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Photoperiodic regulation 
of dopamine signaling regulates 
seasonal changes in retinal 
photosensitivity in mice
Kousuke Okimura1,2, Yusuke Nakane1,2, Taeko Nishiwaki‑Ohkawa1,2 & Takashi Yoshimura1,2*

At high latitudes, approximately 10% of people suffer from depression during the winter season, 
a phenomenon known as seasonal affective disorder (SAD). Shortened photoperiod and/or light 
intensity during winter season are risk factors for SAD, and bright light therapy is an effective 
treatment. Interestingly, reduced retinal photosensitivity along with the mood is observed in 
SAD patients in winter. However, the molecular basis underlying seasonal changes in retinal 
photosensitivity remains unclear, and pharmacological intervention is required. Here we show 
photoperiodic regulation of dopamine signaling and improvement of short day–attenuated 
photosensitivity by its pharmacological intervention in mice. Electroretinograms revealed dynamic 
seasonal changes in retinal photosensitivity. Transcriptome analysis identified short day‑mediated 
suppression of the Th gene, which encodes tyrosine hydroxylase, a rate‑limiting enzyme for dopamine 
biosynthesis. Furthermore, pharmacological intervention in dopamine signaling through activation 
of the cAMP signaling pathway rescued short day–attenuated photosensitivity, whereas dopamine 
receptor antagonists decreased photosensitivity under long‑day conditions. Our results reveal 
molecular basis of seasonal changes in retinal photosensitivity in mammals. In addition, our findings 
provide important insights into the pathogenesis of SAD and offer potential therapeutic interventions.

At high latitudes with harsh winters, as in northern regions of the United States and Nordic countries, approxi-
mately 10% of the population suffer from depression in winter, also known as seasonal affective disorder (SAD)1,2. 
Typical symptoms of SAD include low mood, lethargy, sleep problems, disrupted circadian rhythms, social with-
drawal, and changes in appetite and body weight. Because SAD leads to increased suicide rate in these northern 
regions, it represents a significant public health issue.

Shortening photoperiod and/or decreasing bright light exposure in winter are risk factors for SAD, and bright 
light therapy is used to treat the  condition1,3–5. SAD patients exhibit reduced retinal photosensitivity in winter, 
as determined by electroretinogram (ERG) recordings, and recovers in summer or after treatment with bright 
light  therapy5–7. Accordingly, the retina is thought to play a critical role in the pathogenesis of SAD. However, 
the underlying molecular basis of seasonal changes in retinal photosensitivity remains unclear. Although bright 
light therapy is an effective treatment, the most common side effects, such as eyestrain, headache, irritability, 
fatigue, nausea, and agitation, prevent patients from sitting in front of bright light  apparatus3,8. Therefore, phar-
macological intervention for reduced retinal sensitivity is required.

In this study, we sought to clarify the mechanisms underlying seasonal changes in photosensitivity, using 
mice as a model. Melatonin, whose secretion profile is controlled by ambient photoperiod, plays critical roles in 
the regulation of seasonality in  mammals9. However, most inbred mice, including C57BL, DBA, and BALB/c, 
are insensitive to seasonal changes due to genetic defects in the melatonin biosynthesis  pathway10,11. Therefore, 
we used melatonin-proficient, photoperiod-sensitive CBA/N mice in this  study12–14. We recently demonstrated 
dynamic seasonal plasticity in photosensitivity and color perception in poikilothermal medaka fish and showed 
that these changes were temperature  dependent15. Therefore, we examined the effects of changing photoperiod 
and temperature in this study. We first demonstrated that mice indeed exhibit reduced photosensitivity under 
winter-like conditions (short day and cool temperature) relative to summer-like conditions (long day and warm 
temperature), as revealed by ERG recordings. Time-series transcriptome analysis of the eye identified reduced 
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expression of Tyrosine hydroxylase (Th) gene under winter-like conditions. Interestingly, retinal photosensitivity 
and Th expression were both photoperiod-dependent but temperature-independent. TH is a rate-limiting enzyme 
for dopamine biosynthesis, and retinal dopamine regulates retinal  photosensitivity16,17. Finally, pharmacologi-
cal intervention in dopamine signaling through activation of the cAMP signaling pathway rescued short day-
attenuated photosensitivity, whereas dopamine receptor antagonists decreased photosensitivity under long-day 
conditions. These findings suggest possible therapeutic interventions for winter depression.

Results
Attenuated mesopic ERG under winter‑like conditions. In order to investigate seasonal changes in 
photosensitivity in mammals, 10-week-old male CBA/N mice kept under 12-h light/12-h dark (12L12D) and 
24 °C (equinox-like conditions) were transferred to long day (LD) and warm, summer-like conditions (LW: 16-h 
light/8-h dark, 27 °C) or short day (SD) and cool, winter-like conditions (SC: 8-h light/16-h dark, 10 °C) for 
4 weeks. We used only male mice in the present study because the estrus cycle is known to influence the retinal 
physiology, including the  ERG18. At 14 weeks of age, mice were dark-adapted overnight, and scotopic (dark-
adapted) and photopic (light-adapted) ERGs were recorded at the middle of the light phase of each photoperiod 
(Fig. 1A)19. ERGs consist mainly of two waves; when the eyes are exposed to a light flash, a negative deflection 
a-wave initially appears, reflecting photoreceptor activation; subsequently, a positive deflection b-wave arises, 
reflecting the activity of interneurons, including bipolar cells and Müller cells. SC mice exhibited a significant 
decrease in scotopic ERGs than LW mice in both a-wave amplitudes (two-way ANOVA, p < 0.01, n = 12 [ani-
mal]) and b-wave amplitudes (two-way ANOVA, p < 0.01, n = 12 [animal]) when light pulse intensities were 
higher than − 1.0 log(cds/m2) and − 1.5 log(cds/m2), respectively (Fig. 1B, C). When a pulse intensity of − 1.0 
log(cds/m2) was given, the most significant differences in the average amplitude were recorded in both a- and 
b-waves. At this pulse intensity, a- and b-wave amplitudes in SC mice were 37% and 40% lower than in LW mice, 
respectively. In mice, irradiances higher than − 1.28 log(cds/m2) under scotopic conditions induce not only rod 
responses but also cone responses, known as mesopic  responses20,21. When we examined photopic ERGs, we 
observed no significant change in the a-wave, whereas a significant change was observed at the highest intensity 
of 1.0 log(cds/m2) (two-way ANOVA, p < 0.01, n = 12; Fig. 1D, E). Based on these observations, winter-like SC 
conditions induced attenuated ERGs at mesopic light levels.

Identification of seasonally regulated genes in the mouse eye. To reveal the mechanisms underly-
ing seasonal changes in ERG responses, we next examined RNA-seq analysis using time series samples of the 
whole eye (collected every 4 h, 6 time points, n = 2) under SC and LW conditions. If the minimum expression 
level of a gene among all the time points in one condition (e.g., SC or LW) was higher than the maximum 
expression level in another condition, the gene was defined as differentially expressed gene (DEG). This analysis 
identified 15 LW-upregulated and 17 SC-upregulated DEGs, respectively (Fig. 2A). Unlike medaka  fish15, we did 
not detect clear differences in rhodopsin family genes (Supplementary Fig. S1). However, we observed down-
regulation of Th gene under winter-like SC conditions (Fig. 2A, B). The differential expression of Th was verified 
by real-time quantitative PCR (qPCR) (two-way ANOVA; p < 0.01, n = 3; Fig. 2B). TH is a rate-limiting enzyme 
for dopamine biosynthesis. It is well established that diurnal dopamine secretion from dopaminergic amacrine 
cells plays key roles in retinal  photosensitivity16,17.

We next sought to determine which seasonal cue (e.g., photoperiod or ambient temperature) regulates Th 
expression level by qPCR. Although ambient temperature had no significant effect (two-way ANOVA, p = 0.0682, 
n = 3), Th was differentially expressed under different photoperiodic conditions (two-way ANOVA, p < 0.01, n = 3) 
(Fig. 2C). We further confirmed this result by exposing mice to different conditions: short day and cool (SC), 
short day and warm (SW), long day and cool (LC), and long day and warm (LW). When eyes were collected at 
the middle of the light phase, Th expression was higher under long-day (LC and LW) conditions than short-day 
(SC and SW) conditions irrespective of the temperature, indicating that photoperiod is the primarily seasonal 
cue regulating Th expression (two-way ANOVA, p = 0.0006, n = 9; Fig. 2D).

To further distinguish the effect of photoperiod and temperature on mesopic ERGs, mice were kept under 
SD or LD conditions at 24 °C for 4 weeks, and mesopic ERGs were measured using a light pulse of − 1.0 log(cds/
m2) (Fig. 2E). SD mice exhibited lower mesopic ERG responses in both a-wave and b-wave amplitudes relative 
to LD mice (Student’s t-test, p < 0.01, n = 12). Average amplitudes of a- and b-waves in mesopic responses of 
SD mice were 35% lower than those of LD mice. By contrast, no significant change was detected in mice kept 
under equinox photoperiod (12L12D) under cool and warm conditions (Student’s t-test, p > 0.05, n = 12; Fig. 2F). 
Taken together, both Th expression level and mesopic ERG responses were regulated by changes in photoperiod, 
regardless of ambient temperature.

To test the involvement of melatonin, we also examined the effects of SD and LD in melatonin-deficient 
C57BL/6J mice, and photoperiodic regulation of both Th and b-wave amplitude was observed at the middle of 
the light phase in each photoperiodic condition (Supplementary Fig. S2).

Pharmacological intervention in seasonally regulated retinal photosensitivity. Reduced Th 
expression level appeared to affect ocular dopamine level under SD conditions. Indeed, SD mice had a lower 
ocular dopamine level than LD mice (Student’s t-test, p = 0.0028, n = 4; Fig. 3A). The mammalian retina con-
tains four types of dopamine  receptors17,22. Among them, dopamine D1 receptors expressed in cone ON-
bipolar cells and horizontal cells, and D4 receptors expressed in photoreceptors play important roles in retinal 
 photosensitivity16,17. Therefore, we next assessed the effect of pharmacological intervention in dopamine signal-
ing. Intraperitoneal (i.p.) injection of a cocktail of agonists for D1 and D4 dopamine receptors (SKF38393 and 
PD168077, 1 mg/kg each) 1 h before the ERG recording significantly improved the b-wave amplitude in SD 
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Figure 1.  Seasonal changes in the mesopic ERG response in mice. (A) Flow of the experiment for ERG 
recording. Black and white bars indicate dark and light periods, respectively. Blue and orange bars indicate cool 
(10 °C) and warm (27 °C) conditions, respectively. SC: short day and cool temperature (winter-like condition); 
LW: long day and warm temperature (summer-like condition). ERG recording was conducted at around 
midday (black solid line) under darkness (gray bar) (i.e., dark adaptation). (B) Scotopic pulse ERGs elicited 
using 12 different intensities (from − 5.5 to 1.0 (log cds/m2)) in SC and LW mice (scale bar: 200 µV [vertical], 
50 ms [horizontal]). (C) Intensity–response curves of mean scotopic a- and b-wave amplitudes. (Two-way 
ANOVA, effect of seasonal cues, F(1, 154) = 23.73, p < 0.01 [a-wave]; F(1, 264) = 57.19, p < 0.01 [b-wave], Bonferroni 
post hoc test: *p < 0.05, **p < 0.01; effect of pulse intensity, F(6, 154) = 64.55, p < 0.01 [a-wave], F(11, 264) = 72.29, 
p < 0.01 [b-wave]; effect of interaction, F(6, 154) = 1.901, p = 0.0840 [a-wave], F(11, 264) = 2.326, p < 0.01 [b-wave], 
means ± SEM, n = 12 [animal]). (D) Photopic pulse ERGs elicited using different intensities (from − 2.0 to 1.0 log 
(cds/m2)) in SC and LW mice (scale bar: 50 µV [vertical], 50 ms [horizontal]). (E) Intensity–response curves of 
mean photopic a- and b-wave amplitudes (two-way ANOVA, effect of seasonal cues, F(1, 66) = 0.03748, p = 0.8471 
[a-wave]; F(1, 88) = 10.06, p = 0.0021 [b-wave], Bonferroni post hoc test: **p < 0.01; effect of pulse intensity, 
F(2, 66) = 1.284, p = 0.2838 [a-wave], F(3,88) = 38.56, p < 0.01 [b-wave]; effect of interaction, F(2,66) = 0.1947, p = 0.8236 
[a-wave], F(3,88) = 1.877, p = 0.1394 [b-wave], mean ± SEM, n = 12 [animal]).
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mice (Student’s t-test, p = 0.0214, n = 10; Fig. 3B). On the other hand, i.p. injection of a cocktail of antagonists for 
D1 and D4 receptors (SCH23390 and L-745870, 1 mg/kg each) 1 h before the ERG recording decreased b-wave 
amplitude in LD mice (Student’s t-test, p < 0.01, n = 12; Fig. 3C).

The cAMP-responsive element (CRE) (TCA CGT CA) in the promoter region of Th is responsible for pro-
moting basic and induced Th gene  expression23, and phosphorylated CREB (pCREB) binds CRE to induce 
transcription. Western blotting revealed that the pCREB level in the eye was different between LD mice and 
SD mice (two-way ANOVA, p = 0.0477, n = 3; Fig. 3D, Supplementary Fig. S3). Modafinil inhibits dopamine 
 reuptake24 and engages the activation of  pCREB25. Gavage administration of modafinil (64 mg/kg, 3 times per 
day for 3 days; Supplementary Fig. S4) improved b-wave amplitude (Student’s t-test, p = 0.0012, n = 10; Fig. 3E) 
and increased Th gene expression in the eyes of SD mice in vivo (Student’s t-test, p = 0.0469, n = 6; Fig. 3F). To 
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Figure 2.  Photoperiodic regulation of Th expression and mesopic ERG. (A) Hierarchical clustering of 15 genes 
upregulated under LW conditions and 17 genes upregulated under SC conditions. Heatmap was generated in 
R (version 4.0.3) with the heatmap.2 function from gplots package (https ://bioco recrg .githu b.io/CRG_RIntr 
oduct ion/heatm ap-2-funct ion-from-gplot s-packa ge.html). (B) Differential expression of Th gene detected by 
RNA-seq (n = 2) (left) and qPCR (n = 3) (right) in the eyes of the mice kept under SC and LW conditions. Two-
way ANOVA and Bonferroni post hoc test were used for qPCR analysis (two-way ANOVA, effect of seasonal 
cues, F(1, 24) = 77.91, p < 0.01, Bonferroni post hoc test: **p < 0.01; effect of time, F(5,24) = 0.3711, p = 0.8634; effect 
of interaction, F(5, 24) = 0.6346, p = 0.6753, mean ± SEM, n = 3). (C) Effects of photoperiod (left) or temperature 
(right) on Th gene expression measured by qPCR (two-way ANOVA, effect of photoperiod, F(1, 24) = 53.76, 
p < 0.01; effect of temperature, F(1, 24) = 3.647, Bonferroni post hoc test: *p < 0.05, **p < 0.01; effect of time, 
F(5,24) = 4.129, p < 0.01 [photoperiod], F(5,24) = 6.008, p < 0.01 [temperature]; effect of interaction, F(5,24) = 1.670, 
p = 0.1801 [photoperiod], F(5,24) = 1.600, p = 0.1982 [temperature], mean ± SEM, n = 3). (D) Effects of photoperiod 
and temperature on Th expression (two-way ANOVA, effect of photoperiod, F(1, 32) = 14.44, p = 0.0006, 
Bonferroni post hoc test: *p < 0.05; effect of temperature, F(1,32) = 1.987, p = 0.1683; effect of interaction, 
F(1,32) = 0.1900, p = 0.6658, mean ± SEM, n = 9). (E) Effect of photoperiod on mesopic responses (Student’s t-test, 
t(18) = 3.825 [a-wave], t(18) = 4.732 [b-wave], **p < 0.01, mean ± SEM, n = 10). (F) Effect of temperature on mesopic 
responses (Student’s t-test, t(22) = 0.1534 [a-wave], t(22) = 0.08799 [b-wave], p > 0.05, mean ± SEM, n = 10–12). 
Mesopic ERG was measured using a − 1.0 log(cds/m2) light pulse.
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Figure 3.  Pharmacological intervention of dopamine signaling regulates mesopic b-wave amplitude. (A) Increase in dopamine in the 
eyes of mice by long-day conditions measured by ELISA. (Student’s t-test, t(10) = 3.943, **p = 0.0028, mean ± SEM, n = 6). (B) Effect of 
dopamine receptor (D1/D4) agonist cocktail on mesopic ERG responses in SD mice (Student’s t-test, t(18) = 0.9807 [a-wave],  t18 = 2.520 
[b-wave], *p = 0.0214 mean ± SEM, n = 10). (C) Effect of dopamine receptor (D1/D4) antagonist cocktail on mesopic ERG responses in 
LD mice (Student’s t-test, t(22) = 1.386 [a-wave], t(22) = 4.676 [b-wave], **p < 0.01, mean ± SEM, n = 12). (D) Western blotting for pCREB 
and ACTB in eyes of SD and LD mice (left). Relative pCREB value was normalized against ACTB level (right) (two-way ANOVA, 
effect of photoperiod, F(1, 24) = 4.353, p = 0.0477; effect of time, F(5,24) = 1.803, p = 0.1503; effect of interaction, F(5,24) = 0.8554, p = 0.8554, 
mean ± SEM, n = 3). To quantify band intensity, three different gels were used (see Supplementary Fig. 3). (E) Effect of modafinil on 
mesopic ERG responses in SD mice (Student’s t-test, t(18) = 0.7161 [a-wave], t(18) = 3.855 [b-wave], **p = 0.0012, mean ± SEM, n = 10). 
(F) Effect of modafinil on Th expression level measured by qPCR (Student’s t-test, t(10) = 2.266, *p = 0.0469, mean ± SEM, n = 6). (G) 
Promoter activity of mouse Th was measured using HEK293T cells. Wild-type and mutant reporters fused to the luciferase gene were 
assayed for their activities in response to modafinil. CRE sequences of wild type (WT) and mutant (Mutant) are shown at bottom. 
Basic: pGL4.19-basic empty vector. (Student’s t-test, t(4) = 7.199 [WT], t(4) = 0.06143 [Mutant], t(4) = 0.9412 [Basic], **p = 0.0020, 
mean ± SEM, n = 3) (H) Effect of eyedrop topical administration of forskolin on mesopic ERG responses in SD mice (Student’s t-test, 
t(22) = 1.145 [a-wave], t(22) = 2.181 [b-wave], *p = 0.0402, mean ± SEM, n = 12). Mesopic ERG was measured using a − 1.0 log(cds/m2) 
light pulse.
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further investigate whether the CRE sequence is indeed involved in the regulation of Th gene by modafinil, 
we analyzed the activity of the Th promoter transfected into the HEK293T cell line. Modafinil administration 
induced expression of Th reporter activity in the wild-type (WT) construct relative to the vehicle control (Stu-
dent’s t-test, p = 0.0020, n = 3). However, when the CRE sequence was mutated, induction by modafinil was not 
observed (Student’s t-test, p = 0.9540, n = 3; Fig. 3G). Induction of reporter activity was also not observed in the 
‘basic’ empty construct (Student’s t-test, p = 0.3999, n = 3). These results suggest that induction of Th by modafinil 
involves a cAMP signaling pathway.

Forskolin is well known to increase the cAMP level and hence CREB activation. Eye-drop topical admin-
istration of forskolin in SD mice (1% w/v, 3 times per day for 3 days; Supplementary Fig. S4) rescued short 
day–attenuated mesopic b-wave amplitude (Student’s t-test, p = 0.0402, n = 12; Fig. 3H). Together, these results 
suggest that pharmacological intervention in the dopamine signaling pathway can rescue seasonally regulated 
retinal photosensitivity in mice.

Discussion
Reduced light exposure during the winter season is considered to be a risk factor for  SAD1,4,5. Although SAD 
patients exhibit reduced photosensitivity during depressive  episodes5–7, the molecular basis of the condition 
remains unclear. In this study, we demonstrated seasonal changes in retinal photosensitivity in mice, as deter-
mined by measurement of ERGs (Fig. 1), indicating that mice could be an excellent model to uncover its molecu-
lar mechanism. Although organisms are exposed to significant changes under both ambient photoperiod and 
temperature at high latitudes, we found that changes in photoperiod, but not temperature, affected the retinal 
photosensitivity in mice (Fig. 2). In a previous study, we observed seasonal changes in retinal photosensitivity 
in medaka  fish15. In this species, however, retinal photosensitivity was regulated by ambient temperature but 
not by photoperiod. It is reasonable to speculate that these differences are related to the differences between 
homeothermic and poikilothermic animals. In addition to the changes in photosensitivity, our previous study 
demonstrated seasonal changes in color perception in medaka fish. Functional analyses revealed that the seasonal 
changes in color perception were caused by dynamic seasonal changes in the expression of rhodopsin family 
 genes15. Interestingly, seasonal changes in color perception have also been reported in healthy  humans26. There-
fore, we hypothesized that expression of rhodopsin family genes is also affected by seasonal cues in mammals. In 
contrast to our prediction, however, our RNA-seq analysis of SC and LW mice failed to detect clear expression 
changes in the rhodopsin family genes in mice (Supplementary Fig. S1). Medaka fish are seasonal breeders that 
nuptial coloration during breeding season to attract mates. However, mice are non-seasonal breeders and do 
not change body coloration throughout the seasons. Therefore, it would be interesting to examine expression 
changes in rhodopsin family genes in seasonally breeding mammals that exhibit color ornamentation during 
the mating season, such as the red skin coloration in  macaques27, in future studies.

Although we did not observe changes in the expression of rhodopsin family genes, we detected clear seasonal 
changes in Th expression and dopamine level in the eye (Figs. 2 and 3). Furthermore, pharmacological activation 
and inactivation of dopamine signaling regulated photoperiodically controlled retinal sensitivity (Fig. 3). These 
results are consistent with the notion that the retinal dopamine signaling plays a critical role in the regulation 
of retinal  photosensitivity17. Abnormal melatonin secretion is observed in SAD patients during depression 
 episode28. Furthermore, nocturnal melatonin suppresses retinal dopamine  release29, and dopamine suppresses 
melatonin production in the  retina30,31. Therefore, mutual inhibitory regulation of retinal melatonin and dopa-
mine is speculated to be involved in the pathogenesis of SAD (the ‘retinal melatonin dopamine hypothesis’)32. In 
this study, we observed photoperiodic regulation of both Th and retinal photosensitivity in melatonin-deficient 
C57BL mice (Supplementary Fig. S2), suggesting that melatonin is not necessary for seasonal regulation of 
retinal photosensitivity.

A previous study reported that photoperiod during the perinatal stage has an enduring impact on retinal 
dopaminergic systems and visual functions in  mice16. This study further demonstrated that the changes in pho-
toperiod during adulthood also affect ocular dopamine signaling, suggesting that photoperiodic regulation of 
retinal photosensitivity is more plastic than previously considered. This finding fits well with previous reports 
that the reduced photosensitivity observed in SAD patients during winter recovers in summer or after bright 
light  therapy5–7.

Although the selective serotonin reuptake inhibitor fluoxetine has been used for the treatment of SAD, 
this practice may not be supported by sufficient  evidence33. We recently reported that the traditional Chinese 
medicine celastrol can rescue the winter depression-like behavior in medaka fish through activation of NRF2 
antioxidant  pathway34. Therefore, drugs targeting the NRF2 antioxidant signaling pathway could be potential 
therapeutic targets for SAD in the future. Often, however, treatment of multifactorial psychiatric disorders with 
just one drug or monotherapy is insufficient, and comedication therapy is more effective. As mentioned above, 
although bright light therapy is effective for the treatment of SAD patients, side effects prevent patients from 
sitting in front of bright light  apparatus3,8; therefore, pharmacological interventions that take the place of bright 
light therapy are expected. In this study, we demonstrated that pharmacological activation of retinal dopamine 
signaling rescues photoperiodically regulated retinal photosensitivity in mice through a cAMP signaling pathway. 
Forskolin is a well-known bioactive diterpene derivative that increases cAMP level and hence CREB activa-
tion. Oral administration of food supplements containing forskolin restore ERGs of open glaucoma  patients35. 
Furthermore, intraocular irrigation of forskolin increases ERG amplitude in  rabbits36. As in the case of the 
blood–brain barrier, the delivery of compounds into the retina remains a challenge because of the blood–retinal 
 barrier37,38. However, since forskolin penetrates the blood–brain  barrier39,40, we examined the effect of topical 
administration of forskolin in SD mice, and found that this treatment improved short day–attenuated mesopic 
b-wave amplitude (Fig. 3).
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Growing evidence suggests that photo-stimuli received by the eye affect multiple brain functions, includ-
ing circadian rhythms and  mood41,42; hence, it has been suggested that the retina plays a significant role in the 
pathogenesis of  SAD5,32,43. This idea is not surprising considering that the retina, like other regions of the central 
nervous system, originates from the neural tube. Indeed, the retina is a true part of the brain and thus a gateway 
to the  brain44. Therefore, in addition to the development of antidepressants acting on the central nervous system, 
drugs targeting retinal dopaminergic signaling pathways could offer another therapeutic target for treating or 
preventing SAD.

Materials and methods
Animals. Male 10-week-old CBA/N and C57BL/6J mice were obtained from a local dealer (Nihon SLC, 
Hamamatsu). Mice were kept under following conditions using housing systems (LP-30CCFL-8CTAR, NK sys-
tem; Nippon Medical & Chemical Instruments, Osaka, Japan) for 4 weeks: LW (long day and warm temperature; 
16-h light/8-h dark and 27 °C), LC (long day and cool temperature; 16-h light/8-h dark and 10 °C), SC (short 
day and cool temperature; 8-h light/16-h dark and 10 °C), SW (short day and warm temperature; 8-h light/16-h 
dark and 27 °C), LD (long day; 16-h light/8-h dark and 24 °C), SD (8-h light/16-h dark and 24 °C), Cool (12-h 
light/12-h dark and 10 °C), or Warm (12-h light/12-h dark and 27 °C) conditions. In Figs. 1 and 2A,B, mice 
were divided into two groups and maintained under LW and SC. In Fig. 2C (left) and 2E, mice were divided into 
two groups and maintained under SW and LW. In Fig. 2C (right) and 2F, mice were divided into two groups 
and maintained under Cool and Warm conditions. In Fig. 2D, mice were divided into 4 groups and maintained 
under LW, LC, SW, and SC, respectively. Food and water were provided to the animals ad libitum. Animals were 
treated in accordance with the guidelines of Nagoya University, and all experimental procedures were approved 
by the Animal Experiment Committee of Nagoya University.

ERG recordings. The procedures for electroretinograms (ERGs) were performed according to previously 
reported  paper45. Mice were anesthetized with i.p. injection of ketamine and xylazine at midday under dark-
ness (i.e., dark adaptation). Tropicamide (0.5%) and phenylephrine HCl (0.5%) were given with eye drops to 
dilate the pupils just before starting the ERG recording. ERGs were recorded under dim red light, and the mice 
were placed on a heating pad during ERG recordings. ERGs were recorded with a gold wire loop electrode 
(N1530NNC; Mayo Corporation, Inazawa, Japan) on the cornea with a gold wire reference electrode placed on 
the sclera. The ERGs were automatically averaged with a computer-assisted signal-averaging system (MLS060/8 
PowerLab; ADInstruments, Colorado Springs, CO, USA). A Ganzfeld bowl with a xenon source (LS-100; Mayo 
Corporation) was used for pulse stimulation.

For the scotopic ERGs, two to six responses were averaged with an interval of 10 s for each pulse intensity. 
For the photopic ERGs, 20 to 30 responses were averaged with an interval of 1 s for each pulse intensity. Twelve 
equal pulse-intensity steps, ranging from − 5.5 to 1.0 log(cds/m2) were used to record scotopic ERGs. For pho-
topic ERGs, seven equal pulse-intensity steps, ranging from − 2.0 to 1.0, were used with rod-desensitizing white 
adapting halogen background light of 39.8 cd/m2. For photopic ERGs, mice were light-adapted for 10 min before 
starting the first intensity step.

Tissue collection. Eyes were collected at 6 time points (2, 6, 10, 14, 18, and 22 h after midnight), or at 
midday. Samples were immediately frozen in a 1.5-ml tube on liquid nitrogen and stored at − 80 °C until RNA 
extraction for gene expression analyses and protein extraction for western blot analysis.

Gene expression analyses. Total RNA was purified with RNeasy lipid mini tissue kit (Qiagen, Hilden, 
Germany) with DNase I. Extracted RNA was stored at − 80 °C. For strand-specific RNA-seq analysis, in order to 
produce paired-end libraries, extracted total RNA was treated using a TruSeq Stranded mRNA LT Sample Prep 
kit (Illumina, San Diego, CA, USA) and sequenced at a read depth of ~ 6.42 Gb per sample with 100-bp reads 
on an Illumina HiSeq 4000 system (Illumina). Read quality control was checked with FastQC and filtered using 
the software SOAPnuke. Reads were mapped to the mouse genome using HISAT2. Gene expression levels were 
calculated by RNA-Seq by Expectation–Maximization (RSEM).

For real-time quantitative PCR (qPCR), reverse transcription was performed on total RNA (100 ng) using 
the ReverTra Ace qPCR RT Kit (Toyobo, Osaka, Japan). TaqMan Master mix (Applied Biosystems, Foster City, 
CA, USA), TaqMan probes of Th (Mm00447557_m1), or Eif1ad (Mm01233367_m1), and 2 µl of synthesized 
cDNA were mixed in a 20-µl volume. qPCR was performed on a QuantStudio 3 Real-Time PCR Systems (Applied 
Biosystems). Because expression levels of Gapdh and Actb were influenced by environmental cues in this study, 
the housekeeping gene Eif1ad (eukaryotic translation initiation factor 1A domain containing) was used as an 
internal control.

ELISA to measure dopamine. Eyes were collected at midday from mice kept under SD or LD condi-
tions for 4 weeks. Samples were immediately frozen in a 1.5-ml tube on liquid nitrogen and stored at − 80 °C 
until dopamine measurement. Frozen eyes were homogenized in 1 ml of 0.01 N HCl in the presence of EDTA 
and sodium metabisulfite. Dopamine levels were measured in homogenized samples (200 µL volume) using the 
Dopamine Research ELISA (ImmuSmol, Bordeaux, France).

Drug administration. Dopamine receptor agonist cocktail contained D1 receptor agonist (SKF38393; 
Abcam, Cambridge, UK) and D4 receptor agonist (PD168077; Tocris, Bristol, UK) dissolved in saline. Mice kept 
under SD conditions were i.p. injected with dopamine agonist cocktail (1 mg/kg) 1 h before the ERG recording 
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under dim red light, as described  previously18. Dopamine receptor antagonist cocktail contained D1 receptor 
antagonist (SCH 23390; Tocris) and D4 receptor antagonist (L-745870; Abcam) (1 mg/kg each) dissolved in 
saline. Mice kept under LD conditions were i.p. injected with dopamine antagonist cocktail 1 h before ERG 
recording under dim red light. Based on previous  reports46,47, modafinil (M6940; Sigma-Aldrich, St. Louis, MO, 
USA), dissolved in 0.1% DMSO/saline, was injected by gavage (64 mg/kg, 4 h apart, three times each day during 
daytime for 3 days). Forskolin (66575-29-9; Wako, Osaka) dissolved in saline (1%) was administered to the eyes 
(2 µl each) as eye-drops using a pipet (4 h apart, three times each day during daytime for 3 days). The effects of 
topical administration of forskolin were examined twice by different experimenters, and consistent results were 
obtained in both experiments.

Western blot analysis. Frozen eyes were lysed with ice-cold radioimmunoprecipitation (RIPA) buffer con-
taining protease and phosphatase inhibitors. Sonicated lysate was centrifuged (12,000 g, 4 °C, 15 min), and the 
supernatant was collected. Eye homogenates were mixed with 2-mercaptoethanol and resolved by SDS-PAGE 
and transferred to activated PVDF membranes. The PVDF membranes were blocked with 2.5% skim milk in 
Tris-buffered saline with Tween 20 (TBST) for 1  h at room temperature. Phospho-CREB primary antibody 
(1:1,000) (#9189; Cell Signaling Technology, Danvers, MA, USA), dissolved in 5% bovine serum albumin in 
TBST, was incubated 16 h at 4 °C. Membranes were washed with TBST. Secondary rabbit antibody (1:2000), dis-
solved in 2.5% skim milk in TBST, was incubated for 1 h at room temperature. Washed membranes with TBST 
was incubated with ECL prime (GE Healthcare, Chicago, IL, USA) for 15 min at room temperature and imaged 
on a LAS3000 (Fuji Film, Tokyo, Japan). ACTB primary antibody (1:1,000) (sc-47778; Santa Cruz Biotechnol-
ogy, Dallas, TX, USA) was used as an internal control after pCREB signals were eliminated by incubation in 
 H2O2. The sizes of the protein were determined by Amersham ECL Rainbow Marker-Full Range (GE Health-
care). Quantification of immunoblots was conducted with Image J (https ://image j.nih.gov/ij/index .html).

Constructs, transfection, and luciferase assay. The 963-bp 5′-flanking region of mouse Th was 
subcloned into pGL4.19-basic vector (Promega, Madison, WI, USA) using 5′-TTT GGT ACC GTT TCC TTG 
GCT GAG GAA GCT -3′ and 5′-AAC AAA GCT TAG TGC AAG CTG GTG GTC CCG -3′. A deletion construct of 
CRE was generated by deletion of the central four nucleotides (−45: TGA CGT CA—> TGCA), as previously 
 described48,49 using the KOD mutagenesis kit (Toyobo). Constructs were confirmed by direct sequencing (ABI 
3100; Applied Biosystems).

The HEK293T cells were plated in 96-well plates at a density of ~ 2 × 106 cells per well in 125 µl DMEM. Th 
promoter-luciferase construct (133 ng) was co-transfected with Renilla luciferase (19 ng) using Xfect reagent 
(Takara Bio, Kusatsu, Japan). After 24 h, cells were washed with DMEM, and 75 µl of DMEM was added to 
each well. Modafinil (0.1 mM, dissolved in 0.1% DMSO/DMEM) was added into wells 12 h after  washing50. 
Sixteen hours later, luciferase activities were measured using the Dual-Glo luciferase assay (E2920; Promega) 
with SoftMax Pro (Molecular Devices, San Jose, CA, USA). Firefly relative luciferase activity was normalized 
against Renilla activity.

Statistical analysis. Data are presented as means ± SEM generated by GraphPad Prism 8 (https ://www.
graph pad.com/scien tific -softw are/prism /). Significance of differences between groups was evaluated by Stu-
dent’s t-test. In the case of three or more groups, two-way ANOVA and post hoc test was conducted in GraphPad 
Prism 8.

Data availability
The RNA-seq data are available at NCBI Gene Expression Omnibus [accession number GSE156141].
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