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The earth’s gravity field recovery 
using the third invariant 
of the gravity gradient tensor 
from GOCE
Lin Cai1,2*, Xiaoyun Wan3, Houtse Hsu4, Jiangjun Ran5, Xiangchao Meng6, Zhicai Luo1,2 & 
Zebing Zhou1

Due to the independence of the gradiometer instrument’s orientation in space, the second invariant 
I
2
 of gravity gradients in combination with individual gravity gradients are demonstrated to be valid 

for gravity field determination. In this contribution, we develop a novel gravity field model named 
I3GG, which is built mainly based on three novel elements: (1) proposing to utilize the third invariant 
I
3
 of the gravity field and steady-state ocean circulation explorer (GOCE) gravity gradient tensor, 

instead of using the I
2
 , similar to the previous studies; (2) applying an alternative two-dimensional 

fast fourier transform (2D FFT) method; (3) showing the advantages of I
3
 over I

2
 in the effect of 

measurement noise from the theoretical and practical computations. For the purpose of implementing 
the linearization of the third invariant, this study employs the theory of boundary value problems 
with sphere approximation at an accuracy level of O(J2

2

· Tij ) . In order to efficiently solve the boundary 
value problems, we proposed an alternative method of 2D FFT, which uses the coherent sampling 
theory to obtain the relationship between the 2D FFT and the third invariant measurements and 
uses the pseudo-inverse via QR factorization to transform the 2D Fourier coefficients to spherical 
harmonic ones. Based on the GOCE gravity gradient data of the nominal mission phase, a novel global 
gravity field model (I3GG) is derived up to maximum degree/order 240, corresponding to a spatial 
resolution of 83 km at the equator. Moreover, in order to investigate the differences of gravity field 
determination between I

3
 with I

2
 , we applied the same processing strategy on the second invariant 

measurements of the GOCE mission and we obtained another gravity field model (I2GG) with a 
maximum degree of 220, which is 20 degrees lower than that of I3GG. The root-mean-square (RMS) 
values of geoid differences indicates that the effects of measurement noise of I3GG is about 20% lower 
than that on I2GG when compared to the gravity field model EGM2008 (Earth Gravitational Model 
2008) or EIGEN-5C (EIGEN: European Improved Gravity model of the Earth by New techniques). Then 
the accuracy of I3GG is evaluated independently by comparison the RMS differences between Global 
Navigation Satellite System (GNSS)/leveling data and the model-derived geoid heights. Meanwhile, 
the re-calibrated GOCE data released in 2018 is also dealt with and the corresponding result also 
shows the similar characteristics.

The GOCE (Gravity Field and Steady-state Ocean Circulation Explorer) satellite is the first mission to apply 
the principle of the satellite gravity gradiometry in space to provide the Earth’s gravity field models on a global 
scale with high spatial resolution and very high  accuracy1. For this purpose, GOCE is equipped with a sensitive 
electrostatic gravity gradiometer (EGG), which consists of six electrostatic accelerometers and measures the 
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gradient tensor of the Earth’s gravity  field2,3. Much effort has been made to recover the Earth’s gravity field from 
the gravity gradients data collected by GOCE, especially for the main diagonal elements of the gravitational 
 tensor4–6. It is known that the gravity gradients are linearly linked with the gravity potential coefficients, which 
are usually solved by the space-wise or time-wise  approaches7,8. However, when dealing with the gravity data 
of GOCE, it is problematic when transforming the gravity gradients from the gradiometer reference frame 
(GRF) to the other reference frames by applying the star camera data. The error in the transformation among 
different coordinate systems is investigated by the  studies9–11, which demonstrate that the GOCE gradiometer 
orientation, due to errors in the reconstitution procedure of the satellite’s attitude, becomes one of the main error 
sources in the GOCE data processing, if the root mean square (RMS) of attitude errors exceeds 3–5 arc-sec. In 
order to avoid these errors, the invariant approach for the satellite gravity gradiometry (SGG) analysis has been 
 proposed12–14. A significant progress has been made by the use of the perturbation theory for formulating the 
linearized model, which converts the non-linear least-squares minimization problem to a linear one with an 
acceptable computational costs, i.e. the additional computational effort per iteration reduces to reference gravity 
gradients  synthesis15. Recently, the researchers performs the linearization for the second invariant I2 from the 
Taylor expansion and obtained a gravity field model (IGGT_R1) from GOCE  observations16.

Because the nonlinear effects of the third invariant I3 are more complicated than that of the second invari-
ant I2 , the existing results of gravity field determination from invariant are mostly based on I2 . However, it is 
found that I3 has an advantage over I2 in the effect of measurement noise under the condition that the meas-
urement noise of gravitational gradient tensor have different levels like the GOCE mission (see more details in 
the “Results” and “Methods” sections). On the other hand, it is possible to provide a viable alternative tool and 
viewpoint for studies on satellite gravity gradients from the third invariant I3 . For these reasons, we recover 
a novel gravity field model named I3GG from the third invariant I3 of the GOCE gravity gradient tensor and 
present the analysis of its characteristics by comparing with other models.

Because the third invariant I3 is the sum of five products of three gravitational tensor coefficient matrix ele-
ments and the second one is only the sum of the six products of two gravitational tensor, the linearization of I3 
is more difficult than that of I215. In order to overcome this problem, this study employs the theory of bound-
ary value problems with sphere  approximation11,17, which formulates the relation between the invariant and 
the second-order radial derivatives of the gravitational potential with a relative accuracy of 10−9 . To resolve 
this boundary value problem, we apply the 2D FFT method to derive a new gravity field model from the third 
invariant. Generally, there are two major steps to implement the 2D FFT  method18: (1) obtaining the 2D Fourier 
spectrum and (2) transforming them into spherical harmonic coefficients. For the sake of the more efficient 
performance, the method we presented in this study makes modifications to both steps. In the first step, we use 
the coherent sampling theory instead of spherical harmonic integral discretization to obtain the relationship 
between the 2D FFT and the third invariant measurements. This sampling theory is applied to avoid the picket 
and spectral leakage effects, which leads to an explicit expression between spectrum values and the spatial signal. 
In the second step, we transform the 2D Fourier coefficients to spherical harmonic ones by using the pseudo-
inverse via QR factorization, rather than computing the transformation integrals by recursions or numerical 
integrations. This contribution presents a new processing strategy to obtain a novel global gravity field model 
from the third invariant of the GOCE gravity gradient tensor based on a modified 2D FFT method, which can 
be regarded as an alternative approach to analysis the GOCE data analysis.

Results
The gravity field determination from the third invariant depends on two kinds of data, i.e. the GOCE grav-
ity gradient measurements and the synthetic gravity gradients derived from a priori gravity field. The GOCE 
gravity gradient measurements of the components Vxx , Vyy , Vzz and Vxz in the GRF are taken from the Level-2 
product EGG_NOM_2 (ESA) from November 1, 2009 to August 1, 2012. The synthetic gravity gradients of the 
components Vxy and Vyz are derived from the global gravity field model EIGEN-5C. Then a new gravity field 
model (I3GG) is obtained by applying the theory of boundary value problems for the third invariant with sphere 
approximation and the modified 2D FFT method proposed based on the coherent sampling theory and the 
pseudo-inverse via QR factorization. Details are given in the “Methods” section.

In order to evaluate its performance, the EGM2008 is taken as the reference and then we compare the 
error degree amplitudes between I3GG and other models, including the widely-used GOCE models (i.e. GO_
CONS_GCF_2_DIR_R2 (DIR_R2), GO_CONS_GCF_2_TIM_R5 (TIM_R5) and GO_CONS_GCF_2_SPW_R5 
(SPW_R5)), EIGEN-5C and IGGT_R1, as shown in Fig. 1. It should be pointed out that models DIR_R2, TIM_
R5, SPW_R5 and IGGT_R1 are developed only from GOCE measurements and the regularization is applied 
to the coefficients of TIM_R5, SPW_R5 and IGGT_R1 at degrees above 200 while DIR is recovered without 
 regularization16,19, which causes a larger maximum degree of recovery in the spectrum. From Fig. 1, it is seen 
that the maximum recovery degree of I3GG is 240, corresponding to a spatial resolution of 83 km at the equator. 
Since the signals of the recovered gravity model below the bandwidth of the band-pass filter mainly come from 
the reference model, results show that the I3GG and EIGEN-5C are relatively consistent at degrees below 27 
( ≈ 5 mHz). The degree amplitudes of GOCE-derived models become higher than EIGEN-5C in the transition 
band (degrees 28–69). For degrees (70–200), all models except EIGEN-5C are very close to each other because 
that the signals in this bandwidth are mainly provided by GOCE gravity gradients measurements. The bumps 
of these curves are related to the improvements from GOCE mission to the inclusion of low-accuracy terrestrial 
data in certain regions in the EGM2008  model4. The amplitudes of the EIGEN-5C model are slightly higher in 
this bandwidth due to the contribution of GRACE data rather than GOCE data. Briefly, thanks to the advantages 
of the gradiometer measurements, the accuracy of the GOCE models adopted in this paper outperforms the 
EGM2008 and EIGEN-5C models in this spectral range. Between the models without regularization, the model 
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I3GG is lower than the DIR_R2 for higher degrees (> 200). But in the same range of degrees, both of them are 
higher than the models which benefit from the regularization, i.e. the TIM_R5, SPW_R5 and IGGT_R1, or from 
the terrestrial gravity field data i.e. the EIGEN-5C.

Figure 2 shows the I3GG coefficients deviation to EGM2008 and EIGEN-5C in logarithmic scale. The spheri-
cal harmonic coefficients of I3GG and EGM2008 shown in Fig. 2a fits well to each other for degree/order 0 to 
70 and the coefficients deviation becomes larger for higher degrees/orders, which means that GOCE gravity 
field models contribute new information in high-frequency parts. The similar situation happens between the 
coefficients of I3GG and EIGEN-5C except for the fitted range that is up to degrees/orders 100, as shown in 
Fig. 2b. It can be also concluded that spherical harmonic coefficients of EIGEN-5C are more accurate than that 
of EGM2008 at degrees between 70 and 100, if we use the I3GG as a standard.

In addition to the spectral comparisons displayed in Figs. 1 and 2, the differences between these models are 
investigated in the spatial domain. First, we computed the cumulative geoid height deviation between the I3GG 
and EGM2008 (Fig. 3a) and EIGEN-5C (Fig. 3b) up to degree/order 210. From Fig. 3, it is obvious that at regions 
where no or poor quality terrestrial data are available (Himalaya, Africa, Amazonas and Antarctica) new gravity 
field information is added, which is due to the advantages of the gravity gradient measurements of the GOCE 
mission in the medium and short wavelength ranges.

Then we compute the RMS of the differences between these models from 1◦ × 1◦ geoid height grids between 
−80◦ and 80◦ latitude (i.e. without the polar caps). The RMS values are computed for the common whole-
frequency range (degrees 0–210) and for the medium-frequency range (degree 70–150), where these models 
have a similar behaviour, as given in Table 1. Moreover, in order to inspect the differences between the invari-
ant I2 and I3 in the gravity field determination, the same processing strategy is applied on the second invariant 
I2 measurements of GOCE mission and we obtained another gravity field model named I2GG. Its RMS values 
of the geoid differences between other models are also given in Table 1 and accordingly its difference degree 
amplitudes from the I3GG are shown in Fig. 4.

For the common whole-frequency range (0–210), Table 1 shows that the I3GG solution is closer to the 
invariant solutions I2GG and the IGGT_R1 (RMS = 0.076–0.091 m) than to the other GOCE models DIR_R2, 
TIM_R5, SPW_R5 (RMS = 0.119–0.137 m). In this case, the I3GG and I2GG solutions show a stronger consist-
ency with the EIGEN-5C than the other GOCE models. When replacing the standard model by the EGM2008, 
the I3GG and IGGT_R1 solutions have lower RMS values of geoid differences than the ones except the regular-
ized, i.e. the TIM_R5 and SPW_R5. For the medium-frequency range (70–150) it is visible that the difference 
among GOCE modes is much smaller (RMS = 0.014–0.078 m) than the EGM2008 (RMS = 0.081–0.120 m). 
Since I3GG, I2GG and IGGT_R1 have taken the EIGEN-5C as a priori model, they are closer to the EIGEN-5C 
than the DIR_R2, TIM_R5 and SPW_R5, which holds true both for the medium-frequency and the common 
whole-frequency range.

Meanwhile, the re-calibrated GOCE data released in 2018 is also dealt with and the corresponding gravity 
field model named I3GG_R2 and I2GG_R2 from the invariant I2 and I3 , respectively, as shown in Fig. 1. It indi-
cates that the I3GG_R2 and I2GG_R2 also agree well with other models for degree 70 to 150, which is the most 
sensitive bandwidth for the signals detected by GOCE mission. For lower and higher degrees they are slightly 
lower than I3GG and I2GG, respectively. The same phenomenon appears in the comparison between TIM_R5 
and TIM_R6 (GO_CONS_GCF_2_TIM_R6). It should be pointed out that the Kaula-regularization applied to 
coefficients of degrees/orders 201–300 of both TIM_R5 and TIM_R6 so that they are almost the same in the 
range. Table 2 shows the RMS valus of geoid differences of TIM_R5 versus TIM_R6, I2GG versus I2GG_R2 and 
I3GG versus I3GG_R2 are 0.011, 0.008 and 0.039 for the medium-frequency range,and 0.038, 0.025 and 0.082 
for the whole-frequency range, respectively. It indicates the re-calibration leads more improvements to the lower 
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Figure 1.  Difference degree amplitudes of the gravity field models DIR_R2, TIM_R5, SPW_R5, EIGEN-5C, 
IGGT_R1, I3GG, I2GG, TIM_R6, I3GG_R6, I2GG_R6 compared to EGM2008.
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and higher degrees than the medium-frequency range. Additionally, if TIM_R6 is used as a standard, Table 2 
shows that for the lower and higher degrees the rms values of geoid differences of the models from the invariant 
I3 , i.e. the I3GG and I3GG_R2, are lower than the ones from I2 , i.e. I2GG and I2GG_R2, respectively. Certainly, 
because that I2GG_R2 and I3GG_R2 are also derived from the re-calibrated GOCE data, their the rms values of 
geoid differences with TIM_R6 are lower than the ones of I2GG and I3GG, respectively.

Under the condition that the linearization error is negligible, the measurement noise has the main influence 
on the gravity field determination. As mentioned in the “Methods” section, the theoretical computation indicates 
that the effect of measurement noise on I3 is lower than that on I2 for GOCE mission, which also holds true 
for the realistic data. In order to avoid the deviations from methodology and data processing, the comparison 
between the I3GG and I2GG is investigated in this section. From Table 1, it is shown that the difference RMS 
values of I3GG are smaller than that of I2GG when compared to the EGM2008 or EIGEN-5C. Specifically, for the 
common whole-frequency range (0–210), the ratio of the difference RMS values of the I3GG to I2GG is 87.3% 
(0.131/0.150) when the EGM2008 is used as the reference, while the ratio is 77.2% (0.088/0.114) when EIGEN-
5C is used. The two ratios are bounced around the theoretical value 81.6% [ 

√
4/3/

√
2 from Eq. (14)], and their 

relative deviation to the theoretical value are about 7% and 5%, respectively. From Fig. 4, it is also illustrated 
that the maximum degree of I2GG is 220, which is lower than that of I3GG (degree 240). However, they are 
close to each other in the medium-frequency range, which is the signal sensitive band of GOCE mission and 
has the highest signal to noise ratio. The same rerult can be obtained by the comparison between I3GG_R2 and 
I2GG_R2. Such comparisons above show that both the invariant I2 and I3 can recover the gravity field effectively 
from the GOCE measurements under the sphere approximation. Additionally, compared to the linearization 
error, the comparison indicates that the measurement noise is the major factor which, affects the accuracy and 
the resolution of the gravity field determination.

An independent comparison with external data is made using geoid heights determined by GNSS position-
ing and leveling (GNSS/leveling). The details of the data processing procedures can be found in the  study20–22. 
In order to verify and validate the method for the invariants, the models from the same GOCE data without 

(a)

(b)

Figure 2.  Spherical harmonic coefficients differences between I3GG and the existing gravity field models: (a) 
EGM2008 (b) EIGEN-5C, provide as absolute values in logarithmic scale ( log10).
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Figure 3.  Cumulative geoid difference between I3GG and the existing gravity field models up to degree/order 
210 (Unit: m): (a) EGM2008 (b) EIGEN-5C. These figures are generated by using Matlab(R2018a).

Table 1.  RMS values of geoid differences (unit: m) between in the eight models (I3GG, DIR_R2, TIM_R5, 
SPW_R5, I2GG, IGGT_R1, EIGEN-5C and EGM2008) for the common degree range of the models, i.e. 0–210 
(lower triangle) and for the medium- frequency range 70–150 (upper triangle). The RMS values are computed 
from 1◦ × 1

◦ grids excluding the polar caps, i.e. latitude range of −80
◦ and 80◦.

Degree range: 70–150

I3GG DIR_R2 TIM_R5 SPW_R5 I2GG IGGT_R1 EIGEN-5C EGM2008

I3GG – 0.072 0.072 0.071 0.014 0.055 0.059 0.090

DIR_R2 0.137 – 0.020 0.019 0.072 0.051 0.117 0.081

TIM_R5 0.119 0.083 – 0.011 0.074 0.052 0.118 0.081

SPW_R5 0.119 0.084 0.018 – 0.073 0.052 0.118 0.080

I2GG 0.076 0.145 0.101 0.139 – 0.054 0.060 0.091

IGGT_R1 0.091 0.117 0.128 0.101 0.107 – 0.101 0.087

EIGEN-5C 0.088 0.186 0.170 0.169 0.114 0.130 – 0.120

EGM2008 0.131 0.141 0.117 0.116 0.150 0.125 0.159 –

Degree range: 0–210
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re-calibration are compared, i.e. DIR_R2, TIM_R5, SPW_R5, and IGGT_R1 are used. Only the coefficients up to 
degree/order (d/o) 210 were used in this comparison. Considering the spatial resolution and the transition region 
effect, a Gaussian filter with a filter width of 47 km was applied to both the models and the GNSS/leveling data. 
Table 3 shows the results for the I3GG in comparison to other GOCE gravity field models using GNSS/leveling 
points of the European countries, including Norway, UK, Belgium, France, Germany and Netherlands. The 
RMS difference results show that I3GG has a relative comparative advantage over I2GG in Belgium and France. 

Table 2.  RMS values of geoid differences (unit: m) of I2GG versus I2GG_R2, I3GG versus I3GG_R2, TIM_R5 
versus TIM_R6, I2GG versus TIM_R6, I2GG_R2 versus TIM_R6, I3GG versus TIM_R6 and I3GG_R2 versus 
TIM_R6 for the common degree range of the models, i.e. 0–210 and for the medium- frequency range 70–150 . 
The RMS values are computed from 1◦ × 1

◦ grids excluding the polar caps, i.e. latitude range of −80
◦ and 80◦.

Degree range: 70–150 Degree range: 0–210

I2GG versus I2GG_R2 0.008 0.025

I3GG versus I3GG_R2 0.039 0.082

TIM_R5 versus TIM_R6 0.011 0.038

I2GG versus TIM_R6 0.073 0.157

I2GG_R2 versus TIM_R6 0.067 0.136

I3GG versus TIM_R6 0.072 0.123

I3GG_R2 versus TIM_R6 0.044 0.076

Figure 4.  Difference degree amplitudes of the gravity field models I3GG and I2GG compared to the EGM2008.

Table 3.  The RMS difference (unit: m) between GNSS/leveling data in Norway, UK, Belgium, France, 
Germany and Netherlands and the model-derived geoid heights on the basis of EIGEN-5C and the GOCE-
derived models I3GG, DIR_R2, TIM_R5, SPW_R5, I2GG, IGGT_R1 (number of points in brackets, for 
maximum d/o 210).

Norway UK Belgium France Germany Netherlands

(− 1174) (− 181) (− 2707) (− 1548) (− 226) (− 543)

I3GG 0.186 0.414 0.081 0.165 0.101 0.096

DIR_R2 0.183 0.440 0.123 0.162 0.120 0.121

TIM_R5 0.193 0.438 0.062 0.163 0.096 0.080

SPW_R5 0.193 0.443 0.072 0.165 0.097 0.093

I2GG 0.184 0.419 0.152 0.184 0.101 0.089

IGGT_R1 0.189 0.435 0.110 0.169 0.102 0.091

EIGEN-5C 0.192 0.437 0.062 0.169 0.089 0.090
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Meanwhile, in the rest countries they have alomst the same performance and their RMS differences are smaller 
than 1 cm . It should be pointed that the advantage of I3GG in the higher degrees is suppressed by the low-pass 
filter. Specifically, I3GG and I2GG fits better in comparison to the other models in UK. We also see that I3GG 
has an advantage over another second-invariant-derived model IGGT_R1 in all countries except Netherlands 
even though the IGGT_R1 applied regularization with the a-priori model EIGEN-5C. I3GG performs better 
in Norway, UK, Belgium, France and Germany of 0.3, 2.1, 2.9, 0.4 and 0.1 cm when compared with IGGT_R1. 
When compared with other GOCE-derived models DIR_R2, TIM_R5, SPW_R5, I3GG is in the middle level 
of the list in these countries. Briefly, it shows that the medium- to short-wavelength parts of the Earth’s gravity 
field can be obtained effectively by using I3 from GOCE.

Discussion
This proposal for the gravity field recovery from the invariant in satellite gradiometry is to avoid the errors in 
the reconstitution procedure of the satellite’s attitude. In this paper, it is found that the third invariant I3 is more 
competitive than I2 on the gravity field determination GOCE mission, although I2 is easier to be dealt with and 
get more attention from researchers. Accordingly, we use the third invariant I3 of the GOCE gravity gradient 
tensor to obtain the I3GG. The theory of boundary value problems is adopted to implement linearization of the 
third invariant gravity gradients with an accuracy of O(J22 · Tij) . In order to solve the boundary value problems 
efficiently, we propose an alternative method of 2D FFT, which uses the coherent sampling theory to obtain the 
relationship between the 2D FFT and the third invariant I3 measurements and applies the pseudo-inverse via 
QR factorization to transform the 2D Fourier coefficients to spherical harmonic ones. The complexity of this 
algorithm reaches a level of O(l4max) without the precomputation of the integrals by recursions or numerical 
integrations. Based on the theoretical bases mentioned above, the GOCE gravity gradient data of the nominal 
mission phase and the lower degree information from EIGEN-5C were combined in the construction of a 
satellite-only gravity field model to a maximum degree of 240, corresponding to a spatial resolution of 83 km 
at the equator. The results indicate that the I3GG agrees well with the other GOCE gravity field models in the 
medium-frequencies range (degree 70–150), which is the signal sensitive band of the GOCE mission. For the 
lower frequencies range, I3GG is close to the EGM2008 and EIGEN-5C and their fitted ranges are up to degree/
order 70 and 100, respectively. From the point of view of the spatial domain, at regions where no or poor qual-
ity terrestrial data are available (Himalaya, Africa, Amazonas and Antarctica) new gravity field information is 
added. Moreover, for comparison purposes, we applied the same processing strategy on the second invariant I2 
measurements of the GOCE mission and obtained I2GG with a maximum degree of 220, which is 20 degrees 
lower than that of I3GG. Their RMS values of the geoid differences indicate that the effects of measurement noise 
of I3GG is about 20% lower than that of the I2GG model when compared to the EGM2008 or EIGEN-5C. The 
same characteristics can be also concluded when we dealt with the re-calibrated GOCE data. Briefly, the results 
show that the approach presented in this study is an effective way to obtain the gravity field models with high 
accuracy and spatial resolution from the third invariant of gravity gradient tensor. It is believed that it provides 
a viable alternative tool and viewpoint for studies on satellite gravity gradients.

Methods
There are two basic theoretical aspects for the gravity field determination from I3 : the first is to formulate the 
relationship between the gravity potential coefficients and I3 , and the second aspect is the 2D FFT for dealing 
with the boundary value problems. The former relates to the linearization of invariant and its error level, while 
the latter relates to the data processing flow and efficiency, which will be discussed in the following two subsec-
tions, respectively.

Invariant theory and the related boundary value problems. In this subsection the theory of the 
gravitational gradient tensor’s invariant and the related boundary conditions is introduced. The Earth’s gravity 
potential V satisfies the Laplace equation and leads the gravitational gradient tensor to the symmetric and trace-
free, and therefore the following representation for invariant system I1 , I2 , I3 is  adopted15: 

Both I2 and I3 , rather than I1 , are generally considered to be suitable to recover the gravity field models since 
that the first invariant is the trace of the gravitational tensor and its value is zero. In the next step, the invariant 
are linearized by the perturbations calculation relative to a priori known reference solution subject to

(1a)I1 = V11 + V22 + V33 = 0

(1b)I2 = −
1

2
(V2

11 + V2
22 + V2

33)− V2
12 − V2

13 − V2
23

(1c)I3 = V11V22V33 + 2V12V13V23 − V11V
2
23 − V22V

2
13 − V33V

2
12

(2)
δI2 =I2 − I

ref
2

=− U11T11 − U22T22 − U33T33 − 2(U12T12 + U23T23 + U13T13)+ O
(

T2
ij

)

,
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where Iref2  and Iref3  are the priori invariant from reference gravity gradients Uij , and O(T2
ij) and O(T3

ij) indicate 
the influences of terms which are non-linear in invariants. The disturbance gravity gradients Tij are defined as 
Tij = Vij − Uij . Eqs. (2) and (3) are the linearized equations for invariant with an accuracy of O(T2

ij) and O(T3
ij) , 

 respectively15. Further researches focus on the simplicity of the linearization and reduces the computation to 
an efficient level with the sphere  approximation11,17. The reference gravity potential U in the Eqs. (2) and (3) is 
approximated with Ũ = GM/r under the sphere approximation, and its second derivatives can be represented as

where GM is gravitational parameter of the Earth (G is the universal gravitational constant and M is the mass 
of the Earth). This approximation makes δI2 and δI3 with the accuracy of O(J2 · Tij) and O(J22 · Tij) , respectively. 
Then one obtains the boundary value problems as  follows11

In this study the following second-order radial derivative for the Earth’s disturbance potential Trr is  adopted23:

where (r, θ , �) are the geocentric spherical coordinates (radius, co-latitude, longitude), R is reference radius. l 
and m are degree and order of spherical harmonic, P̄lm(cos θ�) are the fully normalized Legendre functions, C̄lm 
and S̄lm are fully normalized spherical harmonic coefficients. The C̄lm and S̄lm are the unknown parameters that 
should be estimated from observations as the solution of the gravity field recovery problem. By combining the 
Eqs. (6) and (7) we have access to the gravity field determination from the third invariant.

In addition, we compare the effects of measurement noises of the gravity gradients on the invariant I2 and I3 
under the sphere approximation. The effects of measurement noise on them are also different since that different 
combinations of the invariant I2 and I3 . Substituting Eq. (4) into (2) and (3) and ignoring the linearization errors 
O(J2 · Tij) and O(J22 · Tij) , one obtains:

where Trr,�I2 and Trr,�I3 are second-order radial derivatives derived from the invariants I2 and I3 , respectively. 
Under the assumption that the measurement noises are  uncorrelated24, error propagation then gives

For the purpose of exploiting the influence of the measurement noises, here three situations are employed 
on the invariants:

(3)

δI3 =I3 − I
ref
3

=
(

U2
23 − U22U33

)

T11 +
(

U2
13 − U11U33

)

T22

+
(

U2
12 − U11U22

)

T33 + 2(U12U33 − U23U13)T12

+ 2(U23U11 − U12U13)T23 + 2(U13U22 − U12U23)T13 + O
(

T3
ij

)

,

(4)

Ũ11 =Ũ22 = −
GM

r3
,

Ũ33 =
2GM

r3
,

Ũ12 =Ũ13 = Ũ23 = 0.

(5)







�T = 0, on or out of the sphere surface
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3GM

�

δI2 + O
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��
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, r → ∞
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1. When the noise levels of T11 , T22 and T33 are the same, it holds that σ := σ11 = σ22 = σ33 , which results in

2. When the noise levels of T11 and T22 are twice that of T33 , it holds that σ := 1
2σ11 =

1
2σ22 = σ33 , which results 

in

3. When the noise level of T33 is twice that of T11 and T22 , it holds that σ := σ11 = σ22 = 1
2σ33 , which results 

in

From the above results, it is concluded that when the noise level of T33 are not worse than that of T11 and T22 , 
the effect of measurement noise on I2 is better than that on I3 . On the contrary, when the noise level of T33 
is higher than that of T11 and T22 , the effect on I3 is better than that on I2 . In reality, the measurement noises 
of GOCE mission corresponds to the third  situation2, i.e. σ11 = σ22 = 1

2σ33 = 10 mE/Hz1/2 , which makes 
I3 more competitive than I2 on the gravity field determination from this point of view. This issue has been 
discussed from the results of realistic data in the Results section.

Principle of the alternative 2D FFT method. The 2D FFT method can be employed for the bound-
ary value problems to determine the gravity field from the third invariant efficiently. As mentioned above, this 
method has two major steps, i.e. obtaining the 2D Fourier spectrum and transformation into spherical harmonic 
 coefficients18. In this study an alternative 2D FFT method is developed to obtain the spherical harmonics from 
the third invariant in practice, which makes modifications to both steps.

First of all, we present a concise relation between the 2D FFT and the spatial signal based on the coherent 
sampling. The relation is developed from an explicit formula for reconstructing exactly a one-dimensional (1D) 
signal from the magnitude and phase of its FFT under the condition of coherent sampling, which is to avoid the 
picket fence and spectral leakage effects. In the case of a time series with a sampling rate of fs and N samples, 
while the value of the k-th sample of its 1D FFT is (a+ ib) , the corresponding signal in time t domain sk(t) can 
be obtained as follows:

where fk = (k − 1)fs/N is the frequency, PHk = arctan (b/a) is the phase and Ak =
√
a2+b2

Z(k)  is the magnitude with

It is noted that the first point ( k = 1 ) represents the 0 Hz frequecy. There is a similar formula for reconstructing a 
2D signal from the magnitude and phase of its FFT. In the case of a spatial signal with a sampling rate of fsx and 
N sampling lines in x direction, and a sampling rate of fsy and M sampling lines in y direction, while the value 
located in the h-th row and k-th column of its 2D FFT is (a+ ib) , the corresponding signal in space domain 
sh,k(x, y) can be obtained as follows:

where fx = (h− 1)fsx/N and fy = (k − 1)fsy/M are the frequencies in x direction and y direction, respectively. 
The information of magnitude and phase are

and

respectively. The coefficient Z(h, k) is defined as

Next, owing the fact that the Legendre functions can be expanded into sums of cosine or sine series, the 
same principles mentioned above can be also applied to discuss the correspondence between 2D FFT and 
spherical  harmonics25. An analytical and square integrable function f (θ , �) defined on the unit sphere 
(0 ≤ θ ≤ π , 0 ≤ � ≤ 2π) can be expanded in a series of spherical  harmonics26

(12)σrr,�I2 =
√

2

3
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√

4

3
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3
σ
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√
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4

3
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)

Z(k) =
{
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N
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· Ak cos
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Z(h, k)

Z(h, k) =







MN for h = 1 and k = 1
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2 for 2 ≤ h ≤ M and k = 1, or h = 1 and 2 ≤ k ≤ N
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4 for 2 ≤ h ≤ M and 2 ≤ k ≤ N
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For the sake of clarity, we first discuss the correspondence for a specific value of l and m:

Using trigonometric product sum identities, we can obtain the coefficient uqlm from the normalized Legendre 
function P̄lm(cos θ) as  follows18

for m is even, and

for m is odd, with

It is shown that the phase is zero in the latitude direction and the magnitude uqlm can be obtained by a prior 
computation from the decomposition of the Legendre functions. In the case of spherical harmonics with a sam-
pling rate of fsθ and N sampling lines in θ direction, and a sampling rate of fs� and M sampling lines in � direction, 
while the value located in the h-th row and k-th column of its 2D FFT is (a+ ib) , the Fourier coefficients �qm 
and �qm are obtained as follows:

with

The frequencies in the h-th row and k-th column are fθ = q
2π  and f� = m

2π  , respectively. Considering that 
only one component with a specific value of l and m is involved, the spherical harmonic coefficients C̄lm and S̄lm 
of Eq. (20) can be directly obtained from �qm and �qm

Eqs. (21) and (22) indicate that the coefficient products �qmu
q
lm is essentially the magnitude of spatial sig-

nal cos (m�) cos
(

qθ
)

 or cos (m�) sin
(

qθ
)

 , and �qmu
q
lm is the one of spatial signal sin (m�) cos

(

qθ
)

 or 
sin (m�) sin

(

qθ
)

 . If only a spherical harmonic signal with a specific value of l and m is sampled under the condi-
tion of coherent sampling, the spherical harmonic coefficients C̄lm and S̄lm are equal to �qm and �qm , respectively. 
When sampling the signal contains multiple spherical harmonics in Eq. (19), the coefficients �qm and �qm may 
contain the joint information of Fourier spectrum of these components since the signal aliasing appears in the 
spherical harmonics with the same order.

Then, in order to transform the 2D FFT of the third invariant into spherical harmonic coefficients, we present 
an alternative algorithm based on the pseudo-inverse via QR factorization in this step. Using trigonometric 
product sum identities, we can first obtain the normalized Legendre function P̄lm(cos θ) as  follows26:

where hlmk is the decomposition factor of the associated Legendre functions. For each order m the decomposition 
factors can be defined as a factor matrix as follows:

(19)f (θ , �) =
lmax
∑

l=0

l
∑

m=0

[

C̄lm cos (m�)+ S̄lm sin (m�)
]

P̄lm(cos θ)
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∑
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lm sin
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Therefore, we can easily obtain the spherical harmonic coefficients C̄lm and S̄lm from the Fourier coefficients 
�qm and �qm by solving linear equations as follows:

where Ccoef  is the vector of spherical harmonic coefficients C̄lm and S̄lm , DFFT is the vector of Fourier coefficients 
�qm and �qm . Since H is left-invertible, its columns are linearly independent and the QR factorization H = QR 
exists. We have

We can compute the pseudo-inverse using the QR factorization to obtain the spherical harmonic coefficients. 
By taking advantages of the orthogonality between the even degree Legendre functions and the odd degree ones 
in the same order, we can reduce the computation based on the classification by parity of their degrees. Consid-
ering Eq. (6), one can see that the third invariant is derived from f (θ , �) by adding a multiplication factor F(l) 
for a specific degree l, where

Finally, it leads to an explicit expression for computing the gravity field from I3 measurements based on the 
Fourier analysis of spherical harmonics as follows

where F is a diagonal matrix constructed by multiplication factors F(l). The time complexity of the method pre-
sented in this study is mainly determined by the 2D-FFT computation and the pseudo-inverse via QR factoriza-
tion. When the maximum degree is lmax , the time complexity of the 2D-FFT computation is O(l2max · log(2lmax)) . 
Meanwhile, the pseudo-inverse has a running time of O(l3max) for each order, so that the total complexity for all 
orders is O(l4max).

Realistic data processing. The components Vxx , Vyy , Vzz and Vxz are provided in the gradiometer refer-
ence frame (GRF) with highest accuracy of 10 to 20 mE. However, the accuracy of the other gravity gradi-
ents is reduced by around two orders of magnitude because they are measured by the less sensitive axes of the 
 accelerometers2. Therefore, the gravity field determination from the third invariant depends on two kinds of 
data, i.e. the GOCE gravity gradient measurements and the synthetic gravity gradients derived from a priori 
gravity field. The GOCE gravity gradient measurements of the components Vxx , Vyy , Vzz and Vxz in the GRF are 
taken from the Level-2 product EGG_NOM_2 (ESA) from November 1, 2009 to August 1, 2012. The synthetic 
gravity gradients of the components Vxy and Vyz are derived from the global gravity field model EIGEN-5C. The 
synthetic gravity gradient values are first computed in the local north oriented frame (LNOR) and then trans-

(27)Ccoef = H−1DFFT

(28)Ccoef = R−1QTDFFT

(29)F(l) = −
3

r6
(GM)2

R3
(l + 1)(l + 2)

(

R

r

)l+3

(30)Ccoef = F−1R−1QTDFFT

Figure 5.  The flow chart of the gravity field determination from the third invariant by the 2D FFT method.
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formed to the GRF by the attitude quaternions products. Due to the fact that the components Vxy and Vyz are 
very small compared to the main diagonal components, the accuracy of the synthetic gravity gradients satisfies 
the requirement for the gravity field determination from  invariant15. On the other hand, the gravity field model 
EIGEN-5C is employed as the reference model and used to fill the polar gap since the inclination of the orbit of 
GOCE mission is 96.7◦8. Meanwhile, the disturbance gravity gradients Tij can be also obtained by the subtraction 
of the reference gravity gradients Uij of EIGEN-5C from the GOCE gravity gradients measurements. Then the 
disturbance gravity gradients Tij are filtered to 5–100 mHz by a finite impulse response (FIR) filter, which means 
that the signals of the recovered gravity model at lower frequencies (i.e. below 5 mHz) mainly come from the 
reference model. The gravity gradients also need a vertical reduction from the realistic orbit height to the mean 
orbital sphere. Considering that the eccentricity of GOCE is about 0.001 and the difference between the realistic 
orbit height and the mean one is less than 4 km, according to Eq. (5), we can reduce the third invariant in the 
radial direction by using the Taylor series expansion

where δr is the radial distances between the average sphere S̃ and realistic orbit S. The error caused by this pro-
cedure is less than 1 mE and meets the requirement of gravity field determination from GOCE  mission27. Then, 
the measurements are gridded with a spacing of 0.5◦ × 0.5◦ at the mean orbital sphere. For the sake of clarity, 
the associated flow chart is displayed in Fig. 5.
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