-hydroxylated C20-GAs (GA12 and GA53) in Arabidopsis. 
Because 2β-hydroxylated C20-GA precursors can not be converted to activate GAs, overexpression of AtGA2ox8 
results in a decrease in active GA levels54. In weeping stems, GA biosynthesis genes were up-regulated and GA 
catabolism genes were down-regulated. Oddly, however, GA synthesis genes (GA20OX3 and GA3OX1), GA 
signal transduction gene GAI, and GA degradation genes, GA2OX8 and AOP1, were down-regulated in both 
WIAA vs. UIAA and WGA vs. UGA. These results may associate with the phenotypic hormone response that weep-
ing stems were more sensitive to gibberellin treatment than upright stems. Previous studies showed that GA 
signals were associated with cell wall development in plants. GAI is a DELLA protein and a critical repressor 
of the GA response in Arabidopsis and the gai-1 mutant, which exhibits excessive GA synthesis, resulting in a 
cytoskeletal defect and, thus, a reduction of cell length and thickness and cellulose and hemicellulose in the cell 
wall. Gibberellic acid can induce highly significant increases in cell diameter and wall thickness of problem fibres 
in Triticum aestivum55. In addition, after GA3 treatment, four genes involved in GPI-anchor biosynthesis had 
higher transcript levels in weeping stems than in upright stems. A large number of proteins related to lignin, 
cellulose, and pectin biosynthesis were found in predicted GPI-anchor proteins in P. mume, suggesting that GPI-
anchored protein modification may connect with cell wall metabolism by regulating the activities of cellulose 
and pectin metabolism proteins. These features indicated that GA might participate in the biosynthesis of lignin 
and plant cell wall in P. mume, but the regulation mechanism still needs further study. A total of 11 genes are 
expressed differentially in three comparisons and ABC transporter pathway was significantly enriched in WGA 
vs. UGA. ABCB1, ABCB4, ABCB10, ABCB11, ABCB14, ABCB15, ABCB19, and ABCB21, members of ABCB 
subfamily, have been well characterized as auxin transporters and several ABCB genes are involved in stem 
development in Arabidopsis56–58. XLOC_004438, Pm008507, and Pm008652 were homologous genes of ABCB10, 
ABCB11, and ABCB4 in Arabidopsis, respectively, which were both down-regulated in WGA vs. UGA. In Arabi-
dopsis, AtABCG14/36/38, belonging to ABCG subfamily, also joined in the transport of hormones and growth-
regulating substances. AtABCG14 could deliver cytokinin from roots to shoots59, while AtABCG36 took part in 
regulating the intracellular accumulation of indole-3-butyric acid (IBA), the storage precursor of indole-3-acetic 
acid (IAA), by mediating its efflux60. Moreover, several ABCG transporters also regulated vascular development. 
AtABCG29 participated in the lignin monomer transport process61, and ABCG9/11/14 were essential to vascular 
development62. In P. mume, the expression level of Pm004997, a homology gene of AtABCG39, was decreased 
2.8- and 5- fold in Wut vs. Uut and WGA vs. UGA, respectively (Table S5, Table S7, Fig. 6b).

Our recent studies revealed that weeping trait might be controlled by a major gene and multiple minor genes 
based on the character separation ratio of F1 generation26. In order to investigate the major gene that controlled 
the weeping trait, several analyses were conducted. QTL analysis of F1 generation showed that weeping trait was 
associated with the genes in 7.80–87.65 cM of chromosome 7, nearly covered chromosome 7. In order to find 
the exact location of the major locus, Mutmap strategy and calculation of the recombination rate between the 
weeping trait marker (marker 0) and other SLAF markers were conducted. The results showed that the major gene 
that controlled weeping trait might be located on the region of 10.56–11.68 Mb of chromosome 7. A total of 28 
DEGs, including PEM (pectin methylesterase, Pm023569), EXLB1 (Pm023337), EG (endoglucanase, Pm023949), 
between upright and weeping stems on the chromosome 7 were extracted and listed in Table S21. Importantly, 
three DEGs (Pm024165, Pm024167, Pm024338) located on the region of 10.56–11.68 Mb of chromosome 7 
and might be candidate major genes. Pm024165 (NLP6, NIN-LIKE PROTEIN 6) is a transcription factor and 
the homology with AT1G64530 genes that regulate Nitrate signal in Arabidopsis63; Pm024338 encodes a C2 and 
GRAM domain-containing protein which is homologous with AT5G50170 in Arabidopsis, a function unknown 
protein. Pm024167 is a homology gene of Arabidopsis SWEET4 which located on the plasma membrane and 
served to transport glucose from source organs to sink tissues through the phloem translocation pathway. The 
down-regulated expression and knock-down of SWEET4 in Arabidopsis leaded to the defects in glucose and 
fructose transporter and reduction in glucose and fructose contents64. Glucose is a raw material of polysaccha-
ride synthesis, and its decreased transcript levels may influence the synthesis of hemicellulose, cellulose, and 
pectin, leading to the weeping traits in P. mume. Pm024165, Pm024167, Pm024338 may be the candidate genes 
that lead to the formation of weeping stems in P. mume, but whether one of the three genes is the weeping trait 
major gene still need further study, because some factors, such as protein structure and protein post-translational 
modification, also affect protein function and plant phenotype. On the other hand, owing to phytohormones, 
cell wall, and phenylpropanoid metabolism pathways may be influenced in weeping stems, so DEGs involved in 
those pathways in Wut vs. Uut may work as candidate minor genes to contribute to the weeping trait.

Methods
Plant materials and treatments.  One month after bud germination in spring, elongating juvenile stems 
shorter than 10 cm from seven upright and weeping grafting progenies were selected from five year old F1 popu-
lation of P. mume ’Liuban’ × ’Fentai Chuizhi’ in greenhouse of Beijing Forestry University, respectively. Lanolin 
containing water, 2 mg/L GA3 and IAA were applied to the adaxial side of the stems in the elongation zone 2 cm 
from the stem tip. The delayed photography of 400 min after treatment were taken by Canon EOS 80D camera 
(Canon, Japan), and Image J software (National Institute of Health, USA) was used to compare the photos of 0 
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and 360 min (6 h) and to calculate their deflection angles (Fig. S5). After 6 h of water, IAA or GA3 treatment, 
seven stem tips 1 cm in length from upright and weeping progenies were collected and mixed for RNA-seq with 
three biological repeats. All samples were immediately frozen in liquid nitrogen and stored at -80 °C for further 
usage.

Histochemical and histological analyses.  To observe the anatomical differences of the lignified stem 
between weeping and upright progenies, 0.5-cm stems in the middle of the elongating annual upright and weep-
ing stems of P. mume were fixed in formaldehyde-acetic acid solution [formaldehyde:glacial acetic acid: 70% eth-
anol (1:1:18)] for 24 h, dehydrated in a graded ethanol series, and embedded in paraplast. The samples were 
sectioned at a thickness of 8 μm using a Leica RM2235 rotary microtome. The sections were stained with safra-
nin and fast green and then screened using a Pannoramic SCAN scanner (3DHISTECH, Budapest, Hungary). 
The free-hand section from lignified annual stem with upright and weeping traits, respectively, was stained with 
hydrochloric acid—phloroglucinol solution and then observed and photographed under a stereoscopic micro-
scope (Leica EZ4 HD) (Leica, Germany). Stem cross section, xylem, phloem, and pith areas were measured 
using Image J software, and the calculation formulas of different tissue proportions are as follows:

RNA extraction, library construction, RNA‑seq and genome alignment.  Total RNA of all stem 
samples was extracted with the Plant Total RNA Kit (Omega Bio-Tek, Norcross, GA, USA). RNA concentra-
tion and quality were determined using a NanoDrop ND1000 (Thermo Scientific, USA) and electrophoresis on 
formaldehyde-containing 1% agarose gels. Approximately 3 μg of total RNA from each sample (Uut, Wut, UIAA, 
WIAA, UGA, and WGA) was enriched by Oligo (dT) beads and broken into short fragments for library construc-
tion according to operating instructions. Then the cDNA library was used for sequencing by Illumina HiSeq 
2500 (Illumina, Santiago, California, USA). The obtained clean sequencing data were aligned with the P. mume 
genome using TopHat2 (http://ccb.jhu.edu/softw​are/topha​t/index​.shtml​)65.

All assembled unigenes were BLASTed in KEGG ortholog database (KO) and Gene onthology (GO) data-
bases using BLAST2GO with a cut-off E-value of 10–6 66–69. Differentially expressed genes (DEG) were identified 
when the FDR (false discovery rates) < 0.05 and absolute value of |log2 Fold Change|≥ 1. Furthermore, DEGs 
were also annotated to perform functional category analysis using the MapMan Mercator tool (http://mapma​
n.gabip​d.org /web/guest/mercator).

Validation of RNA‑seq data by qRT‑PCR.  The transcript levels of 12 genes in six tissues (Uut, Wut) were 
examined using qRT-PCR. Total RNA was extracted using the RNA extraction kit (Tiangen, Beijing, China) 
following the manufacturer’s instructions to synthesize first-strand cDNA using the PrimerScript RT Reagent 
Kit (TaKaRa, Dalian, China). Gene-specific primers were designed by IDT (https​://sg.idtdn​a.com/scito​ols/Appli​
catio​ns/RealT​imePC​R/) based on the gene sequences from the P. mume genome, which are listed in Table S22. 
The fluorescent dye SYBR Green II (TaKaRa) was applied in the detection system, and PmPP2A was selected as a 
reference gene according to previous reports70,71. A 7500 Real-Time PCR System (Applied Biosystems, USA) was 
used to conduct a three-step PCR procedure. Three biological replicates were carried out, and transcript levels 
were calculated by the 2−ΔΔCt method72.

GPI—anchored protein prediction.  Proteins containing ω—site were predicted among whole-wide 
genome of P. mume using software PredGPI (http://gpcr.bioco​mp.unibo​.it/predg​pi/pred.htm) with specific-
ity ≥ 99.573.

Statistical analysis.  All data in the text were tested by analysis of variance (ANOVA) using SPSS version 
11.0. Least significant differences (LSDs) were calculated to compare significant effects at the 5% level.

Conclusions
The morphological and histochemical characteristics of the upright and weeping stems of P. mume revealed 
defects in the xylem and phloem fibres in weeping stems. Compared to upright stems, weeping stems were more 
sensitive to GA3 and less sensitive to IAA. Furthermore, comparative analysis of transcriptome data revealed that 
phenylpropanoid biosynthesis, cellulose and pectin biosynthesis, and phytohormone signal transduction path-
ways were altered in two stem types. Most of IAA signal transduction genes, including ARF7s, IAA30, GH 3.1, and 
SAUR71, and GA metabolism genes, have lower transcript levels in weeping stems than in upright stems. After 
application of GA3, genes involved in phenylpropanoid biosynthesis, ABC transporters, and Glycosylphosphati-
dylinositol (GPI)—anchor biosynthesis genes were differentially expressed between upright and weeping stems. 
Our study provides a theoretical reference for the molecular mechanism analysis of weeping trait in P. mume.

(1)Xylem area proportion =

(

Xylem area
)

/(Stem cross sectional area)

(2)Phloem area proportion = (Phloem area)/(Stem cross sectional area)

(3)Pith area proportion = (Pith area)/(Stem cross sectional area)

(4)Phloem fibre area proportion = (Phloem fibre area)/(Stem cross sectional area)

http://ccb.jhu.edu/software/tophat/index.shtml
http://mapman.gabipd.org
http://mapman.gabipd.org
https://sg.idtdna.com/scitools/Applications/RealTimePCR/
https://sg.idtdna.com/scitools/Applications/RealTimePCR/
http://gpcr.biocomp.unibo.it/predgpi/pred.htm
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