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Convection heat mass transfer 
and MHD flow over a vertical plate 
with chemical reaction, arbitrary 
shear stress and exponential 
heating
Sehra1, Sami Ul Haq1, Syed Inayat Ali Shah1, Kottakkaran Sooppy Nisar2, Saeed Ullah Jan1 & 
Ilyas Khan3*

The present research article is directed to study the heat and mass transference analysis of an 
incompressible Newtonian viscous fluid. The unsteady MHD natural convection flow over an infinite 
vertical plate with time dependent arbitrary shear stresses has been investigated. In heat and mass 
transfer analysis the chemical molecular diffusivity effects have been studied. Moreover, the infinite 
vertical plate is subjected to the phenomenon of exponential heating. For this study, we formulated 
the problem into three governing equations along with their corresponding initial and boundary 
conditions. The Laplace transform method has been used to gain the exact analytical solutions to the 
problem. Special cases of the obtained solutions are investigated. It is noticed that some well-known 
results from the published literature are achieved from these special cases. Finally, different physical 
parameters’ responses are investigated graphically through Mathcad software.

Nomenclature
C	� Fluid concentration
Gm	� Mass Grashof number
g	� Acceleration due to gravity
M	� Magnetic parameter
Q	� :Heat generation or absorption coefficient
Sc	� Schmidt number
T	� Fluid temperature
Cp	� Specific heat at a constant pressure
T∞	� Fluid Temperature far away from the plate
C∞	� Fluid concentration far away from the plate
ν	� Kinematic viscosity
η	� Non-dimensional slip parameter
ϕ	� Inclination parameter
µ	� Dynamic viscosity
D	� Mass diffusion coefficient
Gr	� Thermal Grashof number
k	� Thermal conductivity of the fluid
Pr	� Prandtl number
K	� Chemical reactions parameter
S	� Laplace transforms parameter
Tw	� Temperature at the plate
B0	� Uniform magnetic field
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Cw	� Concentration at the plate
t0	� Characteristics time
ρ	� Fluid density
σ	� Electrical conductivity
η1	� Non-dimensional heat source
η2	� Non-dimensional chemical reaction
γ	� Volumetric coefficient of mass expansion
β	� Volumetric coefficient of thermal expansion

In daily life applications convection of heat-mass transfer analysis play a very important role. In the last few 
years natural convection flow theory highly developed and became the most rapidly established research field. 
A lot of phenomena’s relatable to convection flow over infinite vertical plate are studied in literature. In practi-
cal life heat and mass transfer procedure appears too much, such as chemical reaction evaporation, and also in 
condensation. Heat and mass transfer have also industrialized applications like the buoyancy effects of diffusion 
of chemical reactions and thermal diffusion; this is generated by thermal conduction and mass transfer analysis. 
Many researchers have been working in this field and eradicate many physical problems related to heat and mass 
transfer and investigated that problems analytically as well as graphically. The free convection unsteady flow of 
incompressible viscous fluid over a perpendicular plate together with ramped wall temperature is analyzed, and 
obtained the exact analytical solution to the problem by using the Laplace transform method1.The effects of heat 
and mass transfer over a movable vertical plate with ramped wall temperature is analyzed and obtained the exact 
analytical solution of the problem2. The channel flow of unsteady incompressible viscous fluid together with 
ramped wall temperature at single boundary, and obtained the exact solution by using the Laplace transform 
method3. A mathematical model investigated that the free convection isothermal diffusivity effect on unsteady 
viscous flow formed by Narahari et al.4. Rubbab et al. analyzed the free convection flow of viscous fluid that is 
closed to a perpendicular plate with arbitrary time dependent shear stresses5. Natural convection heat transfer 
phenomena of viscous incompressible fluid through permeable medium with magneto hydrodynamic flow 
analyzed6. In the last few years magneto hydrodynamic phenomenon in viscous fluid is an attractive research 
field for the scientists and engineers. These fields become very interesting for researchers caused by dynamic 
nature of the flow effects of magneto hydrodynamic and too many applications in industries as well as engineer-
ing problems. The magneto hydrodynamic could be found in many apparatus7–9. The MHD influences can be 
also used in plasma confinement, Astrophysical phenomena, liquid distortion into a metal, the nuclear reactors 
cooling, centrifugal pumps, humans body blood circulation, the medical study of breathing, electromagnetic 
casting, and numerous other physical and natural problems. The idea of MHD was firstly presented in 1942 by 
Hannes Alfven. He was also nominated for noble prize for his numerous services provided in the field of physi-
cal science. After a while this concept has been given a new idea to the researchers to study the velocity of fluid 
due to the magnetic field. Several researchers have taken the MHD influences in the fluid with the effects of the 
porosity10–12. Ferdows et al.13 analyzed mixed convection magneto hydro dynamic flow of Nano-fluids passes 
through a permeable mechanism subjected to exponentially extendable surface14. Free (natural) convection MHD 
flow of Nano-fluids via a permeable medium analyzed numerically15. Numerical approach to a mixed convection 
MHD flow of Nano fluids upon a porous medium investigated16. The analysis of MHD flow of Williamson with 
conduction radiation heat transfer with thermal diffusivity studied17. The chemical reaction mostly consist of 
a large number of well-known reactions such as exothermal reaction and isothermal reaction, these properties 
found in many industrial activities18. Many researchers worked on chemical reaction, and analyzed the chemical 
reaction phenomena, like effects of enzymatic reactions on thermic conduction and the mass transferring effects 
in a boundary surface subjected to many initial and boundary conditions19–23. Saeed et al. analyzed the thermal 
conduction and mass transference analysis in the existence of enzymatic reaction of free convection with the 
wall slip boundary condition24. There are two types of boundary conditions in the fluid flow phenomena, if the 
first layer of the fluid momentum which touches the surface of the plate is uniform to the velocity of that plate 
or boundary is called no-slip boundary condition and if that velocity not equal to boundary velocity is called 
slip boundary condition. Like in capillary action no-slip boundary conditions doesn’t applicable25. While Navier 
presented some limitations in his earlier work26. The slip boundary condition effect has too much applications 
for example Nano-channels or micro-channels. In the fluid problems slip condition has very important role 
in industries and chemical sciences. The steady flow together with magneto hydrodynamic passing through a 
channel with slip boundary condition studied by Makinde et al.27. The goal of the recent research is to analyze 
the slip wall influences, enzymatic reaction i.e. chemical reaction, and thermic exhaustion on incompressible 
viscous unsteady natural convection flow together with magneto hydrodynamic over a perpendicular plate with 
arbitrary shear stresses and exponential heating. The exact analytical solution for the dimensionless equations 
like temperature velocity and concentration equation is gained by applying the Laplace transformation method, 
for graphical representation Mathcad software, with the help of different physical parameters the exact analytical 
solution represented graphically.

Mathematical formulation
Considering the governing model equations in the dimensionless form with (initial-boundary) conditions sub-
jected to the problem of free convection fluid flow of viscous fluid and with the property of incompressibility 
which passes through a perpendicular infinite plate and exponentially heated with arbitrary shear stresses applies 
to the fluid. Initially the fluid is at standstill mode for time t = 0, the temperature is T∞ and concentration is C∞ . 
As time begin to start at t+ the temperature and mass can be changed with the equations T = Tw(1− ae−bt)+ T∞ 
and Cw at respectively. For such a flow, the constraint of incompressibility is identically satisfied. Now by usual 
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Boussinesq’s approximation28,29, the unsteady flow is governed by the following set of partial differential equa-
tions. The schematic diagram used in fluid flow problem is represented geometrically by Fig. 1.

The suitable (initial-boundary) conditions are:

Dimensionless variables. 

Adopting the overhead non-dimensional parameters in Eqs. (1)–(6), the dimensionless governing equations 
will have the simplest appearance as under as,
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Figure 1.   Physical model of the problem.
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With non-dimensional (initial-boundary) conditions

Analytical Laplace transformation solution
Now adopting the Laplace transformation to (7–9) equations with the (initial-boundary) conditions from 
(10–12). First, we find the concentration and temperature equations solutions because velocity equation is 
dependent on the (temperature-concentration) equations after that we will find solution for the velocity equation 
by applying Laplace transformation method. For the sake of convenience the * notation is omitted.

Solution for concentration equation. 

With C(y, 0) = 0,C(0, s) = 1
s

The exact analytical solution obtained by utilizing the Laplace inverse transform of the Eq. (13), we have the 
analytical solution for concentration profile which is given as under

Solution for temperature equation. 

With T(y, 0) = 0, T(0, s) = 1
s −

a
s+b

The exact analytical solution obtained by applying the Laplace inverse transform of the Eq. (14), we have the 
analytical solution for temperature profile which is given as under.

Solution for velocity equation. 

With u(y, 0) = 0&u(0, s) = f (s).
Clearly Eq. (15) is non-homogenous so its solution will be in the form of

(9)
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(12)u∗(y, t) → 0, T∗(y, t) → 0, C∗(y, t) → 0 as y → ∞.
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where

To obtain the exact analytical solution adopting the inverse Laplace transform of the above equation by using 
theEqs. (18–23) which is given as under

Special cases

(i)	 In the absence of heat source ( η1 = 0)

In Eq. (8), when we put η1 = 0 , then we obtain the solution in the form as given under:

The result is uniform to that in the published literature achieved by Rubbab et al.5.

	 (ii)	 In the absence of mass transfer ( C(y, t) = 0)

We take C(y, t) = 0 and using η1 = 0, M = 0 , in Eq. (8), we achieved the solution after lengthy calculation:

The result is uniform to the one in published literature achieved by Rubbab et al.5.

Graphical results and discussions
In this section we present the graphical interpretation and numerical computations in order to receive a clear 
image of the model equations, the numerical computations performed and the influences of various physical 
parameters like Prandtl ( Pr ) number, Schmidt (Sc) number, heat source ( η1 ), chemical reaction parameter ( η2 ), 
MHD parameter (M) and Grashof number of thermal (Gr) on flow quantities. Physical diagram of the problem 
is shown in Fig. 1. The layout of velocity for f (t) = sinwt is presented in the Fig. 2a–f. The influence of Pr on 
the velocity field is shown in Fig. 2a. It is certain in Fig. 2a that the velocity of the fluid is decreasing for greater 
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Figure 2.   (a–f) Profiles of the velocities for f (t) = sinwt.
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values of Pr . After all for higher value of Pr fluids will have higher viscosities and therefore the fluid velocity 
decrease. Fig. 2b presents the effects of Sc on the fluid velocity. The fluid velocity decelerates for increasing values 
of Sc. Therefore the motion of the fluid is decreased. The velocity profile for distinct values of η1 is presented 
in Fig. 2c, which shows that velocity decrease as we increase the heat source. The influence of η2 parameter 
(chemical reaction) on the velocity of the fluid is shown in Fig. 2d. This is noticed that the velocity decelerates 
with accelerating values of η2 which represent the chemical reaction. Also the magnetic parameter M effects 
investigated in Fig. 2e. It is acknowledged that, the supporting effect of MHD on the fluid velocity with electri-
cally conducting fluid, in this process a resistive force arises. It could be noticed that from Fig. 2e. The effect of 
magnetic parameter M on fluid velocity shows that the velocity decrease when M increase. The consequences 
of Gr number on fluid velocity is given in Fig. 2f. It is noticed that the fluid velocity decrease, if we decrease the 
value of Grashof number Gm and velocity increase as the Gm number increases. The thermal Grashof is the ratio 
of viscous force and thermal buoyancy, which causes free convection. The layout of velocity for f (t) = H(t) is 
presented in the Fig. 3a–f. The analysis in Fig. 3a–f for the motion of fluid is same as in Fig. 2a–f. The layout of 
temperature profiles is presented in the Fig. 4a,b. Figure 4a,b represent the changes of temperature profile for 
distinct values of η1 and Pr . It is acknowledged that heat transfer decreases if we increase the values of η1 and 
Pr . The layout of concentration profiles is presented in the Fig. 5a,b. Figure 5a,b shows the mass concentration 
profile fluctuations for distinct values of η2 and Sc. It is analyzed from these plots that decreasing the values of η2 
and Sc, concentration profile also decreases. In Fig. 6a,b we compared the obtained solutions as limiting cases 
with those obtained by Rubbab et al.5. For temperature layout the Prandtl consequences are investigated and it 
is observed that the temperature become higher as we neglect the heat source parameter in our problem and 
achieved the result published in literature5. Grashof influences are checked for velocity profile and it is observed 
that in the absence of MHD, heat source and chemical reaction the fluid flow rate become higher comparable to 
our actual problem also in this case we achieved the result published in the literature5.

Case 1: when f (t) = sinwt then velocity profile shape is in the given figures.
Case 1: when f (t) = H(t) then velocity profile shape is in the given figures.
Where H(t) is unite step function.

Conclusions
The study considered here presents the analysis of the unsteady free convective fluid flow of a viscous incompress-
ible fluid in the existence of MHD and the chemical molecular diffusivity effects upon a perpendicular plate with 
arbitrary time dependent shear stresses and exponential heating phenomena. Special cases are investigated of 
the obtained solutions and it is noticed that some well-known results are achieved published in literature from 
these special cases. The profiles (concentration, temperature and velocity) are analyzed graphically for distinct 
physical parameters. It is observed that.

•	 Higher value of Pr number, η1 parameter, Sc number, η2 parameter and MHD parameter M reduce the motion 
of fluid, while as in the absence of η1 parameter, η2 parameter and MHD parameter M the motion of fluid is 
increasing and achieved the result published in the literature5.

•	 Motion of fluid is increasing for larger values of Gr.
•	 Temperatures profiles decelerated for higher values of η1 and Pr number.
•	 It is observed that the temperature become higher as we neglect the heat source parameter in our problem 

and achieved the result published in literature5.
•	 Concentration profile of mass come down with raising points of the η2 , Sc.
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Figure 3.   (a–f) Profiles of the velocities for f (t) = H(t).
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Figure 4.   (a,b) Profiles of the temperatures for distinct values of η1 and Pr.

Figure 5.   (a,b) Profiles of the concentration for different values of η1 and Sc.



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4265  | https://doi.org/10.1038/s41598-021-81615-8

www.nature.com/scientificreports/

Received: 24 September 2020; Accepted: 16 December 2020

References
	 1.	 Chandran, P., Sacheti, N. C. & Singh, A. K. Natural convection near a vertical plate with ramped wall temperature. J. Heat Trasnsf. 

41(5), 459–464 (2005).
	 2.	 Narahari, M. & Dutta, B. K. Effects of mass transfer and free-convection currents on the flow near a moving vertical plate with 

ramped wall temperature. In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sus-
tainability Conferences, American Society of Mechanical Engineers Digital Collection. 63–72 (2009).

	 3.	 Marneni, N. & Raghavan, V. R. Natural convection flow in vertical channel due to ramped wall temperature at one boundary. 
In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences, 
American Society of Mechanical Engineers Digital Collection. 73–80 (2009).

	 4.	 Narahari, M., Bég, O. A. & Ghosh, S. K. Mathematical modelling of mass transfer and free convection current effects on unsteady 
viscous flow with ramped wall temperature. World J. Mech. 1, 176–184 (2011). https​://doi.org/10.4236/wjm.2011.14023​.

	 5.	 Rubbab, Q., Vieru, D. & Fetecau, C. Natural convection flow near a vertical plate that applies a shear stress to a viscous fluid. PLoS 
ONE 8(11), e78352 (2013).

	 6.	 Shah, N. A., Ahmed, N., Elnaqeeb, T. & Rashidi, M. M. Magneto hydrodynamic free convection flows with thermal memory over 
a moving vertical plate in porous medium. J. Appl. Comput. Mech. 5(1), 150–161 (2019).

	 7.	 Jang, J. & Lee, S. S. Theoretical and experimental study of MHD (magneto hydrodynamic) micro pump. Sens. Actuator A Phys. 
80(1), 84–89 (2000).

	 8.	 Shah, N. A. et al. Effect of magnetic field on double convection flow of viscous fluid over a moving vertical plate with constant 
temperature and general concentration by using new trend of fractional derivative. Open J. Math. Sci. 2(1), 253–265 (2018).

	 9.	 Bau, H. H., Zhong, J. & Yi, M. A minute magneto hydro dynamic (MHD) mixer. Sens. Acta. B Chem. 79(2–3), 207–215 (2001).
	10.	 Haq, S. U., Ur Rahman, A., Khan, I., Ali, F. & Shah, S. I. A. The impact of side walls on the MHD flow of a second-grade fluid 

through a porous medium. Neural. Comput. Appl. 30(4), 1103–1109 (2018).
	11.	 Haq, S. U., Khan, I., Ali, F. & Shafie, S. Radiation and magneto hydrodynamics effects on unsteady free convection flow in a porous 

medium. Math. Probl. Eng.
	12.	 Narahari, M. & Debnath, L. Unsteady magneto hydrodynamic free convection flow past an accelerated vertical plate with constant 

heat flux and heat generation or absorption. ZAMM J. Appl. Math. Mech. 93(1), 38–49 (2013).
	13.	 Ferdows, M., Khan, M., Alam, M. & Sun, S. MHD mixed convective boundary layer flow of a Nano fluid through a porous medium 

due to an exponentially stretching sheet. Math. Probl. Eng. 3(7), 2551–2571 (2012).
	14.	 Ferdows, M., Khan, M. S., Bég, O. A., Azad, M. A. K. & Alam, M. M. Numerical study of transient magneto hydrodynamic radioac-

tive free convection nano fluid flow from a stretching permeable surface. J. Proc. Mech. Eng. 228(3), 181–196 (2014).

(22)�1(y, t,m) = L−1

[
√
Pr (s +m)

s

]

=
√
Pr

[√
m× erf

√
mt +

1
√
π t

exp (−mt)

]

,

(23)�2(y, t,m, n) = L−1

[
√
Pr (s +m)

s + n

]

=
√
Pr

[√
m− n× erf

√

(m− n)t +
1

√
π t

exp (−(m− n)t)

]

.

Figure 6.   (a,b) Profiles of the velocity and temperature in comparison with Rubbab5.

https://doi.org/10.4236/wjm.2011.14023


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4265  | https://doi.org/10.1038/s41598-021-81615-8

www.nature.com/scientificreports/

	15.	 Ferdows, M., Khan, M. S., Alam, M. M. & Afify, A. A. MHD boundary layer flow and heat transfer characteristics of a nanofluid 
over a stretching sheet. Acta Univ. Sapientiae Math. 9(1), 140–161 (2017).

	16.	 Bég, O. A., Khan, M. S., Karim, I., Alam, M. M. & Ferdows, M. Explicit numerical study of unsteady hydromagnetic mixed convec-
tive nanofluid flow from an exponentially stretching sheet in porous media. Appl. Nanosci. 4(8), 943–957 (2014).

	17.	 Khan, M., Karim, I., Rahman, M., Arifuzzaman, S. M. & Biswas, P. Williamson fluid flow behaviour of MHD convective-radiative 
Cattaneo–Christov heat flux type over a linearly stretched-surface with heat generation and thermal-diffusion. Front. Heat Mass 
Transf. 9(1), 1–11 (2017).

	18.	 Mahdy, A. Effect of chemical reaction and heat generation or absorption on double-diffusive convection from a vertical truncated 
cone in porous media with variable viscosity. Int. Commun. Heat. Mass. 37(5), 548–554 (2006).

	19.	 Muthucumaraswamy, R. & Ganesan, P. Diffusion and first-order chemical reaction on impulsively started infinite vertical plate 
with variable temperature. Int. J. Ther. Sci. 41(5), 475–479 (2002).

	20.	 Muthucumaraswamy, R. Chemical reaction effects on vertical oscillating plate with variable temperature. Chem. Ind. Chem. Eng. 
Qual. 16(2), 167–173 (2010).

	21.	 Patil, P. M. & Kulkarni, P. S. Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the 
presence of internal heat generation. Int. J. Ther. Sci. 47(8), 1043–1054 (2008).

	22.	 Raju, M. C., Varma, S. V. K. & Rao, R. R. K. Unsteady MHD free convection and chemically reactive flow past an infinite vertical 
porous plate. J. Fut. Eng. Technol. 8(3), 35–40 (2013).

	23.	 Babu, M. S. & Narayana, P. V. S. Effects of the chemical reaction and radiation absorption on free convection flow through porous 
medium with variable suction in the presence of uniform magnetic field. J. Heat Mass Transf. 3, 219–234 (2009).

	24.	 Jan, S. U., Haq, S. U., Shah, S. I. A. & Khan, I. Heat and mass transfer of free convection flow over a vertical plate with chemical 
reaction under wall-slip effect. Arab. J. Sci. Eng. 44(12), 9869–9887 (2019).

	25.	 Day, M. A. The no-slip condition of fluid dynamics. Erkenntnis 33(3), 285–296 (1990).
	26.	 Navier, C. L. M. Memoire surles du movement des. Mem. Acad. Sci. Inst. France. 1(6), 414–416 (1990).
	27.	 Makinde, O. D. & Osalusi, E. MHD steady flow in a channel with slip at the permeable boundaries. Rom. J. Phys. 51(3), 319–320 

(2006).
	28.	 Merkin, J. H. Natural convection boundary layer flow on a vertical surface with Newtonian heating. Int. J. Heat Fluid Flow 15, 

392–398 (1994).
	29.	 Lesnic, D. & Ingham, D. B. Free convection boundary layer flow along a vertical surface in a porous medium with Newtonian 

heating. Int. J. Heat Mass Transf. 42, 2621–2627 (1999).

Author contributions
S.H. designed the study; S.S. conducted the experiments with technical assistance from S.I.A.S., S.U.J., I.K. and 
K.S.N. analyzed the data and wrote the paper. All authors have read and approved the final submission.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to I.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Convection heat mass transfer and MHD flow over a vertical plate with chemical reaction, arbitrary shear stress and exponential heating
	Mathematical formulation
	Dimensionless variables. 

	Analytical Laplace transformation solution
	Solution for concentration equation. 
	Solution for temperature equation. 
	Solution for velocity equation. 

	Special cases
	Graphical results and discussions
	Conclusions
	Appendices
	References


