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Analyses of transcriptomes 
and the first complete genome 
of Leucocalocybe mongolica provide 
new insights into phylogenetic 
relationships and conservation
Mingzheng Duan, Haiying Bao & Tolgor Bau*

In this study, we report a de novo assembly of the first high-quality genome for a wild mushroom 
species Leucocalocybe mongolica (LM). We performed high-throughput transcriptome sequencing to 
analyze the genetic basis for the life history of LM. Our results show that the genome size of LM is 
46.0 Mb, including 26 contigs with a contig N50 size of 3.6 Mb. In total, we predicted 11,599 protein-
coding genes, of which 65.7% (7630) could be aligned with high confidence to annotated homologous 
genes in other species. We performed phylogenetic analyses using genes form 3269 single-copy 
gene families and showed support for distinguishing LM from the genus Tricholoma (L.) P.Kumm., 
in which it is sometimes circumscribed. We believe that one reason for limited wild occurrences of 
LM may be the loss of key metabolic genes, especially carbohydrate-active enzymes (CAZymes), 
based on comparisons with other closely related species. The results of our transcriptome analyses 
between vegetative (mycelia) and reproductive (fruiting bodies) organs indicated that changes in 
gene expression among some key CAZyme genes may help to determine the switch from asexual to 
sexual reproduction. Taken together, our genomic and transcriptome data for LM comprise a valuable 
resource for both understanding the evolutionary and life history of this species.

Leucocalocybe mongolica (S. Imai) X.D. Yu & Y.J. Yao (LM) is a wild mushroom that is of food value throughout 
East Asia and for medicine on account of its natural pharmaceutical products, such as ergosterol, ergosterol 
peroxide, polysaccharide, and lectins1–6. Recently, Yu et al.7 excluded this species from genus Tricholoma (L.) 
P.Kumm. and assigned it to a new monotypic genus Leucocalocybe X.D. Yu & Y.J. Yao, based on morphologi-
cal evidence and a phylogeny of the ribosomal large subunit rDNA (LSU). However, its treatment as a distinct 
genus has been controversial and some studies still used its old Latin Name8–10. LM is a species endemic in the 
Mongolian Plateau, where it forms fairy rings, a unique mycological growth pattern usually shown in grasslands11 
(Fig. 1).

Presently, LM is threatened with extinction from the Redlist of China’s Biodiversity—Macrofungi (Reference 
number:000014672/2018–00,663) due to increasing drought in the Mongolian Plateau and over-collection for 
food and medicine. Since so-far limited success with LM cultivation, which could facilitate ex-situ conservation, 
we are not sure whether LM is a grass/wood-rot fungus or a mycorrhizal fungus. Prior conservation studies of 
LM have led to an improved understanding of its physiology, geographic distribution, and genetic diversity12–14.

Recently, with the rapid development of genome sequencing technology, high-resolution genomic sequences 
of many mushroom species have been reported15–17. The availability of these sequence data has facilitated com-
parative genomic analyses, especially among carbohydrate-active enzymes (CAZymes)18–21. Additionally, analyses 
of transcriptome data have led to the identification of important switches between vegetative and reproductive 
stages of species and of metabolic pathways that are active during each stage22,23. Consequently, genomic data 
have led to inferences of aspects critical to conservation, especially habitat preference, adaptability, and suit-
able cultivation conditions of mushroom species such as Agrocybe aegerita (V. Brig.) Vizzini18, Sparassis crispa 
(Wulfen) Fr.19, Lentinula edodes (Berk.) Pegler24, and Hypsizygus marmoreus.(Peck) H.E. Bigelow25, and within 
Pleurotus (Jacq. ex Fr.) P.Kumm20,26,27. In light of these prior studies, we believe that genomic resources can lead 
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to breakthroughs in conservation efforts for LM, but genomic resources are currently largely unavailable for 
this species.

Therefore, in this work, we obtained a high-quality genome of LM using de novo assembly. We utilized the 
resulting dataset to reconstruct a phylogeny of LM and found that it is distinct from Tricholoma. Moreover, based 
on comparative genomic analyses, we detected deletion of several essential metabolic genes that may help to 
explain its rarity in the wild. Nevertheless, the composition of CAZymes in LM suggests potential domestica-
tions. Additionally, we observed that expression differences of oxidoreductase genes in LM appear to promote the 
transition from asexual to sexual reproduction. Taken together, these new genomic and transcriptomic resources 
of LM resulting from our study comprise a framework for future studies on taxonomy, genome function, and 
conservation of this species. Throughout, we follow the NCBI taxonomic database (REF) for taxonomic names 
except as noted.

Results
Genome sequence analysis.  We sequenced genomic DNA from LM using the PacBio SMRT Sequel and 
Illumina platforms, and generated a total of ~ 228 × coverage (10.5 Gb, PacBio platform) and ~ 246 × coverage 
(11.35 Gb, Illumina platform) of high-quality data respectively (Table 1). The size of the assembled sequence 
of LM is 45.98 Mb, including 26 contigs with an N50 of 3.63 Mb and a GC content of 47.06% (Table 1). K-mer 
analysis based on Illumina reads indicated that the genome size was 47.69 Mb when K-mer was set at 21, while 
that was 44.67 Mb when K-mer was 35 (Supplementary Fig. S1), both of which were very close to the total length 
(45.98 Mb) of assembled genome sequence by using PacBio sequencing. In addition, the heterozygous ratio and 
the repetitive sequences of the LM genome were estimated to be 0.18% and 26.89%, respectively. We identified 
95.2% (1271/1335) of well-known conserved fungal orthologs in this LM assembly using BUSCO28, suggest-
ing a high-quality assembled mononuclear genome (Supplementary Table S1). Detailed genome statistics are 
shown in Supplementary Tables S1–S3 and Supplementary Figs. S2–S3. We performed genome annotation by 
de novo prediction and homology-based searches as well as a cDNA-based search using the transcriptome data 

Figure 1.   The fairy ring habit of LM in the Mongolian Plateau. The fruiting bodies grow on the outer edge of 
the ring.

Table 1.   General features of the LM genomic data.

Summary statistic Value for LM genome

Genome size (bp) 45,983,313

Number of Contigs 26

Number of N50 Contigs 5

Contig N50 size (bp) 3,638,271

Number of N90 Contigs 12

Contig N90 size (bp) 866,782

GC content (%) 47.06

PacBio sequencing (depth) 10.5 Gb (228x)

Illumina sequencing (depth) 11.35 Gb (246x)
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generated in this study. In total, we predicted 11,599 protein-coding genes, which had a total length of 1835 bp 
and 6.3 exons on average (Table 2). Of these, we annotated 7630 (65.8%) genes (Supplementary Table S4) and 
functionally annotated 6855 (59.1%) genes according to the Gene Ontology (GO) database (Supplementary 
Fig. S4). Additionally, we performed annotations of repetitive sequences and non-coding RNAs (Table S5–S6), 
and found that 26.43% of the genome comprises repetitive sequences, while non-coding RNAs account for only 
0.4% of the genome.

Comparative genomic and phylogenetic analyses.  The dated phylogeny of Tricholomataceae 
(Fig. 2c) suggests that the common ancestor of the family diverged from a shared ancestor of Agaricus bisporus 
(J.E.Lange) Imbach (AB) ca. 153.8 million years ago (Mya), and Tricholoma began diversification about 103.5 
Mya. Leucocalocybe and Lepista were resolved as sister species that diverged 26.9 Mya, about 74.1 million years 
later than their separation from Tricholoma, thus supporting the recognition of Leucocalocybe as a distinct genus 
rather than within Tricholoma (Fig. 2c).

We compared the genome of LM to five closely related species in Tricholomataceae: Lepista nuda (Bull.) 
Cooke (LN), Tricholoma matsutake (S. Ito & Imai) Singer (TM), Clitocybe gibba (Pers.) Harmaja (CG), Laccaria 
bicolor (Maire) P.D.Orton (LB), and L. amethystina Cooke (LA), and found that LM has the smallest number of 
genes among the sampled species (Table 2). Among all the six species including LM, we identified 15,817 gene 
families, of which 4389 occur in all the species and 3269 of them are single-copy gene families, which were used 
as gene markers to perform phylogenetic analyses in this study. However, LM exhibits a very low level of genetic 
differentiation with only 95 unique gene families compared to 221 in LN, which has the next lowest, and 989 
in TM, which has the highest (Fig. 2a and Supplementary Table S7). This is particularly surprising given that 
TM is sister to a clade of LM and LN, thus highlighting the limited divergence in LM compared to the two most 
closely related species (Fig. 2c). Similarly, we identified 83 unique clusters of genes in LM, the smallest among 
all the species (Fig. 2b). The analysis by OrthoVenn also revealed that LM had the largest number of uniquely 
lost gene clusters (390) present in all the sampled species of Tricholomataceae except for LM (Supplementary 
Fig. S4). We annotated functions of the 390 gene families uniquely lost in LM according to the GO database. We 
found that most of the missing genes were mapped to biological processes, in which 93 genes matched biological 
process (GO:0008150) and metabolic process (GO:0008152), respectively, as shown in Supplementary Table S8. 
The analysis by OrthoVenn suggests that LM is experiencing gene loss at a higher rate than other species in the 
family. In fact, it is the only sampled member of the family that appears to be gaining genes at a slower rate than 
losing them (i.e., compare Fig. 2b and Supplementary Fig. S5). This unique evolutionary process in LM sets it 
apart from other Tricholomataceae and seems to offer additional support for its independence from Tricholoma 
as suggested by Yu et al.7.

CAZymes of LM.  We sought to better understand the diversity of CAZymes in LM and thus the mecha-
nisms of the species to metabolize carbon for nutrition. We annotated and compared all modules of gene fami-
lies form CAZymes in LM with nine other fungal species including six grass- or wood-rot fungi. Of these, two 
species (CG and LN) were among those used in comparative genomic analyses; the other four species include 
Volvariella volvacea (Bull.) Singer (VV), Lentinus edodes (Berk.) Pegler (LE), Pleurotus ostreatus (Jacq. ex Fr.) 
P.Kumm. (PO), and Trametes versicolor (L.) Lloyd (TV). The remaining three species used for comparison are 
ectomycorrhizal fungi, which we also used in the comparative genomics analysis: TM, LB, and LA. In total, we 
annotated 384 CAZymes genes in LM, which is the smallest among the grass- and wood-rot fungi (Fig. 3 and 
Supplementary Table S9). These genes were divided into six main modules corresponding to major CAZyme 
modules: 159 belonged to glycoside hydrolases (GHs, hydrolysis and/or rearrangement of glycosidic bonds), 71 
were resolved to have auxiliary activities (AAs, redox enzymes that act in conjunction with CAZymes) and whose 
modules could code an important lignin degradation enzyme lytic polysaccharide monooxygenase (LPMO)29, 
69 belonged to glycosyl transferases (GTs, formation of glycosidic bonds), 50 belonged to carbohydrate-binding 
modules (CBMs, adhesion to carbohydrates), 18 belonged to carbohydrate esterases (CEs, hydrolysis of carbo-
hydrate esters), and 15 belonged to polysaccharide lyases (PLs, non-hydrolytic cleavage of glycosidic bonds) 
(Fig. 3). Notably, the number of CAZymes in LM detected in this study differed from our previous de novo 
transcriptome study30, in which we found 446 CAZyme genes in 6 modules. The difference may be attributed 
to unexpressed genes in the transcriptome data compared to our present analysis of the whole genome data. 
LM does not exhibit depletion or enrichment of any of the six CAZyme modules. However, in families of AA1, 
GH16, GH5, GT2, and GT4, LM has fewer genes than all the other grass- and wood-rot fungi.

Table 2.   Statistics of the genomes of LM and other Tricholomataceae.

Species Gene number
Average gene 
length (bp)

Average CDS 
length (bp)

Average exons per 
gene

Average exon 
length (bp)

Average intron 
length (bp)

LM 11,599 1835.27 1427 6.3 226.72 77.89

LN 14,880 1700.07 1187 6.13 226.91 61.22

CG 19,049 1567.6 1078 6.04 204.97 66.21

LB 23,125 1549.22 1066 5.28 220.48 91.17

LA 17,553 1517.26 1092 5.12 241.96 68.87

TM 22,885 1205.98 821 4.03 234.9 86.4
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Transcriptome analysis of vegetative mycelia and fruiting bodies of LM.  In order to determine 
genes involved in fruiting body formation in LM (i.e., transition from vegetative growth), we performed high-
throughput transcriptome sequencing of monocaryon mycelia (asexual stage) and fruiting bodies (sexual stage) 

Figure 2.   Phylogenetic and comparative genomic analyses of LM and five additional species of 
Tricholomataceae. (a) Distribution of gene clusters among species based on the GeneFamily approach. The 
horizontal axis represents species and the vertical axis is the number of genes. Single-copy orthologs refer 
genes present in single-copy in all species. Multiple-copy orthologs refer to genes present in multiple copies in 
all species. Unique paralogs refer to genes present in only one species. (b) Venn diagram showing the number 
of shared gene families among the six species of Tricholomataceae based on analysis using OrthoVenn. The 
lower figure shows the total number of clusters in each species. (c) Maximum likelihood (ML) phylogeny 
reconstructed from 3269 single-copy nuclear genes with dated nodes from TimeTree, the left side of nodes 
represent bootstrap index.
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with three biological replicates for each stage (Fig. 4c). In total, we obtained 449 million high-quality reads (aver-
age ~ 224 × depth per replicate per stage) and more than 80% of the sequencing data were properly aligned to the 
annotated exons (Supplementary Table S10 and Supplementary Fig. S6). Gene expression levels were estimated 
using FPKM (Fragments per Kilobase per Million Mapped Fragments) to compare between the two growth 
stages (Supplementary Table S11). Based on FPKM, the overall gene expression levels in fruiting bodies were 
higher than in mycelia (Supplementary Fig. S7a) in all replicate analyses (Supplementary Fig. S7c).

To determine differently expressed genes (DEGs) in LM, we compared gene expression among all samples 
and found that 2,192 genes in fruiting bodies were significantly up-regulated and 2,438 were significantly down-
regulated. We used this result to build a volcano plot, which enabled us to visualize that the values of log2 fold 
change of most DEGs were within the range of ± 5 (Supplementary Fig. S7c. In addition, we found that the 
patterns of alternative splicing events between the two stages were slightly different (Supplementary Fig. S7d). 
Specifically, TTS (transcript start site) events occurred more frequently in mycelia compared with fruiting bodies, 
whereas IR (intron retention) events showed the opposite trend (Supplementary Fig. S7d).

To assess the enrichment of DEGs in fruiting bodies of LM compared with mycelia, we sought to detect 
enrichment for GO terms. (Fig. 4a) We found that DEGs in fruiting bodies were enriched in 16 terms repre-
senting biological processes (BP), 25 terms representing cellular components (CC), and 14 terms representing 
molecular functions (FC) (Fig. 4a). Among those, BP terms were primarily associated with metabolic processes, 
cellular processes, responses to stimuli, localizations and biological regulation; CC terms were mainly associated 
with the cell membrane, organelles and cell parts, and FC terms were related to catalytic activity and binding. We 
analyzed enrichment further according to expression levels and visualized the result using a Directed Acyclic 
Graph (DAG; Supplementary Fig. S8). Among CC terms, we found that genes annotated with the extracellular 
region (GO:0005576) and cytosolic part (GO:0044445) terms were enriched in the fruiting body stage. For BP, 
we found that carbohydrate metabolic process (GO:0005975) was greatly enriched in the fruiting body stage. 
For FC, iron ion binding (GO:0005506), cofactor binding (GO:0048037), catalytic activity (GO:0003824), and 
oxidoreductase activity (GO:0016491) were enriched in fruiting bodies.

We referred to genes related to fruiting body formation of Lentinus edodes and Agrocybe aegerita, but did 
not find similar expression in our transcriptome sequencing, which again proves that the mechanism of fruit-
ing body formation of mushrooms is complex22,31. But notably, one BP term, carbohydrate metabolic process 
(GO:0005975), included most of the CAZymes, suggesting that some differentially expressed CAZyme may make 
significant contributions to the switch between vegetative and reproductive growth stages. All DEGs comprising 
CAZymes of LM are shown in Supplementary Tables S12–S13 and Fig. 4b. We identified 10 highly expressed 
CAZymes from the fruiting stage: five genes within the GH family, two in the CBM family, and three in the 
AA, CE, and GT families, respectively (Fig. 4b). Among these CAZymes there were (i) genes with expression 
levels that are equivalent in the two different stages (i.e., not DEGs), including AA1, CBM13, CBM43, CE16, 
and GT1, and (ii) genes that are up-regulated in fruiting bodies, including GH128, GH16, GH20, GH27, and 
GH47 (Fig. 4b). Based on their up-regulation in fruiting bodies, CAZymes of the GH family specifically may be 
involved in switching between reproductive stages in LM.

Figure 3.   Statistics of CAZymes. (a) Heatmap showing the number of paralogs of CAZyme genes per species 
for families with an average of three or more paralogs among species. Warm colors represent higher numbers. 
Totals in the final row refer to the total numbers of genes per species. (b) Statistics for all CAZymes genes 
among the ten filamentous fungal species. The horizontal axis represents the species name and the vertical axis 
represents the number of CAZymes genes.
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Figure 4.   DEGs of GO terms and CAZymes. (a) GO term enrichment of the genes that are significantly up- or 
down-regulated in fruiting bodies. Gene name and its CAZyme family name. The right graph represents the 
genes within the GH module of CAZymes. Names to the right side indicate key gene names and their CAZyme 
family names. (b) Examples of fruiting bodies and vegetative (mycelia) organs of LM sampled for transcriptomic 
analysis.
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To verify the results from transcriptome data, we performed quantitative real-time PCR (qPCR) analysis on 
the 10 highly expressed CAZyme genes using the six materials shown in Fig. 4c. The results showed that the 
expression of all genes except for GT1 was consistent with that obtained from transcriptome analysis (Supple-
mentary Fig. S9), indicating our transcriptome data are reliable.

Discussion
Taxonomy and phylogenetic relationships of LM.  LM was firstly described by Imai Sanshi in 191732 
and included in the genus Tricholoma. More recently, Yu et al.7 separated LM from Tricholoma and proposed that 
the species is more closely related to Lepista based on morphology and a phylogeny of LSU DNA sequences. Yu 
et al. also argued that LM is morphologically distinct from Lepista, and according to our identification, the spore 
print of LM is white but that of genus Lepista should be more pink33. Based on these evidences, in combination 
with polyphyletic analysis, Yu et al. proposed a new genus, Leucocalocybe7. However, due to a single marker is 
used in Yu et al., the proposed taxonomic opinion remains controversial.

In our study, we used 3,269 single-copy genes to reconstruct a phylogenetic tree including six species of 
Tricholomataceae. The dated phylogeny presented here (Fig. 2c) reveals that LM is closer to Lepista, which is in 
agreement with the results of Yu et al. and our early study that LM diverged 25.5 Mya and Tricholoma diverged 
ca. 60 Mya. In addition, unique habitat (the fairy ring as shown in Supplementary Fig. 1), restricted distribu-
tion area (only grow in a small part of the Mongolian Plateau), and gene loss events also imply us that LM has 
a unique biological status. Collectively, these results support the conclusion of Yu et al. that LM belongs to the 
monotypic genus Leucocalocybe.

Gene loss may be an intrinsic cause for rarity of LM in nature.  In this study, we unexpectedly dis-
covered several lines of evidence suggesting that LM has experienced extensive gene loss. Most notably, LM has 
the smallest number of genes among the six sampled species of Tricholomataceae (Table 2) as well as the smallest 
number of unique gene families (Fig. 2a), suggesting a low rate of differentiation and a high rate of gene loss. 
In addition, LM appears to have the highest number of uniquely lost gene families (i.e., absent in LM but none 
of the other five species) (Supplementary Fig. S5), supporting a high rate of gene loss instead of a slow rate of 
gene gain, though these are not mutually exclusive processes and both could work in this species. LM also has 
the smallest number of CAZymes among the six sampled saprophytic species (Fig. 3), suggesting that it has lost 
some key functions central to its carbon metabolism, thus, potentially affecting its ability to obtain nutrients. 
These intrinsic and evolutionary features of LM may be partially responsible for its rarity in nature.

GO annotations and analyses of CAZymes represent genetic resources supporting cultivation 
of the species.  In our study, we performed transcriptome sequencing on mononuclear mycelia and dikar-
yon fruiting bodies of LM, which represent the asexual and sexual stages of the species respectively. Our results 
for GO annotation of the two LM transcriptomes were consistent with prior studies on Agrocybe aegerita34, 
Hypsizygus marmoreus25, and L. edodes24, which indicate that GO terms related to the cell and cell membrane 
were the most common within the CC category, terms of catalytic activity and binding were the most common 
in the FC category, and terms of cellular processes and metabolic processes were the most common in the BP 
category (Fig. 4a). Additionally, we found the results of GO annotation in this study are very similar to our ear-
lier de novo transcriptome study of LM24, which confirmed that we gain a reliable reference genome in this study.

Our analyses of GO terms between the two transcriptomes also revealed that carbohydrate metabolic pro-
cesses (GO:0005975) genes are the most significantly enriched in fruiting bodies among DEGs (Supplementary 
Fig. S7). This seems to be in agreement with our findings based on CAZymes that acquisition and use of nutrients, 
particularly carbon sources, in LM may play a critical role in shaping the observed evolutionary and ecological 
patterns (fairy rings) and processes in the species.

Nutrient acquisition in LM is poorly understood. We compared CAZymes in grass- and wood-rot fungi (LM, 
LN, CG, VV, LE, PO, and TV) and symbiotic mycorrhizal fungi (TM, LA, and LB) and found that the symbiotic 
mycorrhizal fungi had fewer CAZymes, especially for the CBM1 family (Supplementary Table S9). n contrast 
to mycorrhizal fungi, the distribution of CAZymes in LM is more similar to grass- and wood-rot fungi, despite 
that LM has the smallest number of CAZymes among the grass- and wood-rot fungi. If the CAZymes in LM 
suggest similarity to grass- and wood-rot fungi in terms of nutrient acquisition modes, then LM may have high 
potential to be domesticated because many grass- and wood-rot fungi are relatively easy to domesticate because 
they do not require a living host.

We examined ten CAZyme genes in detail that were highly expressed within mycelia and fruiting bodies 
(Table 3). Among these genes, evm.model.contig14.1 (AA10), evm.model.contig24.31 (CBM13), evm.model.
contig16.164 (CBM43), and evm.model.contig13.330 (GT1) were highly expressed in both organs, and they play 
important roles in the metabolism of carbon nutrients. Interestingly, three of these five genes belong to small-size 
gene families: evm.model.contig14.1 is the only member of the AA10 family in LM, evm.model.contig16.164 
represents one of two total genes in the CBM43 family, and evm.model.contig13.330 is one of four total genes in 
the GT1 family. This indicates that the size of a CAZyme family is not predictive of its expression level. We also 
found that, of the ten highly-expressed CAZymes, five were related to metabolism of glucose, xylose, galactose, 
or mannose, which were previously deemed important for nutrition in LM14. They are evm.model.contig13.330 
(GT1, glucose and xylose), evm.model.contig4.294 (GH128, glucose), evm.model.contig6.808 (GH16, xylose), 
evm.model.contig17.149 (GH27, galactose), and evm.model.contig10.338 (GH47, mannose). Therefore, these ten 
genes may play important roles in the nutrient metabolism of LM, and could thus affect fruiting body formation 
and have implications for domestication and breeding. Extraordinarily, we found the expression of CAZyme fam-
ily GH128 (evm.model.contig4.294) was very high in the fruiting body group (Table 3), which was confirmed by 
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the qPCR result (Supplementary Fig. S9). GO annotation (See the Supplementary Table S11) reveals that this gene 
(evm.model.contig4.294) participates in fungal-type cell wall polysaccharide metabolic process (GO:0071966). 
Moreover, by comparing against the NCBI Taxonomy database35, we found that this gene is widely distributed 
in many fungi, such as Aspergillus nidulans and Neurospora crassa35. Our study was the first to reveal and verify 
the high expression of the GH128 family gene in the fruiting bodies of LM, which promotes the research on the 
ex-site conservation, and also sheds light on the research of fruiting body formation of the other mushrooms.

Conclusion
We sequenced, annotated, and studied the first whole genome of LM as well as transcriptomes representing its 
vegetative and fruiting organs. Our study may help to facilitate conservation of this rare species by suggesting 
a genomic basis for its rarity in the wild and by providing specific genomic resources for its domestication for 
food and medicine. In particular, we found that ten key CAZymes are associated with nutrient acquisition and 
sexual reproduction in LM and could be utilized for rapid advancement in its domestication, which represents 
an important method of ex situ conservation.

Methods
Materials.  The s29 strain of LM was isolated from a spore print of a specimen acquired in the fall of 2018 in 
Chenbaerhu Banner of Hulunbeier City, Inner Mongolia Autonomous Region, China. The voucher specimen is 
deposited in the Herbarium of Mycology of Jilin Agricultural University (HMJAU), under NO. 55229. We veri-
fied separation of the monospore strain using an Axio Imager A2 fluorescence microscope (Zeiss). We cultured 
the monokaryotic mycelia in potato dextrose and carrot sucrose solid-state (potato 100 g, carrot 100 g, and 
sucrose 20 g per liter) culture in the dark at 23 °C for 20 d. The fruiting body for transcriptome sequencing was 
acquired in the fall of 2017 in Wubuer Baolige Sumu of Hulunbeier City, Inner Mongolia Autonomous Region, 
China. Then, we selected three samples from a tufted wild fruiting body (Fig. 4c) as biological duplications to 
guarantee the same growth conditions and stored in a − 80° freezer prior to use, and all sequencing strains and 
materials were stored in Engineering Research Center of Chinese Ministry of Education for Edible and Medici-
nal Fungi, Jilin Agricultural University. For collection ethics and protection of the species, we neither collect 
fruiting bodies of LM less than two in pre fairy ring, nor collect fruiting bodies that have not yet begun to eject 
spores. Finally, we leave at least one mature fruiting body in each fairy ring after collection.

Isolation of RNA and construction of cDNA library.  Total RNA was extracted from frozen mycelium 
and internal tissues of fruiting body by using the Transzol plant kit (TransGen Biotech, Inc.) following the 
manufacturer’s instructions. After extraction and purification, we checked the purity of RNA using a K5500 
spectrophotometer (Kaiao, Beijing, China) and determined the integrity of RNA and its concentration with an 
RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). A total amount of 
2 μg RNA per sample was used as input for the RNA sample preparations. We generated sequencing libraries 
with a NEB Next Ultra RNA Library Prep Kit for Illumina (#E7530L, NEB, USA) following recommendations of 
the manufacturer, and added index codes to attribute sequences to each sample. Briefly, we purified mRNA from 
total RNA using poly-T oligo-attached magnetic beads, and carried out fragmentation using divalent cations 
under elevated temperature in NEB Next First Strand Synthesis Reaction Buffer (5 ×). We synthesized the first 
strand of cDNA using a random hexamer primer and RNase H, and the second strand using buffer, dNTPs, DNA 
polymerase I, and RNase H. We purified the library fragments with QiaQuick PCR kits and performed elution 
with EB buffer.

Table 3.   Candidate CAZymes, which show the greatest differential expression between fruiting and vegetative 
stages of LM, and their annotations. The gene IDs represent name of predicted protein-coding genes in LM.

Gene ID CAZY family Log2fold change CAZy annotations

evm.model.contig14.1 AA10  − 0.44 AA10 (formerly CBM33) proteins are copper-dependent lytic polysaccharide monooxygenases (LPMOs); some 
proteins have been shown to act on chitin, others on cellulose

evm.model.contig24.31 CBM13  − 0.44 Modules of approx. 150 residues which always appear as a threefold internal repeat

evm.model.contig16.164 CBM43  − 0.98 Modules of approx. 90–100 residues found at the C-terminus of GH17 or GH72 enzymatic modules and also 
sometimes isolated

evm.model.contig1.1324 CE16  − 1.37 Acetylesterase (EC 3.1.1.6) active on various carbohydrate acetyl esters

evm.model.contig13.330 GT1  − 1.26 UDP-glucuronosyltransferase (EC 2.4.1.17); zeatin O-beta-xylosyltransferase (EC 2.4.2.40); 2-hydroxyacylsphin-
gosine 1-beta-galactosyltransferase (EC 2.4.1.45)

evm.model.contig4.294 GH128 4.55 Beta-1,3-glucanase (EC 3.2.1.39)

evm.model.contig6.808 GH16 2 Xyloglucan:xyloglucosyltransferase (EC2.4.1.207); keratan-sulfate endo-1,4-beta-galactosidase (EC 3.2.1.103); 
endo-1,3-beta-glucanase (EC 3.2.1.39)

evm.model.contig10.398 GH20 4.12 Beta-hexosaminidase (EC 3.2.1.52); lacto-N-biosidase (EC 3.2.1.140); beta-1,6-N-acetylglucosaminidase (EC 
3.2.1.-)

evm.model.contig17.149 GH27 2.95 Alpha-galactosidase (EC 3.2.1.22); alpha-N-acetylgalactosaminidase (EC 3.2.1.49); isomalto-dextranase (EC 
3.2.1.94)

evm.model.contig10.338 GH47 2.75 Alpha-mannosidase (EC 3.2.1.113)
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DNA extraction, library preparation, and LM genome sequencing and assembling.  (a) 
Genomic DNA was extracted from strain s29 using DNeasy Plant Mini Kit (QIAGEN). Sequencing was carried 
out on the Pacific Bioscience Sequel platform and Illumina platform at Annoroad Gene Technology Company, 
China. In total, we generated 10.5 Gb of high-quality reads from the SMRT cells and 11.35 GB of high-quality 
paired-end reads from the Illumina platform. (b) Assembly: We assembled the PacBio reads using the Mecat 
pipeline36, and curated the assembled contigs using the Arrow algorithm37. We curated the data from Illumina 
platform using Pilon38. We used BUSCO39 with OrthoDB database40 to assess the integrity of the assembled 
genome sequence.

Transcriptome analysis.  We sequenced mRNA from monokaryotic mycelia and fruiting bodies, we per-
formed 3 replicates for each group, on the Illumina Hiseq 2500 platform (Illumina; San Diego, CA, USA). We 
aligned the resulting high-quality pair-end reads to the assembled LM genome sequence using HISAT2 v2.1.041 
with default parameters, and applied StringTie v1.3.2d for transcriptome assembly with default parameters. We 
used HTSeq (0.6.0)42 to calculate expression with parameters “-i gene_id -f bam -s no -a 10 -q”, and identi-
fied DEGs with DEGseq v1.18.0. We estimated up/down-regulated genes at conditions of |log2 fold change|> 2, 
p-value = 0.05, and q-value = 0.05. We applied Asprofile v1.0.4 (http://ccb.jhu.edu/softw​are/ASpro​file/) to iden-
tify alternative splicing (AS) events.

Annotation of the LM genome.  (a) Gene prediction: We performed genome annotation by de novo 
prediction and homology-based searches as well as a cDNA-based search using the transcriptome data gener-
ated in this study. We used Augustus v3.343, SNAP44, GeneMark v4.3345, and GlimmerHMM v3.0446 to predict 
gene sequences and calculate codon frequency and exon/intron distribution. Our homology-based searches 
comprised aligning predicted genes in LM to sequences in eggNOG, Pfam, and the NR and NT databases of 
the NCBI following methods in Yuan et al21. We used Blastp v2.2.28 (version used throughout unless other-
wise noted)47 to compare the annotated protein-coding sequences in LN, TM, CG, LB, and LA to LM s29. For 
transcriptomes, we used Tophat v2.1.148 to determine splice junctions and PASA v2.1049 to generate the annota-
tions. Finally, we used EVidenceModeler50 to combine all the above annotation results into one non-redundant 
annotation list. (b) Gene functional annotation: We used Blastp to compare our sequencing data for LM with 
annotated, curated sequences in SwissProt51, the National Center for Biotechnology Information (NCBI) nr and 
nt databases, GO52, NCBI Clusters of Orthologous Groups of proteins (COG)53, KO (KEGG Kyoto Encyclopedia 
of Genes and Genomes)54, and Pfam55 databases. We extracted functional information from the results accord-
ing to the types of data available in each database. (c) Non-coding RNA annotation: We used Blast to compare 
our sequencing data with the Rfam56 database to identify rRNAs, snRNAs, and miRNAs, and used tRNAscan-SE 
v2.0.2 to determine tRNAs in our dataset.

Comparative genomics and phylogenetic analyses.  (a) Gene family identification: A GeneFamily 
approach57 was conducted. Briefly, we first filtered the gene set of protein sequences of LM, AB, CG, LN, TM, 
LA, and LB based on filtration standard, that is, when a gene has more than one transcript, the longest transcript 
is taken, and the protein sequences with lengths greater than 50 amino acids (aa) were picked. Second, we used 
Blastp to format the filtered data with parameters "-p blastp -m 8 -e 1e-5 -a 10 -F F" and then OrthoMCL58 soft-
ware with the parameter " -I 1.5" to statistical gene family data form formatted data. (b) Phylogenetic analyses: 
By using results from gene family identification, we found 3,269 single-copy gene families in LM, AB, CG, LN, 
TM, LA, and LB genome data. Then, we used MUSCLE59 to generate a super-alignment of 3,269 single-copy 
gene families and reconstructed a phylogenetic ML tree by PhyML v3.060. The HKY85 model was used and the 
bootstrap values were calculated with 100 replicates. (c) Molecular clock analysis: We used the time correc-
tion points from TimeTree61 of Life to infer the divergence times of phylogenetic analysis, including Laccaria 
bicolor and Agaricus bisporus at 111–189 Mya, Agaricus bisporus and Tricholoma matsutake at 111–189 Mya, 
Laccaria bicolor and Tricholoma matsutake at 107.6–151.1 Mya (divergence times were obtained on 2019.4.9). 
The MCMCtree in PAML62 and the BRMC method63 were used to estimate the divergence time, with the time 
correction points obtained from TimeTree61. (d) OrthoVenn264: We performed analyses in OrthoVenn2 with 
an e-value <  = 1e-15 and an inflation value = 1.0. (e) Reference genome sources: All reference genome sequences 
used in this study were retrieved from Joint Genome Institute (JGI; https​://genom​e.jgi.doe.gov/), and are list in 
Supplementary Table S13.

Identification of CAZymes.  We first downloaded the CAZy enzyme database65 (http://bcb.unl.edu/dbCAN​
2/downl​oad/CAZyD​B.07312​019.fa as database, and http://bcb.unl.edu/dbCAN​2/downl​oad/Datab​ases/CAZyD​
B.07312​019.fam-activ​ities​.txt as the annotation file). Then, we performed a Blastp search to align CAZymes of 
LM and other 9 species identified in this study to the CAZyme database; the top hits with e-value <  = 1e-17, 
minimum homology rate > 45%, and coverage > 45% were considered to be homologs.

qPCR nalysis.  qPCR was performed using the same DNA samples and primers described in Fig. 4c. The 
qPCR reaction conducted in a 15-μL volume containing 2 μL AceQ qPCR SYBR Green Master Mix (JZ121-02, 
Jizhenbio), 0.7 μL of each primer (10 μM), 100 ng (1 μL) of cDNA templates, and ddH2O to a final volume of 
15 μL. The qPCR cycling parameters were: 95 °C for 5 min, 40 cycles of 95 °C for 10 s and 60 °C for 30 s. The 
Actin gene was used as the internal control and the relative expression level of each gene was calculated by the 
2-ΔΔCt method. Each qPCR reaction was performed in triplicate. All of the primer sequences used are shown in 
Table S14.

http://ccb.jhu.edu/software/ASprofile/
https://genome.jgi.doe.gov/
http://bcb.unl.edu/dbCAN2/download/CAZyDB.07312019.fa
http://bcb.unl.edu/dbCAN2/download/CAZyDB.07312019.fa
http://bcb.unl.edu/dbCAN2/download/Databases/CAZyDB.07312019.fam-activities.txt
http://bcb.unl.edu/dbCAN2/download/Databases/CAZyDB.07312019.fam-activities.txt
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Data availability
The whole-genome sequencing data for L. mongolica have been deposited into the NCBI BioSample database 
under accession number JAAXNY000000000 and PRJNA623488.
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