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Identifying ecologically fragile areas by assessing ecosystem vulnerability is an essential task in 
environmental conservation and management. Benin is considered a vulnerable area, and its coastal 
zone, which is subject to erosion and flooding effects, is particularly vulnerable. This study assessed 
terrestrial ecosystems in Benin by establishing a hybrid ecological vulnerability index (EVI) for 2016 
that combined a composite model based on principal component analysis (PCA) with an additive 
model based on exposure, sensitivity and adaptation. Using inverse distance weighted (IDW) 
interpolation, point data were spatially distributed by their geographic significance. The results 
revealed that the composite system identified more stable and vulnerable areas than the additive 
system; the two systems identified 48,600  km2 and 36,450  km2 of stable areas, respectively, for a 
difference of 12,150  km2, and 3,729  km2 and 3,007  km2 of vulnerable areas, for a difference of 722  km2. 
Using Moran’s I and automatic linear modeling, we improved the accuracy of the established systems. 
In the composite system, increases of 11,669  km2 in the potentially vulnerable area and 1,083  km2 
in the highly vulnerable area were noted in addition to a decrease of 4331  km2 in the potential area; 
while in the additive system, an increase of 3,970  km2 in the highly vulnerable area was observed. 
Finally, southern Benin was identified as vulnerable in the composite system, and both northern 
and southern Benin were identified as vulnerable in the additive system. However, regardless of the 
system, Littoral Province in southern Benin, was consistently identified as vulnerable, while Donga 
Province was stable.

The world is currently facing a disruption in the climate system that is resulting in global warming. According to 
the fourth assessment report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), the average rate 
of warming over the last fifty (50) years, on the order of 0.13 °C per decade, has nearly doubled compared to that 
in the last 100 years. Climate  alteration1,2 implies severe drastic repercussions for ecosystems and disturbances to 
diversity. Therefore, climate change, in addition to being an environmental issue, is generating a global consensus 
regarding the effects of global warming in different activity sectors and is now a development concern, especially 
with regard to sustainable  development3. Indeed, the impacts of global warming do not spare any sector of 
human development or any ecosystem, whether marine, desert, forest, aquatic or terrestrial. Land degradation, 
which decreases the productive capacity of soils, is one of the major problems for the future of an increasingly 
anthropogenic planet, particularly in developing countries that are experiencing ever-increasing demographic 
pressure. It is therefore reasonable that this problem is of great concern to scientific authorities. Ecological vul-
nerability, one way to evaluate the status of an ecosystem, is highly dependent on climate change because climate 
data are a key factor in ecological vulnerability assessments. Recently, the ecological vulnerability concept has 
been studied and applied in several  disciplines4,5. The main objective of ecological vulnerability research is to 
maintain the balance between protection and exploitation that is vital for the sustainability of an ecosystem by 
gradually identifying vulnerable areas; these areas may then become the subject of special  attention6. Delimiting 
ecologically vulnerable zones is a fundamental aspect of environmental conservation  management7.

Africa, because of its development level, is often described as one of the most vulnerable regions in the  world8. 
Overall, research studies have concluded that the main consequences of climate change in West Africa are coastal 
erosion, floods, drought, lack of access to drinking water for approximately two hundred (200) million  people9, 
etc. Benin, which is a part of West Africa, has recorded a drastic 20 to 40% decrease in major river flows since the 
 1970s10. Rainfall in Benin is projected to continue to decrease by 10 to 20% compared to current levels by  202511. 
In Benin, the land degradation situation is of great concern at the national level. According to the default data 
provided by the National Remote Sensing Center, it is estimated that in 2016, approximately 2.2 million hectares 
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of land, or 19% of the national territory, were  degraded10,12. In addition, longer periods of drought and more 
intense rainy seasons are expected in  Benin13,14. Southern Benin, specifically Littoral Province, is the location 
of most administrative offices as well as the largest market in Benin (Dantokpa), which is also one of the largest 
markets in the subregion. As a result, it has become the residence of many public officials and businesspeople. 
To meet these housing needs, some natural water drainage channels have been filled, which has hindered the 
flow of water and made the area vulnerable to flooding.

To face all these challenges, Benin must develop mechanisms for prevention, mitigation and adaptation. 
Since the stakes are high, decisions made today will determine the living conditions of future generations. In 
this context, the main objective of our study is to assess the ecological vulnerability of Benin’s terrestrial ecosys-
tems to climate change. Ecological assessments of ecosystems are becoming  essential15 for both understanding 
an ecological zone and for developing it. Vulnerability is an indicator that incorporates several variables and 
 attributes16. It is useful to have a good understanding of the different patterns of spatial variation in an area. 
Spatial assessment is beneficial because it can be used to display complex data in simple and visually appealing 
 ways17; this can also be a weakness because uncertainties in the data and important analytic assumptions that 
affect the output maps are often hidden from the user. The ecological vulnerability index (EVI), which is an 
important tool for environmental assessment, was recently  developed18,19. This index concept has been studied 
and applied at different spatial scales and in several  regions16,20–23. To date, studies have developed established 
systems based on various  techniques24 such as the fuzzy evaluation method, the gray evaluation method, prin-
cipal component analysis (PCA), the artificial neural network evaluation method, the landscape evaluation 
method, and the analytic hierarchy process (AHP)  method25, to evaluate the  EVI26. Ecological  vulnerability27,28 
is a universal term that can be used at many levels (site, ecosystem, community, overall environment, etc.) and, 
referring to the  IPCC9, is also considered an additive function of exposure to a stressor, sensitivity to the stressor 
and adaptation, which can be interpreted as  resilience29,30.

Research on ecological vulnerability is crucial or climate change mitigation and plays a key role in revealing 
where how and why ecosystems are affected. The importance of such studies is now widely recognized, as they 
have been justified by observed and projected climate conditions that highlight the urgency of understanding 
the implications of a rapidly changing  climate24,31. The purpose of this study is to help understand terrestrial 
ecosystems in the Republic of Benin by assessing their vulnerability to climate change in order to accurately 
identify fragile ecological areas within those ecosystems. We adopted different conventional frameworks to better 
understand the ecological state of Benin’s terrestrial ecosystems. Relying on existing data, we assessed Benin’s 
ecological vulnerability to climate by establishing a hybrid ecological vulnerability index for 2016. Using fifteen 
indicators, we calculated the ecological vulnerability index for terrestrial ecosystems in Benin based first on 
principal component analysis (PCA) and second on the additive method recommended by the IPCC. We then 
determined the spatial  distribution25,32 of the EVI values to provide an exhaustive analysis. The spatial variation 
results were mapped to reveal the points of discrepancy between the two established systems. The comparative 
analysis focused on fluctuations in the vulnerability ranking to facilitate the understanding of the interactions 
among the constituent components and to provide assessment results with respect to the various attributes con-
sidered in the index. Finally, based on automatic linear modeling, we improved the accuracy of our established 
systems by improving our classification system. The study components were normalized to a commensurate 
scale from 0 to 1 from lowest least to highest to eliminate any other effects of the normalization and weightings 
on the outcomes. As recommended by the IPCC in its AR5 report, these indicators were selected by consulting 
experts and existing studies that noted some factors, such as climate, environmental hazard, and socioeconomic 
factors, as threats to ecosystems in Benin.

Description of the study area
Benin is located in West Africa between 6°10′ and 12°25′ north latitude and between 0°45′ and 3°55′ east longi-
tude. It covers an area of 114,763 square kilometers  (km2), and currently has 12 provinces (Fig. 1). The area of 
potential cultivable land is estimated to be approximately 7 million hectares, i.e., nearly 63% of the total area, and 
some forests are classified as being exposed to degradation. Benin is characterized by two well-defined climatic 
zones: the southern zone, which has a subequatorial climate with two rainy seasons per year, and the northern 
zone, which has a continental tropical climate with one rainy season. These zones are separated by a transition 
zone. Central Benin has a transitional climate similar to the sub-Sudanese climate. Benin receives between 700 
and 1300 mm of rainfall per year that is spread over 70 to 110 days of the year. This rainfall is characterized by 
wide spatial and temporal variations, making the cultivation of rain-fed crops particularly unpredictable. The 
average maximum temperatures throughout the country fluctuate between 28 and 33.5 °C, while the average 
minimum temperatures range from 24.5 to 27.7 °C. Currently, the total population is estimated at 10,700,000 
inhabitants, and the per capita density varies between 31 inhabitants per  km2 in the province of Alibori (northern 
Benin) and 10,160 inhabitants per  km2 in the province of Littoral (southern Benin)10,12,33, the highest-density 
province. Littoral is the only province with a single municipality and is also the economic capital of the country.

Methodology
Data and processing. Establishment of the ecological vulnerability index (EVI) system. Vulnerability is 
an indicator that incorporates several multidimensional and multivariate  attributes7,34,35. Given the objective 
of this study, it was considered better to rely on freely available data or data that could be generated within the 
study, such as slope and elevation, which were generated through the use of a digital elevation model (DEM) 
by applying a geographic information system (GIS) associated with remote sensing (RS) (Table 1). The current 
study considered the EVI to be a function of fifteen indicators. These include climate  data4,18,25 such as rainfall, 
temperature, relative humidity, and sunlight; socioeconomic  data36–38 such as population, density per inhabitant, 
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gross domestic product (GDP), and number of houses; thematic data such as the normalized difference vegeta-
tion index (NDVI), soil organic carbon, digital elevation model (DEM) and slope; and environmental hazard 
 data3,34 such as flood, drought and bush fire frequency. Climate data were obtained from the Agency for Aerial 
Navigation Safety in Africa and Madagascar (AANSAM), socioeconomic data were provided by the National 
Institute for Statistics and Economic Analysis (NISEA), and hazard data were obtained from the United Nations 

Figure 1.  Location of study area.

Table 1.  Characteristic of data. mm = millimeter, ºC = degree Celsius, % = percentage, h/m2 = hour per meter 
square, Inh. = inhabitant, Inh/km2 = inhabitant per kilometer square, FCFA = francs des colonies françaises 
d’Afrique, AANSAM = Agency for Aerial Navigation Safety in Africa and Madagascar, and NISEA = National 
Institute for Statistics and Economic Analysis.

Group Indicators Units Period Resolution Processing Source (Ref)

Climate
Rainfall
Temperature
R.Hunidity
Sunlight

Mm
ºC
%
h/m2

2000–2016 Points data IDW Interpolation method and resampling AANSAM

Socio-economic
Population
Density
GDP
Houses

Inh
Inh/km2

FCFA
Houses

NISEA

Thematic NDVI – 2016 250 m Resampling https ://earth explo rer.usgs.gov/

Elevation
Slope – 2016 90 m Resampling Digital elevation model

Soil organic carbon – 2014 1 km Resampling https ://soilg rids.org/#!/?layer =ORCDR C_M_
sl2_250m&vecto r=1

Hazard
Flood
Drought
Fire

– 2013 1 km Resampling https ://previ ew.grid.unep.ch

https://earthexplorer.usgs.gov/
https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=1
https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=1
https://preview.grid.unep.ch
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Environment Program (UNEP) platform (https ://previ ew.grid.unep.ch). Raster data were sampled using the bi-
linear method, which determines the new value of a cell based on the weighted average of the distance between 
the four nearest input cell centers. Then, all data were processed using ArcGIS 10.5 and SPSS 21.

Method. Mapping degraded lands emphasizes the gradual changes in the spatial distribution of  degradation39, 
which is determined based on ecological vulnerability assessments. To assess ecological vulnerability in this 
 study3, we complied a dataset of the fifteen indicators mentioned above. The EVI was established in two differ-
ent ways. First, PCA was applied to all fifteen indicators to determine their relative degree of influence, which 
was reflected in their weighting coefficient. Second, based on the IPCC’s recommendation, vulnerability was 
determined as an additive function of exposure, sensitivity and adaptation. PCA was used to obtain the weighted 
coefficients by extraction, and then each indicator was multiplied by its extraction coefficient to obtain the vari-
ance rate, as shown in Table 2. The point data were transformed into raster data using inverse distance weighted 
(IDW) interpolation. In a vulnerability assessment, it is important to accurately determine the assessment indi-
cator weights. We checked the spatial autocorrelation of the outcomes using Moran’s I and cluster analysis.

Inverse distance weighted (IDW) interpolation. IDW interpolation is an accurate method that ensures that the 
estimated value of a point is more influenced by closer identified points than by more distant  ones40. IDW 
assumes that the correlation degree and similarity between variables are relative to the distance between them, 
which can be interpreted as an inverse distance. The general equation for the IDW method is shown in Eq. (1):

z0 = estimated value of variable z at point i,  zi = sample value at point i,  di = distance of a sample point to an esti-
mated point, N = coefficient that determines the weight based on distance, n = total number of predictions for 
each validation case.

Composite system: principal component analysis. A very common application of PCA is to produce a sum-
mary of uncorrelated variables from multivariable  information7,34,35, since the objective of PCA is to reduce data 
dimensionality by extracting the maximum information along linear axes called principal components.

The multiple vulnerability indicators combined in the aggregate vulnerability index exceeded the individual 
measurement units of each indicator. For this reason, PCA requires that the study variables be ranked on the 
same unit  scale38. Therefore, it was essential that these variables be standardized. We chose to use a scaled stand-
ardization ranking from 0 to 1 by applying the formula below to each indicator Eq. (2):

where Vij represents the standardized value of factor j of grid i, ranked from 0 to 1, vij represents the measured 
value of factor j of grid i, and vminj and vmaxj represent the minimum and maximum values of factor j of grid i, 
respectively.

Once all data were resampled and standardized, the study area was subdivided into a fishnet polygon of 1 km 
per grid to extract the real value of each studied indicator variable at each pixel level size. Then, the EVI was 
established using PCA in SPSS 21 software to calculate the weighted coefficient of each  indicator41.

Spatial principal component analysis. In a PCA, the main objective is to reduce a set of p variables to a set of 
uncorrelated linear variables called principal  components18,37. Transforming all data into an integrated assess-
ment index is fundamental to performing an ecological vulnerability assessment but remains a difficult task to 
achieve. Referring to Eq. (3), the principal components can be expressed as follows:

where PCn is the principal component score, w is the component loading, x is the measured value of a variable, 
i is the component number and p is the total number of variables.

(1)Zo =

∑

N

i=1 zi.d
−n

i
∑

N

i=1 d
−n

i

(2)Vij =
vij − vminj

vmaxj − vminj

(3)PCn = wi1x1 + wi2x2 + · · · + wipxp

Table 2.  PCA weight based on eigenvalues and variance.

Indicators

Initial Eigenvalues Extraction sums of squared loadings

Total % of Variance Cumulative percentage % Total % of Variance Cumulative percentage %

1 5.479 36.525 36.525 5.479 36.525 36.525

2 1.951 13.009 49.534 1.951 13.009 49.534

3 1.518 10.117 59.651 1.518 10.117 59.651

4 1.269 8.462 68.113 1.269 8.462 68.113

5 1.138 7.587 75.700 1.138 7.587 75.700

6 0.937 6.248 81.948 0.937 6.248 81.948

https://preview.grid.unep.ch
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As shown in Eq. (4), each principal component is multiplied by its variance rate.

where EVI is the ecological vulnerability index, r is the contribution ratio of the principal component, PC is 
the principal component, q is the number of principal components retained, n = 6 and, referring to Eq. (5), the 
coefficient r is defined as:

where  ri is the contribution ratio of the ith principal component and  bi is the eigenvalue of the ith principal 
component.

Additive system. The IPCC AR5  report9, entitled the Vulnerability Reference Guide, on pages 21 and 22 of the 
French translation, defines exposure as the nature and degree to which a system under degradation is facing 
significant climate change; sensitivity is defined as the degree to which a system is affected negatively or posi-
tively; and adaptation is defined as the state of system recovery as reflected in its ability to self-regulate against 
climate change  effects14. On page 21, this guide also notes that among all elements that contribute to vulner-
ability, exposure is the most directly related to climate  factors9,41.  Fire34,42 is a natural process that has played 
a fundamental role in maintaining natural ecosystems for millions of years and that regulates the dynamics 
of plant and animal populations. Moreover, people use fire as a means of cleaning farms for the next planting 
season. Thus, we classified it as an adaptation indicator. GDP is also presented as an adaptation indicator on 
page 67 of that guide. Based on these assumptions, our fifteen indicators were grouped into the following three 
categories: exposure (Eq. 6a; temperature, rainfall, relative humidity, sunlight, flood and drought), sensitivity 
(Eq. 6b; population, density per inhabitant, elevation, slope, NDVI, soil organic carbon and number of houses), 
and adaptation (Eq. 6c; GDP and fire).

With:

Results
Composite ecological vulnerability index  (EVIPCA). We assumed that the system consistency was 
strong when the cumulative percentage of the extracted principal components was higher than 80% (the cumu-
lative percentage is the quantitative extraction rate of the indicators under study). Six of the principal compo-
nents met this requirement and cumulatively accounted for 81.948% of the variance. The extraction rates of the 
individual principal components expressed as the percentage of the variance they explained were PC1 = 36.525%, 
PC2 = 13.009%, PC3 = 10.117%, PC4 = 8.462%, PC5 = 7.587% and PC6 = 6.248, Table 2; more details about the 
retained principal components are provided in Table 3. Next, the  EVIPCA was calculated using Eq. (4). As shown 
in Table 4, using equal intervals, the EVI was divided into five (05) classes, namely, potential, slight, low, moder-
ate and high. According to Fig. 2, the composite EVI varied spatially from north to south, and the vulnerability 
increased from north to south. In southern Benin, the vulnerability conditions were critical; this was especially 
true in Littoral Province, the economic capital of Benin, which had the highest per capita density at more than 
10,000 inhabitants per square kilometer in 2016 according to the collected data, and in Atlantique and Oueme 
Provinces, which are newly developed residential areas. Alibori Province was determined to be the most stable 
(potentially vulnerable, according to the classification in Table 4), the least affected, the most spacious and the 
least occupied area, with a density per capita of approximately 30 inhabitants per square kilometer.

To summarize, the  EVIPCA results revealed potential vulnerability in Alibori and Donga provinces, slight 
vulnerability in Atacora, Borgou and Collines provinces, low vulnerability in the northern Zou, Plateau, Mono 
and Couffo provinces, moderate vulnerability in southern Zou, Plateau Mono, Couffo and northern Atlantique 

(4)EVIPCA = r1PC1 + r2PC2 + · · · + rqPCq =

6
∑

1

PC

(5)ri =
bi

∑p
i=1 bi

(6)
Vulnerability = f

(

exposure, sensitivity, adaptation
)

Vulnerability =
exposure, sensitivity, adaptation

3

(6a)
Exposure = f

(

temperature, rainfall, relative humidity, sunlight, flood, drought
)

Exposure =
temperature+ rainfall+ relative humidity+ sunlight+ flood+ drought

6

(6b)
Sensitivity = f

(

population, density, elevation, slope, NDVI, organic carbon, houses
)

Sensitivity =
population+ density+ elevation+ slope+NDVI+ organic carbon+ houses

7

(6c)
Adaptation = f (GDP, fire)

Adaptation =
GDP+ fire

2
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and high vulnerability in Littoral, Oueme and southern Atlantique provinces. Littoral and parts of Atlantique 
and Oueme provinces were identified as extremely vulnerable areas. Each classified area was mapped in Fig. 4. It 
is important to highlight that even at 75%, 80% and 85% cumulative percentages, the spatial variations remained 
the same.

Additive ecological vulnerability index  (EVIad). The additive EVI  (EVIad) was considered a function 
of exposure, sensitivity and adaptation, as calculated in Eq. (6). Like the composite EVI  (EVIPCA), as calculated 
by Eq. (6a) and shown in Fig. 3a, exposure also varied from north to south, with the lowest rate in the north 
and the highest in the south. As calculated by Eq. (6b) and shown in Fig. 3b, a high sensitivity rate was identi-
fied in the south, specifically in Atlantique, Littoral and Oueme provinces, and in the northeast, specifically, in 
eastern Borgou Province. Low-sensitivity areas were identified in the center of Donga, Plateau, Mono and Couffo 
provinces. As calculated by Eq. (6c) and shown in Fig. 3c, the adaptation rate was high in the center of Atacora 
Province and its surroundings, moderate in southern Benin (Littoral) and potential throughout central Benin.

To summarize, the  EVIad vulnerability shown in Fig. 3d was high in Littoral and central Atacora, moderate in 
Atacora, low in Alibori, Atalantique and Oueme, slight in Borgou, Zou and potential in Collines, Donga, Mono, 
Couffo and Plateau. The highest additive EVI values were more closely related to the extreme exposure and 
adaptation values than to the sensitivity values in southern  Benin41. This showed that additive EVI was influenced 
in decreasing order by adaptation, exposure and sensitivity. Therefore, we deduced that the areas with high fire 
frequencies were the most vulnerable. Sensitivity can therefore be perceived as an expression of resistance that 
had no influence on  exposure30.

Synthesis
In the composite system, southern Benin was determined to be more vulnerable than northern Benin, but this 
trend was not observed in the additive system. However, Littoral Province was always determined to be vulner-
able, regardless of the system. The different classified areas are shown in Fig. 4 both for the composite EVI and 
its components as well as the additive EVI and its components. Figure 4a shows the EVI PCA, Fig. 4b shows the 
 EVIAD and Fig. 4c shows both EVIs.

EVIPCA = 0.446×PC1+0.159×PC2+0.123×PC3+0.103×PC4+0.093×PC5+0.075×PC6

Table 3.  Retained principal components constituents rate.

Indicators PC1 PC2 PC3 PC4 PC5 PC6

Humidity 0.927  − 0.072 0.248  − 0.196 0.093  − 0.011

Sunlight  − 0.868 0.203  − 0.222 0.255  − 0.089  − 0.029

Houses 0.849  − 0.093  − 0.059 0.416 0.252 0.032

Fire  − 0.808 0.363 0.054 0.276 0.016  − 0.078

Density 0.751 0.515  − 0.090  − 0.017 0.020 0.058

Elevation  − 0.743 0.025  − 0.242  − 0.181 0.347 0.170

Temperature 0.680  − 0.481  − 0.049 0.132 -0.417 0.170

NDVI  − 0.543 0.247 0.459 0.262  − 0.056 0.085

Drought 0.347 0.631  − 0.264  − 0.130  − 0.163 0.321

GDP 0.237 0.592  − 0.297  − 0.099  − 0.253 0.333

Rainfall 0.373 0.567 0.484  − 0.203 0.384  − 0.239

Carbon  − 0.022 0.144 0.617 0.398  − 0.452 0.140

Population 0.380 0.029  − 0.361 0.726 0.399 0.090

Slope  − 0.125  − 0.176 0.459  − 0.023 0.398 0.644

Flood 0.376 0.288 0.084 0.207  − 0.018  − 0.383

Table 4.  References for classification. Note The  scale32,41 0–1 indicating the lowest EVI level (0) to the highest 
EVI level (1)is used.

Vulnerability rank Vulnerability classification Classification description

0.00–0.20 Potential Stable ecosystem, rich soil and good vegetation cover

0.21–0.40 Slight Relatively stable ecosystem, rich soil, relatively good vegetation cover

0.41–0.60 Low Relatively stable ecosystem, infertile soil, relatively poor vegetation cover

0.61–0.80 Moderate unstable ecosystem, bad quality soil, poor vegetation cover

0.81–1.00 High Extremely unstable ecosystem, deteriorated soil, extremely poor vegetation
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The results synthesis indicated that the composite EVI classified more areas as potentially and highly vulner-
able than the additive EVI, i.e., 48,600  km2 and 3729  km2 for the  EVIPCA and 36,450  km2 and 3007  km2 for the 
 EVIad, respectively. The  EVIPCA values were 12,150  km2 higher for the potential vulnerability area and 722  km2 
higher for the high vulnerability area than the  EVIAD values. Figure 5 shows both EVIs, a)  EVIPCA and b)  EVIad.

Note For the legend, the  scale32,41 used is 0–1, from the lowest EVI level (0) to the highest EVI level (1).

Similarity and dissimilarity. Given the discrepancies between the two EVI systems (Fig. 5), to improve 
the credibility of our study systems, we assessed the connection between the different components by calculating 
Moran’s index I and the coefficient of correlation between each constituent of the two EVIs.

Spatial autocorrelation using Moran’s I. Spatial  autocorrelation43 measures the relationship among variable val-
ues according to the spatial arrangement of their values. Moran’s  I25 is a correlation coefficient that measures 
the overall spatial autocorrelation of the data set by determining by how statistically similar one object is to 
the others surrounding it. The values we obtained were  IPCA = 0.955256 and  IAD = 0.989222. In addition, we per-
formed a cluster analysis. Cluster analysis identifies statistically significant spatial clusters of high values (hot 
spots) and low values (cold spots) and provides confidence levels for each feature in the input feature class. Cold 
spots include elements of less importance, while hot spots include those of great interest that require special 
 attention44. The composite EVI hot spot  analysis37 notably varied from south to north, with a confidence of 99% 
in southern Benin and no significant values from the center to the north. In other words, southern Benin was 
a cluster of hot spots. Regarding the additive EVI, there was a cluster of hot spots in Littoral and Atacora. Only 
the Littoral confidence value was 99%, followed by Atacora at 95% confidence; the rest of the values were not 
significant. Then, in the additive system, there were a cluster of hot–cold spots in the south, cold-cold spots in 
the center and hot spots in the north.

Pearson’s correlation. This study used Pearson’s correlation coefficients to evaluate the relationship between 
each pair of components, which was useful for the automatic linear modeling regression. This calculation detects 
the presence or absence of a linear relationship between two continuous quantitative variables, i.e., it is a meas-
ure of the strength of the association between the two variables. The results are displayed in Table 5.

Figure 2.  Composite vulnerability map.
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Figure 3.  Additive vulnerability map.

Figure 4.  Classification areas quantification.
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Figure 5.  Observed composite and additive EVI map.

Table 5.  Pearson correlation coefficient. Note  EVIAd = additive ecological vulnerability index, 
 EVIPCA = composite ecological vulnerability index, Adap = adaptation, Sens = sensitivity and Expo = exposure 
and PC = principal component.

Components EVIAd Adap Sens Expo EVIPCA PC6 PC5 PC4 PC3 PC2 PC1

EVIAd 1.000 0.860 0.517  − 0.102  − 0.161  − 0.310 0.072 0.733 0.159 0.787  − 0.556

Adap 0.860 1.000 0.138  − 0.524  − 0.602  − 0.337 0.074 0.559  − 0.099 0.814  − 0.866

Sens 0.517 0.138 1.000 0.157 0.416 0.180 0.172 0.672 0.202 0.229 0.060

expo  − 0.102  − 0.524 0.157 1.000 0.844  − 0.066  − 0.144  − 0.143 0.535  − 0.291 0.801

EVIPCA  − 0.161  − 0.602 0.416 0.844 1.000 0.016 0.109  − 0.121 0.573  − 0.306 0.881

PC6  − 0.310  − 0.337 0.180  − 0.066 0.016 1.000  − 0.454 0.154  − 0.223  − 0.663 0.182

PC5 0.072 0.074 0.172  − 0.144 0.109  − 0.454 1.000  − 0.239  − 0.112 0.384 0.048

PC4 0.733 0.559 0.672  − 0.143  − 0.121 0.154  − 0.239 1.000  − 0.139 0.308  − 0.385

PC3 0.159  − 0.099 0.202 0.535 0.573  − 0.223  − 0.112 0.139 1.000 0.199 0.327

PC2 0.787 0.814 0.229  − 0.291  − 0.306  − 0.663 0.384 0.308 0.199 1.000  − 0.669

PC1  − 0.556  − 0.866 0.060 0.801 0.881 0.182  − 0.048  − 0.385 0.327  − 0.669 1.000



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2449  | https://doi.org/10.1038/s41598-021-81742-2

www.nature.com/scientificreports/

In summary, there was a strong positive correlation between the composite EVI  (EVIPCA) and the first prin-
cipal component, PC1 (0.881), exposure (0.844) and the third component, PC3 (0.573). Thus, we deduce that 
 EVIPCA is influenced by precipitation, temperature, relative humidity, sunlight and flooding. Regarding the 
additive EVI,  EVIad, there was a relatively strong correlation with adaptation (0.860), the second principal com-
ponent, PC2 (0.787), and the fourth principal component, PC4 (0.733); consequently, we can deduce that GDP 
and population influence this EVI more than other factors.

Since the number of variables was higher than 3, we decided to use a linear regression to evaluate the degree 
of correlation between the variables; see Table 6 for the results. The results revealed that the correlation degree 
among the first three elements (PC1, exposure, and PC3) was higher than that among the latter three elements. 
(adaptation, PC2, and PC4).

Discussion
According  to7, identifying fragile ecological areas is imperative for ecological protection and environmental 
organization and management. Therefore, assessing ecological vulnerability is crucial for the study of ecosystem 
 vulnerability45. Based on the current conditions and previous predictions, the EVI was classified from the lowest 
vulnerability (potential) to the highest vulnerability (high), as shown in Table 4. Overall, this study obtained 
three main results, which are highlighted below.

The first result concerned the spatial variation in EVI. In the composite system, the EVI  (EVIPCA) varied 
from north to south, with Littoral being a vulnerable province and Alibori being a stable province. In the addi-
tive system, EVI  (EVIad), both southern and northern Benin were identified as vulnerable, especially northern 
Benin, and Littoral (which was identified as vulnerable by the composite system) and central Atacora (which 
was identified as potentially vulnerable by the composite system), respectively, were identified as vulnerable.

The second result was the calculation of the spatial autocorrelation coefficients (Moran’s I) of each EVI, 
which were  IPCA = 0.955256 and  IAD = 0.989222 for the composite and additive systems, respectively. Both of these 
values are very high and are better than those reported  in46. Although the spatial variations in these systems 
were obviously different, their Moran’s I values remained very high. However, according to Moran’s I, the spatial 
autocorrelation of the additive system was higher than that of the composite system. The principal component 
analysis approach assumes no prior relationship between the different factors and allows their relationships to 
develop from the statistical analysis, thus indicating the regional spatial variability of the  components8. The 
observed discrepancies in spatial variation outcomes did not mean that there was a lack of spatial organization 
between the components. Therefore, graphic dissimilarities (differences in spatial distributions) do not challenge 
the spatial layout of the components or notably, their correlations.

The third result was from the cluster analysis, showing high-high clusters in the south for the composite 
system and in the north for the additive system. We deduce that regardless of the system used to calculate 
vulnerability, ecosystems in central Benin are still relatively stable. Central Benin has a moderate population 
density and moderate soil organic carbon levels. Littoral has a high population density rate, while Borgou has a 
high soil organic carbon level. These outcomes reveal that southern Benin is seriously threatened according to 
the composite system and that northern Benin is seriously threatened according to the additive system. These 
findings were explained and discussed with reference to available studies.

We used IDW interpolation, as opposed  to41, who used kriging interpolation. We note that the indicators 
used in that study were slightly different from those in this study and were not classified similarly; in addition, 
different analysis assumptions were applied. His results show a strong positive correlation between sensitivity 
and the additive EVI  (EVIAD), which is slightly different from the results of our study. In this study, we found a 
moderate correlation between these two factors. This difference in the outcomes can be attributed to the differ-
ence in the indicators and their distribution in the system. Nonetheless, that study showed that additive vulner-
ability is primarily influenced by adaptation, exposure and sensitivity; our study led us to put these elements in 
the order of adaptation, sensitivity and exposure. Both studies placed adaptation in the same position. Although 
the considered variables were different, we reached the same conclusion regarding adaptation, which can be 
considered a strength of our additive system.

Densely populated areas were determined to be very  vulnerable47. High sensitivity rates were detected in 
southern Benin, including in Littoral, Atlantique, and Oueme. Housing and density indicators were classified 
as sensitivity variables, which means that density is still a threat to ecosystem stability. Littoral Province, the 
economic capital of Benin, which has the highest population density (more than 8000 inhabitants per square 
kilometer, according to the averaged raw data), and Atlantique and Oueme provinces, newly developed residential 
areas, were classified as extremely vulnerable. Alibori Province, the largest and least populated province, was 

Table 6.  Linear regression coefficient.

Variables EVIPCA EVIAd R R2

PC1 0.881 –

0.991 0.830Expo 0.844 –

PC3 0.573 –

Adap – 0.860

0.873 0.761PC2 – 0.787

PC4 – 0.733
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classified as the most stable area in the composite system. We can deduce from this analysis that the population 
density also has a great impact on the composite system. In the additive system, Littoral remained an extremely 
vulnerable area, and central Atacora and Collines were the most stable areas. This outcome confirms that density 
in Littoral is a serious challenge to stability according to both systems.

However, the composite system than the additive system is more credible since it is based on SPSS, a statisti-
cal software, and is therefore empirical. In contrast, the additive system can be unreliable, since the indicators, 
as a whole, are classified according to the user. This classification method is subjective, and therefore theoretical 
(here, we based our indicators on expert advice and IPCC recommendations); hence, it leaves room for doubt. 
This study found that coastal zones, i.e., Littoral, are the most  vulnerable33,34,48. This finding indicates the reality 
for our study. The extremely vulnerable areas identified by the composite system were high per capita density 
areas, which emphasized that density was a decisive indicator in our composite system. This analysis uncovered 
significant spatial variation in population vulnerability in southern Benin. According to the raw data we collected, 
the average density per capita in Borgou is 35.909%, while in Littoral, it is 8003.636%, i.e., 223 times higher than 
that in Borgou. Borgou is made up of several communes, while Littoral consists only of Cotonou, the economic 
and administrative capital of Benin, which is a highly desirable area. The demand for buildings has forced people 
to occupy some natural drainage channels, making this commune vulnerable to flooding. Southern Benin is 
less spacious but has more inhabitants than northern Benin because almost the entire administrative system of 
the country is located there, as well as one of the largest markets in West Africa. There is a need for an efficient 
decentralization process according to the determined standards. Our study revealed that regions with lower 
density per capita were the least vulnerable.

The additive system found that the areas with high bush fires and soil organic carbon rates were the most 
vulnerable. Thus, vulnerability is specific to the  context34, since the factors that make a region or a community 
vulnerable can vary among different regions and community. The vulnerability of the northern area that was 
highlighted by the additive system can be explained by the practice of intensive agriculture (soil organic carbon) 
and the bush fires involved in these practices. Northern Benin is an agricultural area, and cotton cultivation is 
common; hence, there are high levels of pesticide use. Agriculture is very important for the Beninese economy 
and hence pesticides are used. Vulnerability in southern Benin is related to climate, flooding, and the high 
population density, while vulnerability in northern Benin is related to bush fires and soil organic matter levels. 
Although the systems and indicator groupings were different, they reached the same conclusion about Littoral 
Province. In the additive system, the vulnerable areas corresponded to areas with high soil organic carbon.

It is important to point out that this study suffers from certain  limitations38. For example, data for all the indi-
cators from the same time period were not always available, some required data were inaccessible and some data 
were gathered from the public domain. This can be interpreted as a weakness of our system. Since public-domain 
data are not accurate, they can result in biased outputs, which should not be ignored. The determined spatial and 
temporal variation, as well as the type of degradation under consideration, depends on the input data sets for the 
analysis and  modeling39. Using automatic linear modeling model building (ALMMB), our results were improved.

The main objective of automatic linear modeling model building (ALMMB) was to improve the present 
study outcomes by enhancing the accuracy of the established system based on the adjusted chi-square Pearson 
correlation. Using automatic linear modeling regression combined with the best subsets method in SPSS 23, we 
tried to enhance each observed vulnerability level. Table 7 displays both the observed and enhanced rates for 
each EVI, and Fig. 6 displays the map of the enhanced values. We note that the potentially vulnerable  areas32 
increase or decrease in size less than the highly vulnerable areas.

Based on Table 8, in the composite system, increases in both the potentially and highly vulnerable areas were 
highlighted. The observed potentially vulnerable area was 48,600  km2, and the enhanced potentially vulnerable 
area was 60,269  km2. The observed highly vulnerable area was 3729  km2, and the enhanced highly vulnerable 
area was 4812  km2; the differences in these values were 11,669  km2 and 1083  km2, respectively. A decrease in 
the potentially vulnerable area and an increase in the highly vulnerable area were noted in the additive system. 
In the additive system, the observed potentially vulnerable area was 36,450  km2, and the enhanced potentially 
vulnerable area was 32,119  km2, for a difference of 4331  km2. The observed highly vulnerable area was 3007 
 km2, and the enhanced highly vulnerable area was 6977  km2, for a difference of 3970  km2, i.e., more than the 
double the observed value. However, according to the enhanced composite model, much attention should be 
paid to all southern provinces, especially Zou, Oueme and Plateau. Figure 6 displays the enhanced vulnerability 
mapping for a) the composite system and b) the additive system. Figure 7 summarizes the different classified 
areas and their differences.

In summary, the composite system was vulnerable to climate and flooding (and to some extent to population 
density as well, as in Littoral), while the additive system was vulnerable to bush fires and soil organic matter. Lit-
toral was identified as a vulnerable area in both systems. Finally, to improve the accuracy of our results, we used 
ALMMB. The results showed both increases and decreases in the size of vulnerable areas. The present study used 
a combination of GIS, PCA and ALMMB to accurately assess the vulnerability of terrestrial ecosystems in Benin.

Table 7.  Observed and enhanced rate for EVI.

EVI EVIPCA EVIAD

Component PC1 PC2 PC3 PC4 PC5 PC6 Expo Sens Adap

Observed (Obs.) 0.446 0.159 0.123 0.103 0.093 0.076 0.340 0.330 0.330

Enhanced (Enh.) 0.730 0.050 0.200 0.010 0.010 0.000 0.010 0.190 0.800
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Conclusion
The challenge of ecological vulnerability assessment is to identify vulnerable areas and propose optimal measures 
for their future management. In this study, the spatial variation in vulnerability differed according to the system 
considered (composite or additive). Regardless of the system, the Littoral Province was always shown to be vul-
nerable; this is likely due to its geographical position (coastal), which makes it subject to rainfall fluctuations, and 
its excessive density. Donga was identified the most stable province. Density hotspots related to high-population 
areas are threatened ecosystems in Benin. Applying different systems of analysis does not exclude the possibility 

Figure 6.  Improving composite and additive EVI map.

Table 8.  Observed and enhanced vulnerability areas. Note Classif. = classification, Dif. = difference, 
Qualif. = qualification, Inc. = increase and Reg. = regression.

Rank Classif

EVIPCA EVIAD

Obs.  (km2) Enh.  (km2) Dif.  (km2) Qualif Obs.  (km2) Enh.  (km2) Dif  (km2) Qualif

0.00–0.20 Potential 48,600 60,269 11,669 Inc 36,450 32,119  − 4331 Reg

0.21–0.40 Slight 46,314 25,984  − 20,330 Reg 22,736 22,255  − 481 Reg

0.41–0.60 Low 12,270 11,669  − 601 Reg 40,540 27,548  − 12,992 Reg

0.61–0.80 Moderate 3849 12,030 8180 Inc 12,030 25,864 13,834 Inc

0.81–1.00 High 3729 4812 1083 Inc 3007 6977 3970 Inc
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of similarities in their outputs since, mathematically speaking, they all belong to the same domain of definition 
and are materialized here by the same analytical indicators.

Special attention should be paid to the ecosystem in Littoral. This will involve initiating a study that should 
lead to the establishment of a master  plan49, which must propose rigorous measures based on the issues faced in 
this province. The extremely vulnerable areas revealed by the composite system are the high per capita density 
areas, which shows that population density is a crucial factor in our composite system. Southern Benin is less 
spacious than northern Benin is but more populated because almost the entire administrative system of Benin, 
as well as one of the largest markets in West Africa, is located there. If the administration of Benin were decen-
tralized, many officials would have to move; this would allow residents to stop living in drainage areas, and the 
water might find its natural flow channel. The additive system identified areas with high bush fire rates as the most 
vulnerable. Thus, vulnerability is specific to the  context34, since what makes a region vulnerable can differ from 
region to region. In southern Benin, population density and climate were threats, while in northern Benin, soil 
organic matter was the source of vulnerability. This study promoted the use of both GIS and statistical methods 
to accurately identify and account for fragile ecological areas.

This study quantitatively and accurately evaluated the ecological environmental quality of terrestrial eco-
systems in the Republic of Benin under different scenarios. The vulnerability of Benin’s terrestrial ecosystems 
was confirmed, and the vulnerable areas were clearly identified. These ecosystems, which are prone to instabil-
ity, will thus require more attention in the future. We expect that this study will assist in obtaining funding to 
support research to maintain sustainability in the developing country of Benin and will be helpful for making 
policy decisions.
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