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Simultaneous experimental 
evaluation of pulse shape 
and deadtime phenomenon of GM 
detector
Bader Almutairi1,2,3, Syed Alam1, Cameron S. Goodwin3, Shoaib Usman1 & Tayfun Akyurek4*

Analysis of several pulse shape properties generated by a Geiger Mueller (GM) detector and its 
dependence on applied voltage was performed. The two-source method was utilized to measure 
deadtime while simultaneously capturing pulse shape parameters on an oscilloscope. A wide range 
of operating voltages (600–1200 V) beyond the recommended operating voltage of 900 V was 
investigated using three radioactive sources (204Tl, 137Cs, 22Na). This study investigates the relationship 
between operating voltage, pulse shape properties, and deadtime of the detector. Based on the 
data, it is found that deadtime decreases with increasing voltage from 600 to 650 V. At these low 
voltages (600–650 V), the collection time was long, allowing sufficient time for some recombination 
to take place. Increasing the voltage in this range decreased the collection time, and hence deadtime 
decreased. It is also observed that rise and fall time were at their highest at these applied voltages. 
Increasing the voltage further would result in gas multiplication, where deadtime and pulse width 
are observed to be increasing. After reaching the maximum point of deadtime (~ 250 µs at ~ 700 V), 
deadtime started to exponentially decrease until a plateau was reached. In this region, it is observed 
that detector deadtime and operating voltage show a strong correlation with positive pulse width, 
rise and fall time, cycle mean, and area. Therefore, this study confirms a correlation between detector 
deadtime, operating voltage, and pulse shape properties. The results will validate our hypothesis that 
deadtime phenomena at different operating voltages are phenomenologically different.

Researchers have been using Geiger Mueller (GM) counter for almost a  century1. To detect and record two inde-
pendent radiation events, there has to be a minimum time interval between two radiation events. In this short 
interval time, the detector is unresponsive (dead). Any radiation event that takes place within this short interval 
time will be lost (uncounted). Several studies have shown that the GM counter suffers from a large deadtime 
compared to other radiation detectors such as solid-state detectors and  scintillators2–4. The large deadtime that 
the GM counter suffers from can be from a few microseconds to more than a few  milliseconds5,6. Moreover, the 
deadtime phenomenon in radiation detectors has been studied as early as the 1940s. Research on the deadtime 
phenomenon since then has recognized several factors that affect deadtime, such as the detector’s specifications 
and design, pulse processing of the detection measurement system, and operating  conditions7. Mainly, two factors 
contribute toward the deadtime of a radiation detection system: (I) the inherent deadtime of the detector itself 
known as intrinsic deadtime, and (II) the collective deadtime that results from pulse processing  instruments8.

The pulse processing electronics of a typical radiation detection system include a detector, preamplifier, 
amplifier, discriminator, counter, and multi-channel analyzer (MCA). Nonetheless, for the GM detector, the 
contribution factor of deadtime from the pulse processing electronics is negligible compared with the detector’s 
processes. Hence, the intrinsic deadtime is the major contributor to the final deadtime for any GM counting 
system. Therefore, intrinsic deadtime is sufficient for count rate correction for the case of GM counter.

Due to the fact that radiation events are random, many radiation events go undetected due to the deadtime 
phenomenon. Subsequently, several deadtime models have been proposed for count rate corrections of the 
radiation detection system.
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Deadtime models. For count rate correction consideration, there are two traditional deadtime models: 
(1) the paralyzing, and (2) non-paralyzing models. These two idealized models are employed extensively in the 
industry and academia. Both models were derived by  Feller9 and  Evans10. The paralyzing model assumes that 
each radiation event taking place within the detector would extend the resolving time (deadtime). If a subse-
quent radiation event occurs within the extended time, it will not be detected—the count is lost. For that reason, 
the paralyzing model is known as an extending type. For a radiation event to be counted, there has to be a mini-
mum gap time between two radiation events so that the continuous paralysis of the detector system has lapsed. 
The proposed paralyzing model, henceforth, attempts to correct the measured count rates. The mathematical 
description of the paralyzing model is seen in Eq. (1).

where n is the true count rate, m is the measured count rate, τ  is deadtime. In contrast, the non-paralyzing model 
(known as non-extending type) is based on the assumption that each radiation event taking place within the 
detector will be followed by deadtime. However, when a subsequent interaction takes place during this dead-
time, there is no extension of deadtime. Unlike the paralyzing model’s assumption of continuous paralysis of the 
detector when a radiation event is detected, the non-paralyzing model assumes that the detector is dead only for 
a fixed time following the detection of a radiation event. The mathematical expression for the non-paralyzing 
model is given in Eq. (2).

Further investigation of the deadtime phenomenon in 1978 resulted in a generalized deadtime model derived 
by  Muller11,12. By combining the fundamentals of the idealized models, a hybrid deadtime model was later 
developed by Albert and  Nelson13, which, in turn, was enhanced by Lee and  Gardner14. They used Manganese 
(56Mn) radioactive source method for measuring deadtime. Lee and Gardner applied the least fitting square 
method on the data generated from their experiment. The mathematical expression of the hybrid model is given 
in Eq. (3). In an effort to improve the hybrid model further, Patil and  Usman6 proposed another modification 
by introducing a probability-based paralysis factor ( f  ). The paralysis factor was proposed to be between 0 and 
unity. Equation (4) shows the mathematical expression of their modified hybrid model.

where τp is the paralyzing deadtime, τNP is the non-paralyzing deadtime, τ is the total deadtime, and f  is the 
probability-based paralysis factor. It is worth noting that if the f  is set to 0, the modified hybrid model reduces 
to the non-paralyzing model, while if f  is set to 1, Eq. (4) reduces to the paralyzing model. Additionally, if the 
f  is set to 0.5, deadtime behavior will be lying between the paralyzing and non-paralyzing models. In order to 
estimate f  , Patil and Usman proposed a graphical technique. Details of the graphical technique are beyond the 
scope of this paper and can be found  elsewhere6. The focus of this manuscript is to understand the phenomeno-
logical basis of gas filled detector’s deadtime. As recently reported that using a single deadtime for all possible 
operating voltages is  inappropriate7. Purpose of this study is to identify the need of independent deadtime model 
for various operating voltage range.

Deadtime behavior. It was pointed out that the two ideal deadtime models (paralyzing and non-paralyz-
ing) are mathematical convenience rather than phenomenologically  based6,15. As discussed  earlier8, the non-
paralyzing model uses the first term(s) of Taylor’s expansion of the paralyzing model. Yousaf et al.15 developed 
a simulation code “Sim-Pulse V1.1” to test various deadtime models, ideal and hybrid. We programmed an 
updated version in MATLAB (R2018b, www.mathw orks.com/produ cts/new_produ cts/relea se201 8b), “Sim-
Pulse V1.2”, to simulate a short decaying radioactive source (137mBa, with a half-life of 153.12 s) to illustrate the 
various deadtime behaviors according to the deadtime models discussed in “Deadtime models”. 137mBa is widely 
utilized for half-life measurement experiments. Three cases were simulated to demonstrate that the choice of 
model is significant only when the true count rate is high for a GM counter (~ 1000 counts/s, as shown in Fig. 1 
for case 3), and the deadtime is long, as shown in Table 1 for case 3. An initial count rate of 5000 counts per 
second was used for the three proposed cases.

In order to collect the counts for performing the simulations, a bin size of 1 s was used to collect the counts. 
For GM counters where deadtime is considerably longer than other detectors, the choice of model is significant 
even at low count rates. However, the general consensus is that the GM detector behaves like an ideal non-
paralyzing  detector14. The behavior of other types of detectors must be carefully evaluated at high count rates 
before applying any count rate correction.

From Fig. 1, it can be seen that when deadtime is low (10 µs, as shown in Table 1 for case 1), there is little 
loss of counts, the true count rate after applying deadtime corrections approximately similar to the measured 
count rate. The choice of the deadtime model for count rate corrections has no serious consequence. Therefore, 
all deadtime models behave similarly when the deadtime of the detector is low.

(1)m = n e−nτ

(2)m =
n

(1+ n τ)

(3)m =
n e−nP

1+ nNP

(4)m =
n e−nf

1+ n τ
(

1− f
)
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In contrast, when deadtime is higher (200 µs and 1000 µs, as shown in Table. 1), all models diverge (as shown 
in Fig. 1 for cases 2 and 3). In both proposed cases, the paralyzing and non-paralyzing models always set the 
lowest and highest limits for the true count rate correction, respectively.

It is worth addressing that these traditional models have been applied commonly in radiation detection 
 measurements16. Previous  studies6,17,18 have shown that true deadtime behavior falls somewhere between the 
idealized models.

Pulse shape characteristics. In the radiation measurement community, it is widely believed that 
the pulses produced in a GM detector carry no useful information since the generated pulses have the same 
 amplitude4,16. However, this belief has been questioned by recent studies where pulse shape properties were 
investigated with varying applied  voltages7,19. It is worth noting that Akyurek et al.7 investigation of the pulse 
shape was performed to confirm the hypothesis that at low voltages, deadtime decreases with increasing voltages 
until a plateau is reached, and after that, at higher voltages, deadtime increases. Their study focused on pulse 

Figure 1.  Different deadtime behaviors according to five models. (OriginPro 2020b, https ://www.origi nlab.
com/2020b Annou nceme nt).

Table 1.  Total deadtimes used for simulations for each of the 3 cases. P stands for the Paralyzing model and 
NP for the non-paralyzing model. In Lee & Gardner’s model, NP stands for the non-paralyzing model followed 
by paralyzing, whereas PN is the opposite.

Model P NP Lee & Gardner (NP, PN) Patil & Usman (NP, PN) ( f  = 50%)

Case 1

Total deadtime (µs) 10 10 5 + 5 50%

Case 2

Total deadtime (µs) 200 200 100 + 100 50%

Case 3

Total deadtime (µs) 1000 1000 500 + 500 50%

https://www.originlab.com/2020bAnnouncement
https://www.originlab.com/2020bAnnouncement
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duration (pulse width) and the time interval between two pulses (gap time). The investigated operating voltages 
were in the range of 800 V. It was revealed that at low voltages, pulse width decreases with increasing operating 
voltage. This reduction of pulse width was attributed to smaller charge collection and hence reduced deadtime. 
Moreover, at higher operating voltages, the second pulse after a long width pulse was observed to be of short 
duration. This reduction in the second pulse was attributed to smaller charge production for the second event 
during the recovery time. Although the initial work by Akyurek et al.7 was very interesting, it lacked the analysis 
of several other important pulse shape properties such as amplitude, fall time, rise time, area, and positive pulse 
width. It is also worth noting that the generated pulses in their study were manually captured using an oscillo-
scope. The use of automatic measurements offered by an advanced oscilloscope would have shown more details 
on pulse shape properties.

In an effort to study the generated pulse properties from a GM counter even further, we designed an experi-
ment that used two different radioactive sources (60Co and 137Cs). The details of the study were discussed and can 
be found in a recently published  study19. The recommended operating voltage specified by the manufacturer for 
that particular GM detector (Ludlum, model 133-2) was 550 V. A wide range of voltages from 300 to 1000 V was 
examined in the previous study. Nonetheless, we did not examine the pulses at voltages above 1000 V because it 
would damage the detector. The study concluded that the detected pulses from both radioactive sources behaved 
similarly in which pulse width and fall time were exponentially decreasing with increasing the operating volt-
ages. In contrast, peak-to-peak (Pk to Pk) increased with increasing voltages until an asymptote was observed 
at the highest operating voltages. Pulse shape dependence on operating voltage for a GM counter was discussed 
in detail, but simultaneous deadtime and pulse shape measurements were missing. Therefore, no relationship 
between deadtime and pulse shape could be deduced from the earlier  work19.

The purpose of this work is to examine pulse shape properties and its relationship with observed deadtime 
more in-depth. An experiment was designed where deadtime and generated pulses were simultaneously meas-
ured and recorded. Four different radioactive sources were used: 204Tl, 137Cs, 22Na, and 54Mn. Measurements of 
deadtime and its associated behavior were discussed in our previous research  paper20. Based on the findings, 
the phenomenological basis of deadtime manifestation was presented. Three distinct ranges of deadtime phe-
nomenon depending on the operating voltage were identified, and for each range, a phenomenological model 
was presented. For the GM detector (Ludlum, model 44–7) tested in the study, these regions were: (I) region 1 
(600–650 V), (II) region 2 (700–750 V), and (III) region 3 (750–1200 V).

Limited literature is available about deadtime dependence on applied voltages, but not much discussion is 
available about the relationship between pulse shape generated in a GM counter and detector deadtime. There-
fore, this study appears to be the first attempt to present information on the correlation between GM deadtime 
and pulse shape, which would help the radiation measurement community better understand the deadtime 
phenomenon. The results will validate our hypothesis that deadtime phenomena at different operating voltages 
are phenomenologically different.

Experimental methods
Experimental details. Figure 2 shows a schematic of the experimental setup used to measure the deadtime 
of the GM detector and record the output train of pulses due to radiation interactions. The counting system in 
this experiment consisted of radioactive half-disk sources, GM detector, high-voltage power supply, preampli-
fier, oscilloscope, amplifier, integral discriminator, dual counter/timer, and a PC.

The radioactive sources used in this experiment were (a) 204Tl, (b) 137Cs, and (c) 22Na. These sources were 
designed and produced specifically by Spectrum Techniques LLC. upon our request to conduct this study. 204Tl 
was produced in February 2019, while the other two radioactive sources were produced in May 2019. Each source 
consists of two sealed half-disk sources, as can be seen in Fig. 2. From now and onward, we will refer to the half-
disk source as a split source. The initial activity of each split source was 5 µCi, with ± 20%  uncertainties21. Due 

Figure 2.  A schematic of the experimental setup for the radiation counting system.
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to the fact that the radioactive sources were not short-lived isotopes (seconds, minutes, hours) no correction to 
the deadtime due to decay during measurement was  needed22. To ensure that the uncertainties associated with 
each split source do not result in significant statistical errors, we conducted several evaluations of each split 
source of the three isotopes. The outcomes showed that each split source resulted in a similar number of observed 
counts. Hence, the uncertainties did not inflict significant statistical errors. In addition, we used the same size 
and geometry to minimize errors from measuring the radioactive sources.

The GM detector used in this study was a halogen-quenched, end-window type detector with a 4π geometry. 
The dimension of the GM detector (height and diameter) is 14.7 cm × 4.6 cm. The end window was made out of 
a thin mica layer to detect not only gamma radiation but also alpha and beta rays. The recommended operat-
ing voltage of this GM detector was 900 V, while the typical deadtime associated with this model was 200 µs, as 
specified by the  manufacturer23.

The low-noise charge-sensitive preamplifier (Ortec, model 142A) was connected through “E” input with a 
connector series “C” with a short coaxial cable to the GM  detector24. To minimize noise and maintain the pre-
amplifier’s stability, it was placed as close as possible to the detector. The preamplifier’s capacitor feedback was 1 
pF while the pulse tail decays to the baseline in 500 µs. In addition, the preamplifier’s bias input was connected 
to the high-voltage (HV) power supply. Also, the preamplifier was taped to the same location for the subsequent 
experiments.

The HV power supply (Canberra, model 3125)25 was housed in the nuclear instrumentation module (NIM), 
and it was directly connected to the AC line. The oscilloscope (Tektronix, model TBS2000) was connected to the 
preamplifier through a “T” connector to capture and record the generated pulses directly from the  preamplifier26. 
The purpose was to capture and record the pulse shape properties generated from the GM detector without 
going through the other pulse processing electronics (amplifier, integral discriminator, dual counter/timer). 
The oscilloscope’s output was connected to a PC where an O-scope utility software (provided by Tektronix.inc, 
version 1.5, https ://www.tek.com/oscil losco pe-softw are) was used to record measurements of the pulse shape 
properties automatically. The amplifier (Ortec, model 570) was connected to the preamplifier through a “T” 
connector using a coaxial  cable27. Therefore, the preamplifier was connected to both the oscilloscope and the 
amplifier through the “T” connector (a splitter). The amplifier serves two purposes in general: (1) to amplify 
the pulse coming from the preamplifier, and (2) to shape the pulse and eliminate the long exponential tail of the 
pulse processed by the preamplifier so that pile-up of pulses are reduced. Besides, the amplifier was connected 
to the integral discriminator (Canberra, model 832)28. The discriminator was used to produce logic pulses when 
the linear input pulse’s amplitude processed by the amplifier exceeds a threshold. The discriminator was con-
nected directly to the dual counter/timer (Ortec, model 994)29. The dual counter/timer was used to measure the 
number of registered counts. The timer was set to 30 min for each experiment, and it was used to start and end 
registering counts from radiation events automatically.

Two source method. In this current study, we utilized the two-source method to measure deadtime 
dependence on operating voltages. The principle behind this method is that when two radioactive sources are 
combined, they will result in fewer observed count rates than if each radioactive source measured individually 
and summed up. The loss of counts from observing the combined radioactive sources is attributed to deadtime. 
In our study, we used two split sources for each radioactive isotope. Split source one is referred to as  S1, while 
split source two is  S2. Combined, the split sources are abbreviated as  S12. Since the GM detector is commonly 
known to behave as non-paralyzable, and it suffers from ≤ 5% of the paralysis factor, applying the non-paralyza-
ble model for calculating deadtime-voltage dependence in our study is, therefore,  justified6,8,14. The derivation of 
the two-source method is well documented in Knoll’s  textbook4. Equations (5–7) were used to calculate the final 
deadtime, as given in Eq. (8) of the counting system used in this study.

where s1 , s2 , s12 are defined previously, BKG is background count rate, and τ is deadtime of the counting system.
Careful measurements were conducted to observe the difference between the large numbers of radiation 

events detected from s1 and s2 individually. s1 was placed on a marked paper on a tray on the second shelf of the 
rack holder in a cylindrical lead shield that contains the GM counter, as illustrated in Fig. 2. The same technique 
was applied for s2 . The marked paper was used to verify that the split sources of all radioactive isotopes used 
in this study had the same position. This step was performed in order to ensure that each experiment had the 
same geometry and location; hence, the same solid angle applied for all experiments. The same technique was 
utilized for counting the radiation events from s12 . To achieve optimal results for final deadtime calculation, 
from choosing the shelf level to carry the split sources to adjusting the processing instrumentations, a fractional 
deadtime (s12τ) of at least 20% was acquired.

The duration of each experiment using s1 , s2 , and s12 was 30 min. Since this current study investigates pulse 
shape characteristics associated with deadtime behavior, a wide range of operating voltages from 600 to 1200 V 

(5)X = s1s2 − BKGs12

(6)Y = s1s2.(s12 + BKG)− BKG.s12.(s1 + s2)

(7)Z =
Y(s1 + s2 − s12 − BKG)

X2

(8)τ =
X
(

1−
√
1− Z

)

Y

https://www.tek.com/oscilloscope-software
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with increments of 50 V were examined. The GM counter started registering radiation interactions at 570 V. 
However, negative deadtimes were obtained at this low operating voltage; consequently, data collection started 
at 600 V, where positive deadtimes were achieved.

Since this study focused on pulse shape analysis, a detailed description of instrumentation optimizations and 
deadtime measurements are outlined in an earlier  paper20.

Oscilloscope. The oscilloscope (Tektronix, model TBS2000)26 was used in this experiment to display and 
record the train of pulses generated by the GM detector. The oscilloscope’s channel one input was connected to 
the preamplifier through a “T” connector with a coaxial cable. In contrast, the output was connected directly 
to the PC to process the data in real-time. Table 2 shows the definition for each pulse property collected and 
analyzed in this study. The bandwidth of the oscilloscope was in full mode. The oscilloscope’s probe type was 
voltage, while the probe’s attenuation factor was 10X. The record length for the acquiring option was 20  M 
points, while the sample rate was 500 MS/s. The Horizontal Scale (time per major horizontal division) was set 
to 200 µs/div while the Vertical Scale was 50 V/div. The value of the termination resistance was 10 MΩ. To auto-
matically record waveform data, we used the triggering mechanism in which the rising edge trigger condition 
was selected. The trigger delay mode time was set to negative values in order to capture more waveform data. 
The trigger source was set to channel 1 with a 20 V slope. The input signal coupling method for the oscilloscope 
was (DC), which means it passes both the AC and DC signal components. Besides, it passes the trigger signal 
without filtering it to the trigger circuit.

Furthermore, the data collection duration for each radioactive split source  (S1 and  S2) was 30 min, and 30 min 
for combined sources  (S12). Data logging by the O-scope software was set to 15 s, which means a total of 120 data 
points for each pulse property were recorded. Hence, each pulse property’s averages at the specified operating 
voltage for each experiment were calculated and analyzed. In the subsequent section, we discuss this behavior 
and its association with deadtime.

Results and discussion
Pulse shape analysis. In an earlier  study20, a two-source method was used to calculate GM counter dead-
time for a wide range of operating voltages. Results showed an interesting relationship between the operating 
voltage and the detector deadtime. At 650 V, deadtime reached a minimum value. From 700 to 750 V, deadtime 
started to increase rapidly to reach a maximum. After 750  V, an exponential decrease in the deadtime was 
observed, leading to an asymptotic. This behavior of deadtime variation with operating voltage dependence was 
consistently using the three radiation sources.

Based on these results, three distinct regions of the GM counter deadtime phenomenon were observed. 
From 600 to 650 V, the applied voltage was not sufficient to rapidly collect all charges initially produced by the 
ionization of the gas. Therefore, significant recombination of electrons and positive ions took place before charge 
collection; hence, not all radiation events are recorded. Looking at the extreme case of zero bias voltage, the 
charge produced from radiation’s initial interaction will recombine. No pulse will be recorded, irrespective of 
the initial interaction location. As we increase the bias voltage, some initial interaction occurring at high field 
intensity locations within the chamber will be recorded, while other initial interactions occurring in corners of 
the gas volume will not be recorded even to the oscilloscope. These are the interactions taking place in locations 
of weak field intensity where recombination dominates. As we increase the operating voltage, the detector’s entire 
volume experience sufficient voltage; hence, all events are recorded (no recombination), but now the deadtime 
starts to act, and the loss of count at higher voltages are not due to recombination but rather convolution of 
pulses. Since there is no method for an experiment to separate the loss of count based on the phenomenon of 
the loss, recombination-based loss of count is also seen as deadtime losses. Therefore, at low voltages between 

Table 2.  Pulse shape measurements with their definitions. These definitions derived from Tektronix’s manual 
for the TBS2000 oscilloscope.

Pulse property Definition

Amplitude It is a measurement over the entire waveform in which it is the average high value of the pulse less the average low 
value. Its unit is volts

Area The area over the entire waveform and measured in volts-seconds. It is positive for measurements above ground and 
negative below the ground

Cycle mean The arithmetic mean over the first cycle

Fall time Time measurement in seconds that is measured from the high reference value (90%) to the low reference value 
(10%) of the final value of the pulse. This is known as the tail of the pulse with an exponential decay

Frequency The first cycle in a waveform or gated region, measured in Hertz (Hz)

Positive pulse width The distance (time) between the mid reference (50%) point of a positive pulse

Positive duty This is a calculated measurement and not measured directly. It is the ratio of the positive pulse width to the signal 
period in percent

Rise time
Time measurement where it starts from the low reference value (10%) of the leading edge of the pulse to the high 
reference value (90%) of the final value. For saturated pulses since the oscilloscope is unable to see the full pulse, 
10% to 90% rise time is for the truncated pulse

Peak to peak It is the measurement of absolute difference between the minimum and maximum amplitude in the entire waveform
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600–650 V, deadtime seems to be decreasing. Strictly speaking, this is not because of the deadtime decreasing 
rather a suppression of recombination.

From 650 to 750 V, the operating voltage reached a point where the velocity of the ions and the electrons 
were high enough for charge multiplication. Therefore, a larger number of charge carriers were available. Since 
more charge has to be collected, a rapid increase in deadtime was observed in this intermediate operating voltage 
range. Because increasing voltage in this range increases charge multiplication, deadtime continued to increase 
with increasing the voltage until 750 V.

After 750 V, deadtime started to decrease exponentially. The reason behind this exponential decrease in 
deadtime with increasing operating voltages was because no additional charge multiplication was possible. 
Hence, the collection time was reduced. The recommended operating voltage (900 V) of the GM counter was at 
the low asymptotic value of deadtime.

Previous studies attempted to obtain a relationship between applied high voltage and  deadtime7,19, but the 
relationship between pulse shape properties and deadtime for GM detector has not been investigated. Therefore, 
a comprehensive experimental campaign was designed and executed to collect data on deadtime and the various 
parameters describing the pulse shape. For this study, we only focused on the high voltage/GM region, which 
is of primary interest to many applications. For this study, 204Tl, 137Cs, 22Na sources were used to examine the 
relationship between applied high voltage, GM counter deadtime, and pulse shape properties.

Figure 3a shows positive pulse width with respect to applied voltages. At 600 V, it is seen that the pulse width 
is at its shortest. As discussed above, recombination was significant in this region; hence, the charge collection 
was incomplete, and not many pulses were detected. At 700 V, the ionization process took place; thus, the gen-
erated pulse was larger. From 700 to 750 V, the gas multiplication process took over and resulted in the widest 
pulse width. After 750 V, gas multiplications produced Townsend avalanches; hence, the detected pulses started 
to shrink in width. Furthermore, it can be seen from Eq. (9) that the duty cycle depends on the pulse width and 
the period; henceforth, there is a direct relationship between the period of the pulse and pulse width. Figure 3a,h 
show that the pulse width decreased while the duty cycle was almost constant after 700 V.

From Fig. 3b, it can be seen that the rise time between 600 to 650 V was relatively high. This is because recom-
bination processes at these low voltages were prominent; hence, many radiation events were not detected. At the 
same time, the charge collection time was long, leading to a long rise time. From 700 V and onward, the voltage 
increase combined with the ionization processes, resulted in faster collection time. Therefore, it is observed in 
this region that rise time was exponentially decreasing with increasing operating voltage.

Next, it can be seen from Fig. 3c that fall time was at its highest at 600 V. This means that the pulse had a 
longer tail because the applied voltage was not strong enough. Therefore, the charge collection time was longer, 
which agrees with the rise time observation. As the voltage was increased further, it is observed that fall time 
was exponentially decreasing because more radiation events were detected.

Moreover, it can be seen from Fig. 3d that amplitude was at its lowest at 600 V. The reason behind this is that 
recombination processes did not produce a full charge (weak current). Nonetheless, more pulses were detected 
as voltages increased further. The Townsend avalanches were continuously produced until a sheath of positive 
ions was formed around the anode, decreasing the electric field below the point where additional gas multiplica-
tion cannot occur. The process finished when the GM counter produced the same total number of positive ions 
b created by the incident radiation. At this point, the GM counter generates the same amplitude for each output 
pulse. This outcome can be precisely observed after 700 V, as shown in Fig. 3d.

Figure 3e shows the frequency of the pulses as a function of applied voltages. The shape of frequency behavior 
was similar to the shape of the observed radiation counts. For the region of interest, 750 V and above, it is seen 
that as the frequency was increased, more counts were detected. The higher the voltage, the faster a pulse was 
detected, while the shorter distance between pulses was observed.

Furthermore, the definition of cycle mean is the arithmetic mean over the first cycle in the waveform or the 
first cycle in the gated region. The cycle mean is a part of the amplitude measurement category, as explained in the 
oscilloscope manual. Figure 3f shows the cycle mean as a function of operating voltages. The cycle mean behavior 
was similar to the deadtime behavior of the GM detector, where deadtime tends to exponentially decrease after 
750 V. The area of a pulse can be calculated as amplitude times pulse width. It is observed from Fig. 3g that area is 
decreasing exponentially after 750 V. This is expected because the amplitude was constant while the pulse width 
was exponentially decreasing after 750 V. Looking at the figures of “Area” and “Cycle mean” with respect to the 
applied high voltages, it is observed that they follow a similar behavior of deadtime.

Positive duty is defined in signals as pulse width divided by the period times 100%. It is a calculated value not 
directly measured. For instance, it is seen from Fig. 3h that at 600 V, the positive duty cycle was approximately 
30%, which means that the pulse width occupies 30% of the period or the signal is ‘on’ 30%. Hence, the pulse 
width was short at this voltage, as observed in Fig. 3a. At 650 V, positive duty was 50%, which means that the 
pulse width occupied half of the period. From 750 V and onward, positive duty for combined radioactive sources 
was above 55%, which means that the signal was ‘on’ 55% of the time, and it was exponentially decreasing with 
increasing voltages.

Figure 3i shows the full size of the positive pulse (rise time + pulse width + fall time). When all of these 
properties were added together, it is observed that from 600 to 1200 V, the full positive pulse was exponentially 
decreasing. This behavior is also in agreement with the findings of our previous  study19. Table 3 summarizes 
the statistics of the fit lines in Fig. 3. Since this study focuses on higher applied voltages and the GM region, the 
exponential fittings were performed from 750 to 1200 V. The error bars are not included in the figures because 

(9)Duty Cycle = Pulse width/Period
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Figure 3.  Different parameters with respect to applied high voltage for pulse shape analysis. (OriginPro 2020b, 
https ://www.origi nlab.com/2020b Annou nceme nt).

https://www.originlab.com/2020bAnnouncement
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Pulse property Positive pulse width

Equation y = y0 + A ∗ e(R0∗x)

Source 204Tl S12 137Cs S12 22Na S12

Y0 2.20E−4 ± 2.79E−6 2.23E−4 ± 2.98E−6 2.21E−4 ± 3.2E−6

A 0.0270 ± 0.00577 0.110 ± 0.0395 0.239 ± 0.109

R0 − 0.0066 ± 2.91E−4 − 0.0084 ± 4.78E−4 − 0.0095 ± 6.1E−4

R-square 0.99851 0.99687 0.99657

Pulse property Rise time

Equation y = y0 + A ∗ e(R0∗x)

Source 204Tl S12 137Cs S12 22Na S12

Y0 3.39E−6 ± 9.83E−8 3.43E−6 ± 2.51E−8 3.43E−6 ± 2.3E−8

A 2.33E−5 ± 9.14E−5 0.094 ± 0.44 0.033 ± 0.14

R0 − 0.0058 ± 0.0054 − 0.016 ± 0.0062 − 0.015 ± 0.0054

R-square 0.6386 0.8511 0.8858

Pulse property Fall time

Equation y = y0 + A ∗ e(R0∗x)

Source 204Tl S12 137Cs S12 22Na S12

Y0 1.68E−5 ± 1.16E−6 1.91E−5 ± 1.39E−6 2.15E−5 ± 8.6E−7

A 0.00498 ± 0.00158 0.0117 ± 0.00586 0.0455 ± 0.0200

R0 − 0.0062 ± 4.37E−4 − 0.0073 ± 6.76E−4 − 0.0091 ± 5.9E−4

R-square 0.99649 0.99273 0.99664

Pulse property Frequency

Equation y = y0 + A ∗ e(R0∗x)

Source 204Tl S12 137Cs S12 22Na S12

Y0 105,526.02 ± 3,603,694.81 3043.73 ± 310.95 3232.99 ± 157.15

A − 105,991.02 ± 3,602,417.9 − 27,797.84 ± 38,118.4 − 69,897.5 ± 62,645

R0 − 2.73E−5 ± 9.55E−4 − 0.0040 ± 0.0020 − 0.0051 ± 0.0012

R-square 0.97506 0.91143 0.9757

Pulse property Cycle mean

Equation y = y0 + A ∗ e(R0∗x)

Source 204Tl S12 137Cs S12 22Na S12

Y0 20.13 ± 1.63 22.51 ± 0.36 18.51 ± 10.20

A 6460.25 ± 9949.45 5.96E7 ± 7.55E7 835.30 ± 2228.27

R0 − 0.0076 ± 0.0021 − 0.01956 ± 0.00168 − 0.0046 ± 0.0039

R-square 0.9381 0.99131 0.80486

Pulse property Area

Equation y = y0 + A ∗ e(R0∗x)

Source 204Tl S12 137Cs S12 22Na S12

Y0 − 0.154 ± 0.019 − 0.047 ± 0.018 − 0.012 ± 0.017

A 274.04 ± 83.42 927.10 ± 351.57 885.89 ± 273.52

R0 − 0.0073 ± 4.12E−4 − 0.0088 ± 5.07E−4 − 0.0087 ± 4.1E−4

R-square 0.9973 0.99666 0.99825

Pulse property Positive duty

Equation y = y0 + A ∗ e(R0∗x)

Source 204Tl S12 137Cs S12 22Na S12

Y0 54.66 ± 0.88 55.78 ± 0.15 53.72 ± 5.65

A 1771.764 ± 2910.64 6.37E7 ± 8.92E7 294.57 ± 878.59

R0 − 0.0070 ± 0.0022 − 0.021 ± 0.0019 − 0.0043 ± 0.0044

R-Square 0.92379 0.99083 0.75704

Pulse property Full positive pulse

Equation y = y0 + A ∗ e(R0∗x)

Source 204Tl S12 137Cs S12 22Na S12

Y0 2.41E−4 ± 3.09E−6 2.461E−4 ± 3.54E−6 2.47E−4 ± 4.0E−6

A 0.03197 ± 0.00592 0.1185 ± 0.03808 0.28506 ± 0.125

R0 − 0.007 ± 2.54E−4 − 0.008 ± 4.32E−4 − 0.001 ± 5.89E−4

R-square 0.9989 0.9974 0.9968

Continued
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the software used to collect pulse characteristics automatically did not provide any statistical error. Deadtime 
behavior of the three radioactive isotopes as a function of applied voltage is shown in Fig. 3j. Deadtime was 
manually calculated together with the error but the error bars are too small to be visible in Fig. 3.

Exponential fitting models. Figure 4 shows the result of some detailed statistical analysis of the results. 
Since the GM region is of primary interest to many applications, we focused on high applied voltages (from 750 
to 1200 V). Also, since individual radioactive sources showed similar behavior when combined sources were 
used, we focused our correlations analysis on combined sources. Furthermore, various pulse shape characteris-
tics were examined for their dependence on the operating voltage and its relation to deadtime.

Figure 4a shows a negative correlation between the operating voltage and the “Positive Pulse Width.” For 
all three radioactive sources (204Tl, 137Cs, 22Na), the value of the coefficient ranges from − 0.94 to − 0.90, which 
is a very strong correlation. However, for all three sources, a weaker correlation between − 0.80 and − 0.71 was 
observed with deadtime. Based on the data, one can deduce a strong positive correlation between pulse width 
and deadtime with coefficients ranging between 0.96 and 0.95, as shown in Fig. 4a. This means that the longer 
the pulse width, the higher the probability for overlapping pulses; hence, deadtime was at its maximum point 
(at 750 V) when pulse width was observed to be at its maximum width, as can be seen in Fig. 3a. As the applied 
voltage increases, the shorter the pulse width, the more counts were measured. After 750 V, the detector started 
to operate in the GM region; hence, deadtime started to decrease exponentially after 750 V until a plateau was 
reached, as shown in Fig. 3a.

When observing Fig. 4b, one is bound to notice a strong negative correlation between the operating voltage 
and the pulse “Rise Time” with coefficients ranging between − 0.78 and − 0.72 for combined sources. Again, 
there is a positive correlation between deadtime and the pulse “Rise Time.” This means that the smaller the “Rise 
Time”, the faster was the collection time of charge due to the increased applied voltage; hence, deadtime showed 
an exponential decrease until a plateau was reached, as shown in Fig. 3b.

Similar results were recorded (Fig. 4c) for the correlation between the operating voltage and the pulse “Fall 
Time” with the only difference that the correlation was stronger with the operating voltage (− 0.95 to − 0.91). 
Also, pulse “Fall Time,” shows a strong correlation with deadtime (0.95 to 0.94). Almost identical results were 
observed for the operating voltage correlation with “Cycle Mean,” “Full Positive Pulse,” and “Area” (Fig. 4d–f).

Nevertheless, the results for the pulse “Frequency” correlation with operating voltage is quite interesting, 
as shown in Fig. 4g. A strong positive correlation was observed (between + 0.98 to + 0.91) for all sources. This 
means that increasing the operating voltage increases the count rate. Furthermore, at high frequency, the count 
rate increased, leading to a higher probability for overlapping pulses; however, because the voltage was higher 
in which the GM detector operates in the GM region, the deadtime plateau. Pulse “Frequency” and deadtime 
show a negative correlation between − 0.86 and − 0.79, as shown in Fig. 4g.

Conclusions
To the best of authors’ knowledge, this is the first attempt to correlate GM counter operating voltage with pulse 
shape characteristics and detector deadtime. Based on the data collected in this study, one can draw the follow-
ing conclusions:

• The general belief that for any GM counter pulse amplitude, pulse shape, and deadtime is constant for the 
entire operating voltage range is incorrect, as recently shown by  Akyurek7 and  Almutairi19. From 600 to 650 V, 
deadtime decreases. From 650 to 750 V, deadtime increases rapidly until a maximum deadtime was reached. 
After 750 V, deadtime exponentially decreases until a plateau was reached.

• Akyurek et al.7 provided some interesting data but their work lacked the analysis of several other important 
pulse shape properties such as amplitude, fall time, rise time, area, and positive pulse width.

• Data on deadtime and the various pulse parameters were simultaneously collected using 204Tl, 137Cs, 22Na 
sources to examine the relationship amongst the applied high voltage, GM counter deadtime, and pulse shape 
properties.

• Based on the data, three distinct deadtime phenomenon depending on the operating voltage were observed.
• At the lowest applied voltages (600 to 650 V), the deadtime was caused by charge recombination. Increasing 

the voltage increases pulse width; hence, deadtime was reduced.

Pulse property Full positive pulse

Voltage range 600–1200 V

Equation y = y0 + A ∗ e(R0∗x) ∂
2�
∂v2

Source 204Tl S12 137Cs S12 22Na S12

Y0 2.017E−4 ± 2.61E−5 2.14E−4 ± 1.88E−5 2.16E−4 ± 1.3E−5

A 0.0071 ± 0.0024 0.0129 ± 0.0042 0.0201 ± 0.0051

R0 − 0.004 ± 5.97E−4 − 0.005 ± 5.57E−4 − 0.006 ± 4.31E−4

R-square 0.9829 0.9870 0.9942

Table 3.  Statistical parameters for best fit lines in Fig. 3. OriginPro software (version 2020b) was used to 
derive best fit lines.
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Figure 4.  Correlation coefficients for pulse shape characteristics and operating voltages from 750 to 1200 V. S12 
stands for combined radioactive sources. DT stands for deadtime.
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• It can be seen in Fig. 3c that rise and fall time were at their highest at 600 V. This means that the pulse had 
a longer tail because the applied voltage was not strong. Therefore, the charge collection time was longer, 
leading to the long deadtime. Both pulse width and deadtime were reduced with increasing voltage in this 
region.

• When the voltage was high enough for charge multiplication, the deadtime and pulse positive width started 
to increase. This was due to the fact that more time was needed to collect a larger number of charge carriers.

• At the end of the proportionality region, no additional multiplication was possible due to the reduced spaced 
field intensity after reaching the maximum deadtime.

• After the point of maximum deadtime, there was an exponential drop in deadtime in the GM region until 
a plateau was reached. This plateau value for the detector tested in these experiments was approximately 
150 µs. The manufacturer’s Data Sheet provided the value as “typically 200 microseconds.” This difference is 
because it is difficult to control all the engineering processes and tolerances. Hence, the individual detector 
could vary in their deadtime values. Value of deadtime also depends on the operating conditions as reported 
here.

• Operating voltage and detector deadtime exhibit strong correlation with various pulse properties like positive 
pulse width, rise and fall time, cycle mean, full positive pulse, and area.

• These results are significant for GM counters, indicating the need for a specific voltage-dependent dead-
time models. These models will allow a better understanding of deadtime correction and reduce reliance 
on empirical correlations and calibration-based corrections. This is particularly important for the fission 
chamber,  BF3, and He detectors used for reactor applications.
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