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Repeatability and reproducibility 
study of radiomic features 
on a phantom and human cohort
A. K. Jha1,3,4*, S. Mithun1,3,4, V. Jaiswar1, U. B. Sherkhane1,4, N. C. Purandare1,3, 
K. Prabhash2,3, V. Rangarajan1,3, A. Dekker4, L. Wee4,5 & A. Traverso4,5

The repeatability and reproducibility of radiomic features extracted from CT scans need to be 
investigated to evaluate the temporal stability of imaging features with respect to a controlled 
scenario (test–retest), as well as their dependence on acquisition parameters such as slice thickness, or 
tube current. Only robust and stable features should be used in prognostication/prediction models to 
improve generalizability across multiple institutions. In this study, we investigated the repeatability 
and reproducibility of radiomic features with respect to three different scanners, variable slice 
thickness, tube current, and use of intravenous (IV) contrast medium, combining phantom studies 
and human subjects with non-small cell lung cancer. In all, half of the radiomic features showed good 
repeatability (ICC > 0.9) independent of scanner model. Within acquisition protocols, changes in slice 
thickness was associated with poorer reproducibility compared to the use of IV contrast. Broad feature 
classes exhibit different behaviors, with only few features appearing to be the most stable. 108 
features presented both good repeatability and reproducibility in all the experiments, most of them 
being wavelet and Laplacian of Gaussian features.

Medical images are routinely used for cancer staging, treatment planning and evaluation. Radiological findings 
are mainly evaluated in a qualitative or semi-qualitative fashion guided predominantly by visual  inspection1. 
However, human interpretation of images is open to subjectivity and potentially misses some of the quantitative 
and objective information that could otherwise be retrieved from patients’ scans through computer-assisted 
 methods2.

The field of “radiomics” aims to address the above-mentioned issues by objectively quantifying visual informa-
tion in the images as a vast set of numerical metrics known as “features”. Radiomics hypothesizes that a certain 
subset of features, analyzed with the aid of machine learning algorithms due to high dimensionality, may have 
some predictive/prognostic value. Such subsets of features denote a “signature”, i.e. a digital image phenotype of 
the target disease, which opens the way towards personalized treatment in  oncology3.

One of the most challenging problems for translating radiomic studies into clinical decision support systems 
is to evaluate the robustness of radiomic-based models and hence their potential generalizability across multiple 
datasets from different  institutions4. Different institutions commonly acquire scans with different settings (e.g. 
scanner manufacturers, slice thickness, signal-to-noise ratio) according to largely self-defined imaging protocols, 
which add unwanted variation in the resulting radiomic features that are not related to the disease phenotype. 
A feature that is useful on one dataset may therefore lose its value on another dataset, since the feature may be 
sensitive to different methods of  acquisition5.

When discussing robustness of radiomic studies two concepts need to be considered: “repeatability” and 
“reproducibility”. Repeatability refers to features that remain the same when imaged multiple times in the same 
subject, be that a human or a suitable phantom, using the same image acquisition methods. Reproducibility refers 
to features that remain the same when extracted using different equipment, different software, different image 
acquisition settings, or different operators (e.g. other clinics), be that in the same subject or in different  subjects6. 
Repeatability and reproducibility concerns have been raised as major source of uncertainties in radiomic  models7.

Most of the studies that investigated the reproducibility of radiomic features with respect to different image 
acquisition settings, demonstrate a strong dependence of radiomic features on such settings. Texture features 
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appear to be more vulnerable to reproducibility/repeatability issues. There is a strong connection between 
reproducibility/repeatability and prognostic  values8. In a study about time series classification, the investiga-
tors concluded that poorly reproducible/repeatable features were usually accompanied by poor discriminative 
 performances9.

Recent publications have also investigated the presence of correlations between radiomic features and tumor 
 volume9,10. The latter has been shown to be one of the most generalizable features. Therefore, there is the need to 
investigate if the most reproducible features were also strongly correlated with tumor volume.

Several studies have investigated the repeatability/ reproducibility of radiomic features on phantom as well as 
well as clinical  cohort6–9,10–17. Few publications have also investigated the disease specific dependency of radiomic 
feature repeatability/ reproducibility and presented the results. These studies have either performed repeatability 
or reproducibility study alone; or performed repeatability and reproducibility study only on  phantoms13,14 or 
 clinical15,16 cohorts, which (1) limits the possibility to isolate a subset of features that are both repeatable and 
reproducible, and (2) does not allow comparing differences in the results because of using only phantom or 
human data. There remains a need to evaluate reproducibility and repeatability of radiomic features, not only on 
phantoms datasets, but also on human cohorts in the same study. The risk is that phantom studies do not have 
sufficiently high complexity and heterogeneity within the synthetic “tumors” to be a fair test of feature robust-
ness. In our study, stable feature refers to both repeatable and reproducible features at the same time. With our 
study, we provide an extension to currently available literature by performing a comprehensive evaluation of 
the reproducibility and repeatability of 1080 radiomic features considering not only different groups of features, 
but also features extracted using digital filtering both with phantoms and human data. In this study, we also 
investigated how the correlations between radiomic features and tumor volume impact the reproducibility and 
repeatability results.

Results
Phantom—repeatability. The percentage of radiomic features presenting good repeatability (ICC ≥ 0.9) 
were 58% (624/1080) for scanner1 (Philips Gemini TF16), 43% (464/1080) for scanner2 (Philips Gemini TF64), 
61% (661/1080) for scanner3 (GE Discovery NM 570) and 45% (488/1080) for the three scanners overall. Results 
are shown in Fig. 1 for each feature category.

RIDER (clinical cohort)—repeatability. The percentage of radiomic features presenting good, moder-
ate, and poor repeatability were 82% (888/1080), 15% (164/1080), and 3% (28/1080) respectively for the RIDER 
clinical cohort. The results per feature categories are shown in Fig. 1.

Phantom—reproducibility—intra and inter scanner variability. For the intra-scanner study, 30% 
(322/1080), 31% (332/1080) and 39% (426/1080) features presented good, moderate, and poor reproducibil-
ity (Fig. 2A) for all the scanners. For the inter-CT scanner study, 14% (154/1080), 19% (204/1080) and 67% 
(722/1080) features presented good, moderate, and poor reproducibility respectively (Fig. 2B) for all the 6 pro-
tocols. Reproducibility of the features individually for the six protocols are shown in the Supplementary material 
S1.

Clinical cohort—reproducibility. Among the features tested, 19% (199/1080) good, 29% (315/1080), 
moderate and 52% (556/1080) had poor, reproducibility when comparing the 3 different imaging protocols on 
the Gemini TF16 scanner (Fig. 2C).

When comparing IV contrast (WBCECT2) versus non-contrast (NCCTT2) protocols, 45% (483/1080) of 
the features had poor, 41% (442/1080) moderate, and 14% (155/1080) good reproducibility (Fig. 2D). When 
comparing slice thickness, using the BLDCT5 protocol (slice thickness = 5 mm) versus the WBCECT2 protocol 
(slice thickness = 2 mm), 37% (398/1080) of the features had poor, 17% (179/1080) moderate, and 47% (503/1080) 
good reproducibility (Fig. 2E).

Volume correlations. In the clinical cohort, 7% (73/1080), 5% (57/1080) and 88% (950/1080) of the radi-
omic features had good (ρ ≥ 0.9), moderate (0.75 < ρ < 0.9) and poor (ρ ≤ 0.75) correlation with the GTV.

Overall summary. Median ICC was calculated for all the reproducibility studies performed using the phan-
tom and clinical cohorts. A total of 22.5% (243/1080) features had good reproducibility (ICC > 0.9) in clinical 
cohort. When the median of ICC was calculated for repeatability study performed with phantom and clinical 
cohorts (RIDER); 46.1% (498/1080) of features had good repeatability (ICC > 0.9). For repeatability study on 
phantom and clinical cohort together 55% (599/1080) features had good stability (ICC > 0.9) (Fig.  3A). For 
reproducibility study on phantom and clinical cohort together 15% (164/1080) features had good stability 
(ICC > 0.9) (Fig.  3B). For repeatability and reproducibility study together on clinical cohort 18% (189/1080) 
features had good stability (Fig. 3C). For all the experiments, 13% (138/1080) of the features presented both high 
(median ICC > 0.9) repeatability and high reproducibility (Fig. 3D). Tumor volume was again confirmed to be 
the most repeatable and reproducible feature with a median ICC of 0.99. When considering volume collinearity, 
21% of these stable features presented strong Spearman correlations (ρ > 0.9). If we removed the features with 
strong correlations with GTV, then the final number of repeatable and reproducible features was 108: 59 WF 
(Wavelet) (8% of total WF), 46 LOG (Laplacian of Gaussian) (17% of total LOG), and 3 TA (Texture Analysis) 
(3% of total TA) features (Table 1). Overall, TA had the largest median ICC (0.933 ± 0.024) followed by LOG 
(0.923 ± 0.017) and WF (0.917 ± 0.014) features (p < 0.05). The topmost robust feature per feature types were: 
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GLRLM-Non-Uniformity (LOG-2  mm kernel); LLH-GLCM-JointEnergy (WF) and Gray Level Dependence 
Matrix (GLDM) Non-Uniformity (TA). 

It is interesting to notice how the top 50 repeatable features presented strong inter Spearman correlations, 
with Wavelet and Laplacian of Gaussian features being strongly clustered together (heatmap on Fig. 4). Overall, 
the number of features with good repeatability was found to be significantly larger than the number of reproduc-
ible features. Reproducibility experiments using phantom data (IntraCT experiment) led to more features being 
found reproducible compared to experiments performed using the clinical cohort (30% vs 19% of features with 
ICC ≥ 0.9, p < 0.05). Around 57% (138/243) of the robust features overlapped with features from repeatability 
and reproducibility study. The remaining 67 features being 36% Wavelet and 74% Laplacian of Gaussian were 
reproducible, but not repeatable.

Discussion
In this study, we investigated: (A) radiomic feature repeatability in a test–retest scenario using a NEMA IQ 
phantom; (B) radiomic feature reproducibility with respect to different tube currents, slice thickness as well as 
dependencies to different scanner models using an image quality phantom, and (C) radiomic feature reproduc-
ibility in a clinical cohort comparing three different acquisition protocols as well as the impact of slice thickness 
and the presence of IV contrast medium. We isolated a list of repeatable and reproducible features for all the 
experiments. Furthermore, we computed the correlations between radiomic features and tumor volume with the 
aim of investigating if the most repeatable and reproducible features also presented strong correlations. In fact, 
tumor volume was found to be the most robust feature and we wanted to assess if this could be a reason for a 
feature to present high reproducibility and repeatability. As shown in the results, only a relatively small percent-
age of radiomic features (around 13% of the total) presented both good repeatability and reproducibility across 
all the experiments. However, differences were found between repeatability and reproducibility. The number 
of features with good repeatability was larger than the number of reproducible features in the phantom experi-
ment. Unfortunately, because we did not have any test–retest clinical data it was not possible to draw the same 

Figure 1.  Repeatability analysis using repeated phantom scans for all the different radiomic feature classes. 
The median ICC values for all the 6 protocols is reported, separately for scanner1, scanner2, scanner3 and the 
union of the three. Repeatability analysis on RIDER (clinical cohort) was also performed. Three different levels 
of repeatability are defined: good (ICC ≥ 0.9), medium (0.75 < ICC < 0.9), and poor (ICC ≤ 0.75) (FO = First 
Order Feature; TF = Textural Feature; LOG = Total LoG Feature; WF = Total Wavelet Feature; LOG-FO = LoG 
First Order Feature; LOG-TF = LoG Textural Feature; WF-FO = Wavelet First Order Feature; WF-TF = Wavelet 
Textural Feature).
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Figure 2.  Results of the reproducibility experiments: (A) intra-scanner experiment using the phantom. By 
taking the median of all ICCs computed on the three scanners; (B) inter-scanner experiment using the phantom 
across all three scanners; (C) stability of radiomic features with respect to three different clinical protocols in the 
clinical study; (D) impact of IV (intravenous) contrast medium presence (WBCECT2)/ absence (NCCTT2) and 
difference in current (WBCECT2:Auto mA = 100–200; NCCTT2: fixed mA = 300 ) in the clinical study, and E) 
impact of slice thickness (2 vs 5 mm) in the human study. Three different levels of reproducibility are defined: 
good (ICC ≥ 0.9), medium (0.75 < ICC < 0.9), and poor (ICC ≤ 0.75).

Figure 3.  Common features in various studies showing good stability (ICC > 0.9): (A) Venn diagram shows the 
overlap of repeatability (RIDER) study and Phantom repeatability study. (B) Venn diagram shows the overlap of 
Phantom reproducibility study and reproducibility study in clinical cohort. (C) Venn diagram shows the overlap 
of repeatability (RIDER) study and reproducibility study in clinical cohort. (D) Overall summary of all the 
experiments. The Venn diagram shows the overlap of the repeatability experiment (phantom + clinical [RIDER] 
data) with the reproducibility experiments (phantom + clinical data).
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Overall summary TOP 108 features: 46 LOG, 59 WF, 3 TA

Median ICC and STD per categories

TA (0.933 ± 0.024)

LOG (0.923 ± 0.017)

WF (0.917 ± 0.014)

Feature name Category Median ICC Feature name Category Median ICC

RANK 1–50

wavelet-LLH_glcm_JointEnergy WF 0.9822 log-sigma-2-0-mm-3D_glrlm_ShortRunEmphasis LOG 0.9295

log-sigma-2-0-mm-3D_glrlm_RunLengthNonUniformity LOG 0.9766 wavelet-LLH_glrlm_ShortRunEmphasis WF 0.9293

log-sigma-3-0-mm-3D_glrlm_RunLengthNonUniformity LOG 0.9724 log-sigma-2-0-mm-3D_glrlm_RunLengthNonUniformi-
tyNormalized LOG 0.9284

original_gldm_DependenceNonUniformity TA 0.9571 log-sigma-2-0-mm-3D_firstorder_Entropy LOG 0.9284

wavelet-LLH_glcm_Idm WF 0.9542 wavelet-LHL_firstorder_10Percentile WF 0.9280

log-sigma-3-0-mm-3D_firstorder_10Percentile LOG 0.9484 log-sigma-1-0-mm-3D_gldm_LargeDependenceEmphasis LOG 0.9274

log-sigma-3-0-mm-3D_glrlm_RunPercentage LOG 0.9475 wavelet-LHL_firstorder_InterquartileRange WF 0.9270

wavelet-LLH_glcm_Id WF 0.9474 wavelet-LHL_firstorder_MeanAbsoluteDeviation WF 0.9258

wavelet-LLH_glcm_SumEntropy WF 0.9424 log-sigma-1-0-mm-3D_glrlm_ShortRunEmphasis LOG 0.9257

log-sigma-3-0-mm-3D_firstorder_Mean LOG 0.9409 wavelet-LHL_firstorder_RobustMeanAbsoluteDeviation WF 0.9255

log-sigma-3-0-mm-3D_firstorder_Median LOG 0.9386 wavelet-LHL_glcm_Imc2 WF 0.9252

log-sigma-2-0-mm-3D_glrlm_LongRunEmphasis LOG 0.9379 wavelet-LHL_glcm_Idn WF 0.9227

log-sigma-2-0-mm-3D_gldm_LargeDependenceEmphasis LOG 0.9374 wavelet-LHL_glszm_SizeZoneNonUniformity WF 0.9222

log-sigma-2-0-mm-3D_firstorder_10Percentile LOG 0.9372 log-sigma-3-0-mm-3D_firstorder_MeanAbsoluteDeviation LOG 0.9219

wavelet-LLH_glrlm_GrayLevelNonUniformityNormalized WF 0.9367 wavelet-LHL_glszm_ZonePercentage WF 0.9216

log-sigma-2-0-mm-3D_glrlm_RunVariance LOG 0.9364 log-sigma-2-0-mm-3D_firstorder_Kurtosis LOG 0.9213

log-sigma-2-0-mm-3D_glrlm_RunPercentage LOG 0.9361 wavelet-LHL_gldm_SmallDependenceEmphasis WF 0.9209

log-sigma-3-0-mm-3D_glrlm_RunLengthNonUniformi-
tyNormalized LOG 0.9352 log-sigma-2-0-mm-3D_glcm_SumEntropy LOG 0.9200

original_glrlm_RunLengthNonUniformity TA 0.9333 log-sigma-2-0-mm-3D_firstorder_RobustMeanAbsolut-
eDeviation LOG 0.9198

log-sigma-3-0-mm-3D_gldm_DependenceVariance LOG 0.9326 log-sigma-3-0-mm-3D_firstorder_Kurtosis LOG 0.9196

wavelet-LLH_glrlm_RunLengthNonUniformityNormalized WF 0.9322 wavelet-LHL_ngtdm_Contrast WF 0.9188

log-sigma-3-0-mm-3D_glrlm_ShortRunEmphasis LOG 0.9317 wavelet-LHL_ngtdm_Strength WF 0.9182

log-sigma-3-0-mm-3D_firstorder_RootMeanSquared LOG 0.9314 wavelet-HLL_firstorder_10Percentile WF 0.9174

wavelet-LLH_glrlm_RunPercentage WF 0.9304 wavelet-HLL_firstorder_Entropy WF 0.9169

log-sigma-2-0-mm-3D_firstorder_Mean LOG 0.9297 wavelet-HLL_firstorder_InterquartileRange WF 0.9169

RANK 51–100

wavelet-HLL_firstorder_MeanAbsoluteDeviation WF 0.9168 wavelet-HLL_gldm_LargeDependenceEmphasis WF 0.9089

wavelet-HLL_firstorder_RobustMeanAbsoluteDeviation WF 0.9167 wavelet-HLL_gldm_SmallDependenceEmphasis WF 0.9089

log-sigma-2-0-mm-3D_glcm_JointEntropy LOG 0.9163 original_gldm_SmallDependenceEmphasis TA 0.9084

wavelet-HLL_firstorder_Uniformity WF 0.9162 log-sigma-2-0-mm-3D_glcm_JointEnergy LOG 0.9082

wavelet-HLL_glcm_DifferenceAverage WF 0.9157 wavelet-HLL_ngtdm_Contrast WF 0.9074

wavelet-HLL_glcm_DifferenceEntropy WF 0.9154 wavelet-HHL_glrlm_RunPercentage WF 0.9073

log-sigma-3-0-mm-3D_firstorder_Variance LOG 0.9153 wavelet-HHL_gldm_LargeDependenceEmphasis WF 0.9069

log-sigma-2-0-mm-3D_firstorder_RootMeanSquared LOG 0.9142 log-sigma-3-0-mm-3D_firstorder_RobustMeanAbsolut-
eDeviation LOG 0.9059

log-sigma-2-0-mm-3D_firstorder_Uniformity LOG 0.9139 wavelet-LLL_firstorder_Entropy WF 0.9056

log-sigma-2-0-mm-3D_glcm_Id LOG 0.9138 log-sigma-1-0-mm-3D_firstorder_RobustMeanAbsolut-
eDeviation LOG 0.9055

log-sigma-2-0-mm-3D_glcm_Idm LOG 0.9137 wavelet-LLL_firstorder_RootMeanSquared WF 0.9051

wavelet-HLL_glcm_JointEntropy WF 0.9134 wavelet-LLL_glcm_Contrast WF 0.9051

wavelet-HLL_glcm_Idm WF 0.9132 wavelet-LLL_glcm_DifferenceAverage WF 0.9044

wavelet-HLL_glcm_Idmn WF 0.9131 log-sigma-3-0-mm-3D_firstorder_InterquartileRange LOG 0.9042

wavelet-HLL_glcm_Id WF 0.9131 log-sigma-2-0-mm-3D_glrlm_GrayLevelNonUniformi-
tyNormalized LOG 0.9039

wavelet-HLL_glcm_Idn WF 0.9130 log-sigma-2-0-mm-3D_glcm_DifferenceAverage LOG 0.9039

wavelet-HLL_glcm_MaximumProbability WF 0.9123 wavelet-LLL_glcm_DifferenceEntropy WF 0.9037

log-sigma-2-0-mm-3D_firstorder_MeanAbsoluteDeviation LOG 0.9120 wavelet-LLL_glcm_JointEntropy WF 0.9036

wavelet-HLL_glcm_SumEntropy WF 0.9119 log-sigma-2-0-mm-3D_glcm_DifferenceEntropy LOG 0.9036

log-sigma-1-0-mm-3D_glrlm_RunPercentage LOG 0.9115 log-sigma-1-0-mm-3D_glcm_Id LOG 0.9035

Continued
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conclusion. Nevertheless, to obtain a fair comparison, we used the publicly available dataset RIDER to investigate 
the repeatability of radiomic features in NSCLC patients. The Venn Diagram in Fig. 3D shows that most of the 
repeatable and reproducible features in human data overlap with features from the phantom studies. This clearly 
shows that features computed on phantom are a superset of features computed on real human data. Our experi-
ments also showed that there are some features extracted from human data that are robust but do not overlap 
with phantom results. Two main reasons could be associated with this: (A) statistical fluctuations because of the 
large number of computed features; (B) differences in the dynamic range of the features between phantom and 
human data. Point (B) is strictly related to the fact that the image quality phantom with spherical homogenous 
inserts are still not advanced enough to replicate tumor complexity seen in patients’ data. Therefore, our study 
should be improved by including several types of imaging phantoms or considering new types of plugs that can 
better mimic tumor heterogeneity. In the last years, attention has been devoted to produce more realistic inserts 
by using 3D printing  techniques18,19. The above-mentioned hypothesis seem to be confirmed by the fact that the 
features that did not overlap were only wavelet and Laplacian of Gaussian features, which might indicate that 
some real tumors’ texture patterns are still difficult to be reproduced with imaging phantoms.

We found large variation of radiomic feature in repeatability study even within a short time gap of 30 min 
“coffee-break”. Overall, less than 50% of features had a good repeatability (ICC > 0.9) using phantom scans, in 
agreement with previously published  literature19–21. When considering time-series analysis of radiomic features 
(e.g. for monitoring treatment response), temporal stability of radiomic features becomes imperative to be 
investigated. As mentioned in the introduction section, poor repeatability seems to be associated with poor 
prognostic/predictive power, while the reverse might not be equally  true9. Therefore, our results can be taken by 
other radiomic studies to reduce the dimensionality of computed features by excluding poorly repeatable features.

When considering radiomic reproducibility, the presence or absence of IV contrast medium had a stronger 
impact than differences in slice thickness in the human study: 14% (155/1080) versus 47% (503/1080) (p < 0.05) 
of features with good reproducibility.

From the overall summary section in the results, it emerges that the different feature categories are sensitive 
with different degrees to reproducibility and repeatability. Our results are in line with the previous literature. 
The usage of image filtering could enhance the quality of the images even when acquired with different protocols 
and thus improve reproducibility. It is important to point out that this study did not investigate the robustness 
of shape metrics, since the contours were co-registered from PET to CT images and the same contour was used 
for all sets of CT series. However, shape metrics have been shown to be strongly affected by inter-observer vari-
ability in tumor delineations and this aspect was not investigated in this study.

We investigated how correlations between tumor volume and radiomic features could impact the repeatability 
and reproducibility. In line with other studies, not only tumor volume was the most repeatable and reproducible 
feature (median ICC = 0.99), but most of the top reproducible features showed strong Spearman correlations 
(ρ > 0.9) with tumor volume. This opens the debate whether their robustness could be an effect of an underly-
ing “volume effect”. However, more investigation is needed to isolate and further explain this effect. Therefore, 
in Table 1 we proposed the final list of most repeatable and reproducible features with lower correlations with 
tumor volume.

Finally, the list provided in Table 1 represents a starting point to isolate repeatable and robust features, but this 
is not enough to conclude about their prognostic predictive performance. Furthermore, as shown in Fig. 4, most 
of these features present strong intercorrelations and might produce redundant information if all are injected 
into a classifier for radiomic-based models. The results presented in this study needs to be validated in additional 

Overall summary TOP 108 features: 46 LOG, 59 WF, 3 TA

Median ICC and STD per categories

TA (0.933 ± 0.024)

LOG (0.923 ± 0.017)

WF (0.917 ± 0.014)

Feature name Category Median ICC Feature name Category Median ICC

wavelet-HLL_glrlm_GrayLevelNonUniformityNormalized WF 0.9114 wavelet-LLL_glcm_Idm WF 0.9032

wavelet-HLL_glrlm_RunLengthNonUniformityNormalized WF 0.9112 log-sigma-1-0-mm-3D_glrlm_RunLengthNonUniformi-
tyNormalized LOG 0.9031

log-sigma-2-0-mm-3D_firstorder_InterquartileRange LOG 0.9110 wavelet-LLL_glcm_Id WF 0.9031

wavelet-HLL_glrlm_RunPercentage WF 0.9109 log-sigma-1-0-mm-3D_firstorder_InterquartileRange LOG 0.9026

wavelet-HLL_glrlm_RunVariance WF 0.9107 wavelet-LLL_glcm_Idn WF 0.9025

wavelet-HLL_glrlm_ShortRunEmphasis WF 0.9105 log-sigma-1-0-mm-3D_firstorder_10Percentile LOG 0.9015

wavelet-HLL_glszm_LargeAreaEmphasis WF 0.9098 wavelet-LLL_gldm_DependenceNonUniformity WF 0.9009

wavelet-HLL_glszm_ZonePercentage WF 0.9098 wavelet-LLL_gldm_DependenceNonUniformityNormalized WF 0.9005

wavelet-HLL_glszm_ZoneVariance WF 0.9092 wavelet-LLL_gldm_SmallDependenceEmphasis WF 0.9001

Table 1.  Overall summary of the 108 most repeatable and reproducible features for all the experiments and 
presenting correlations with tumour volume ρ < 0.9. The features are ordered by decreasing median ICC values 
(computed on all the experiments). Most reproducible and repeatable features per categories were: GLRLM-
Non-Uniformity (LOG-2 mm kernel); LLH-GLCM-JointEnergy (WF) and Gray Level Dependence Matrix 
(GLDM) Non-Uniformity (TA).
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multi-institutional studies and considering additional parameters that can affect features’ reproducibility and 
repeatability. First, in our analysis we only considered two different scanner manufacturers. We did not inves-
tigate the role of other acquisition parameters such as reconstruction kernels or tube voltage. These results are 
intended to be shared within the radiomic community for confirmation.

Methods
This study was approved by the hospital Institutional Ethics Committee (Institutional Ethics Committee-I, Tata 
Memorial Centre [IEC, TMC], Mumbai, India) as a retrospective study, with waivers of informed consent from 
involved patients as per IEC policy of our hospital by the same Ethics Committee. All methods were carried out 
in accordance with relevant guidelines and regulations. This study comprises PET/CT images from a polymer 
phantom as well as from a clinical cohort. Our study has focused only on CT radiomic features stability. PET 
images were used to delineate the tumor (using SUV threshold of 40%) and this delineation was transferred to 
the corresponding CT images included in this study.

Phantom. The National Electrical Manufacturers Association (NEMA) Image Quality (IQ)PET/CT phan-
tom (Data Spectrum Inc., NJ, USA) was used for this  study22. The external dimensions of the phantom are 
241 mm × 305 mm × 241 mm with interior length of 180 mm and volume of 9.7L. It has six fillable spheres and 
one central cylinder. The largest insert with a diameter of 37 mm was used for radiomic feature analysis study. 

Figure 4.  Heatmap showing Spearman correlations between the top 50 repeatable features.
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The phantom was filled with distilled water containing 18F-FDG. The concentration of 18F-FDG was adjusted 
until a target to background signal ratio of 4:1 was created between the active sphere and water background.

Clinical cohort. Patients with non-small cell lung cancer (NSCLC) (n = 104) who underwent pre-treatment 
PET/CT scans in our department were included in this study. There were 85 males and 19 females. The median 
age was 66 (36–90) and 53 (35–72) years respectively for males and females. The median tumor volume was 92 
(14–486)  cm3 for men and 86 (22–432)  cm3 for women. Population demographics and clinical information are 
provided in Supplementary table S2.

RIDER: The Reference Image Database to Evaluate Therapy Response (RIDER) data base was used in this 
study to perform repeatability study. All the 32 patients DICOM data (i.e. Images and RTSTRUCTs) of the RIDER 
data set were included in this  study23.

Scanners. Three different scanners were used in the study. Two scanners were from the same manufacturer 
(Philips Medical, Eindhoven, The Netherlands) but different models, and the last scanner was from another 
manufacturer (General Electric Medical System, Milwaukee, USA). For simplicity of reading we will refer to the 
scanners as follows: scanner 1 is the Philips Gemini TF16 PET/CT, scanner 2 is the Gemini TF64 PET/CT, and 
scanner 3 is the General Electric Discovery NM 670 pro SPECT/CT.

Scanning protocols. NEMA IQ phantom. The NEMA IQ phantom was scanned twice, 30 min apart (‘coffee 
break’) without repositioning, one the same scanner and within the same conditions. This procedure was per-
formed for all the three scanners and considering six different acquisition protocols. They had the same tube 
voltage (120 kV for all three scanners), pitch (0.46 for scanner 1 and 2 and 2.5 for Scanner 3) and reconstruction 
kernel based on filtered back projection for scanner 1, 2 and adaptive statistical iterative reconstruction (ASiR) 
(40% ASiR setting and a noise index of 13.75) for scanner 3, but different tube currents (ranging from 100 to 
300 mA) slice thicknesses (ranging from 2 to 5 mm for scanner 1& 2 and 2.5 to 5 for scanner 3). These protocols 
are listed in Table 2.

Clinical cohort. Patients were scanned using three different clinical protocols on the Philips Gemini TF64 PET/
CT (previously referred to as scanner 2). The three protocols had the same tube voltage (120 kV), pitch (0.46) 
and reconstruction kernel, but different slice thicknesses, tube current and presence or absence of an intravenous 
contrast medium, namely, one whole body contrast CT with 2 mm slice thickness (referred as WBCECT2), one 
whole body contrast CT with 5 mm slice thickness (referred as BLDCT5), and one non contrast thoracic CT with 
2 mm slice thickness (referred as NCCTT2). Modulated tube current (between 100 and 200 mA) as per dose care 
automated system was used for BLDCT5 and WBCECT2. The protocols are listed in Table 3.

RIDER. The RIDER data set comprises of 32 NSCLC patient’s test–retest CT imaging performed with a time 
lag of 15 min and two sets of delineations (RTSTRUCT) (i.e. tumor delineated by manual and automatic meth-
ods). Imaging parameters of RIDER database is summarized in Table  4. Radiomic extraction and statistical 
analysis was performed as per the study protocol.

Study design. In this study we investigated both reproducibility and repeatability of radiomic features. The 
repeatability of radiomic features was evaluated using the test retest scans acquired with the IQ phantom on 
three different scanners and for all the 6 protocols listed in Table 2 and on the publicly available clinical cohort 
RIDER data set. The reproducibility of radiomic features with respect to different acquisition protocols but 
within the same scanner (intra-scanner variability) was evaluated comparing radiomic feature values using the 
test scans acquired with the IQ phantom across the 6 different protocols. This analysis was repeated for all the 
three scanners. The reproducibility of radiomic features with respect to different scanner models was evaluated 
comparing radiomic feature values extracted from the test scans acquired with the IQ phantom for each pro-
tocols on the three different scanners (inter-scanner variability). The reproducibility of radiomic features with 

Table 2.  Overview of the scanning protocols used to acquire images with the IQ phantom. Six scanning 
protocols, with same tube voltage (120 kV), pitch (Scanner 1&2: 0.46; Scanner 3: 2.5), and reconstruction 
kernel, but different tube currents and slice thicknesses were investigated. The phantom was scanned twice on 
scanners 1–2–3 without repositioning in a 30-min test–retest scenario. The total number of scans acquired 
with the IQ phantom is 6 protocols × 3 scanners × 2 (test–retest) = 36 scans.

Protocol name Tube current (mA)

Reconstruction slice thickness (mm) 
[voxel size (cubic millimeter)]
(scanner 1&2)

Reconstruction slice thickness (mm) 
[voxel size (cubic millimeter)]
(scanner 3)

Protocol 1 100 2 [0.86 × 0.86 × 2] 2.5 [0.9653 × 0.9653 × 2.5]

Protocol 2 100 5 [0.86 × 0.86 × 5] 5 [0.9653 × 0.9653 × 5]

Protocol 3 200 2 [0.86 × 0.86 × 2] 2.5 [0.9653 × 0.9653 × 2.5]

Protocol 4 200 5 [0.86 × 0.86 × 5] 5 [0.9653 × 0.9653 × 5]

Protocol 5 300 2 [0.86 × 0.86 × 2] 2.5 [0.9653 × 0.9653 × 2.5]

Protocol 6 300 5 [0.86 × 0.86 × 5] 5 [0.9653 × 0.9653 × 5]
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respect to presence/absence of intravenous contrast medium and slice thickness in clinical data was investigated 
comparing radiomic features using the images acquired with the NSCLC patients (clinical study). Figure 5 sum-
marizes the overall study design.

ROIs (Region of Interest) definition. PET and CT series of all the studies were loaded on a GE Advantage 
image processing workstation (GE Healthcare, Waukesha, WI, USA) from our hospital PACS. Standardized 
Uptake Value (SUV)-based auto-segmentation using a threshold of 40% from the maximum value was used 
to delineate the primary lung tumor and active phantom insert on PET images for scanners 1 and 2. Manual 
delineation of the phantom insert was performed by an experienced physicist for phantom images acquired with 
scanner 3, since PET series were not available for this scanner. These delineations were performed using the 
AdvantageSimMD software installed on the Advantage image processing workstation and stored as RTSTRUCT. 
This RTSTRUCT creates a ROI instance corresponding to each PET and CT series in the  study24. As all the PET 
and CT series belongs to same study it automatically accounts for differences in resolution between PET and 
CT images when the RTSTRUCT is saved. The stored RTSTRUCT has the location of the ROI instance for cor-
responding image sets (series) about matrix size and slice thickness of that series. Images and ROIs, in form of 
DICOM and RTSTRUCT files, respectively, were transferred to a research workstation where radiomic features 
were extracted.

Image pre-processing. Images and ROIs are saved in Digital Imaging and Communications in Medicine 
(DICOM) format. However, the Pyradiomics software uses images and ROIs in Nearly Raw Raster Data (NRRD) 
format for radiomic feature extraction. We used an in-house developed python Script to perform batch pro-
cessing to convert images and ROIs from a DICOM CT and RTSTRUCT into an NRRD format using 3DSlicer 
v4.10.225. An in-house python script based on the image processing toolkit simpleITK v1.2.0 was used to convert 
contours to binary  masks26.

All images were re-sampled to isotropic voxel of 2 × 2 × 2 cubic millimeters prior to 3D radiomic feature 
extraction using the default b-spline interpolation function in simpleITK. A fixed-bin width of 25 was used 
for grey level binning of the images. Radiomic features were extracted from the original CT images as well as 
from images with the following filters: (A) wavelet transformed images using the standard wavelets transforms 
implemented in Pyradiomics v2.2.0; (B) Laplacian of Gaussian with sigma values 1, 2 and 3 mm. All the features 
were extracted in 3D, with texture features were aggregated with the method 3D Average.

Radiomic feature definitions. The following radiomic features were extracted as per the definition provided 
in Pyradiomics documentation (https ://pyrad iomic s.readt hedoc s.io/en/lates t/): First Order Statistics (FO-17 
features); Gray Level Co-Occurrence Matrix (GLCM-22 features); Gray Level Run Length Matrix (GLRLM-
16 features); Gray Level Size Zone Matrix (GLSZM-16 features); Neighboring Gray Tone Difference Matrix 
(NGTDM-5 features); Gray Level Dependence Matrix (GLDM-14 features); plus corresponding features with 
Laplacian of Gaussian filters (LOG-270 features) and with wavelet (WF-720 features). A total of 1080 radiomic 
features were extracted.

Table 3.  Overview of the clinical protocols. Images were acquired on the Philips Gemini TF64 PET/CT 
(previously referred to as scanner 2) with three different protocols.

Clinical protocol name Slice thickness (mm)
Intravenous contrast 
medium Tube current (mA)

Voxel size (cubic 
millimeters)

BLDCT5 5 Yes—nonionic contrast Modulated auto-mA 
(100–200) 1.17 × 1.17 × 5

WBCECT2 2 Yes—nonionic contrast Modulated auto-mA 
(100–200) 1.17 × 1.17 × 2

NCCTT2 2 NO Fixed mA 300 0.87 × 0.87 × 2

Table 4.  The imaging protocol of the RIDER data set.

Parameters Rider data set

Manufacturer GE healthcare

Acquisition type Helical

Tube voltage 120 kVp

Tube current Range 165–549 mAs

Slice thickness 1.25 mm

Pixels 512 × 512

Voxel size (cubic millimeter) 0.66 × 0.66 × 1.25

https://pyradiomics.readthedocs.io/en/latest/
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Statistical analysis. The ICC (Intraclass Correlation Coefficient) based on a two-way mixed effect, consistency, 
single rater/measurement was used to measure the repeatability/reproducibility of features for our experiments, 
as per Eq. (1)27. Three different level of repeatability/reproducibility were defined: good (ICC ≥ 0.90); moderate 
(0.75 < ICC < 0.90); poor (ICC <  = 0.75)28.

Definition of the ICC used as reproducibility metric. Where,  MSE = mean square for error,  MSR = mean square 
for rows, k = number of raters/measurements.

For the repeatability experiment, the ICC was computed between test and re-test scans for all the 6 protocols, 
separately and together for all the scanners. For the repeatability study with the RIDER dataset, the ICC was 
computed between test and re-test scans. For the intra-scanner reproducibility experiment, ICC values were 
computed separately for the three scanners and the median ICC value is reported in the results. For the inter-
scanner reproducibility experiment, the ICC values were computed comparing radiomic features separately for 
the six protocols between the three scanners. The median ICC values for the 6 protocols is reported. For the 
clinical study, the ICC values comparing radiomic features between the three protocols are reported, as well as 
only comparing protocols BLDCT5 versus NCCTT2 (same slice thickness but with and without intravenous 
contrast medium) and NCCTT2 versus WBCECT2 (both with intravenous contrast medium, but different slice 
thicknesses).

Commonality study. In the clinical cohort common good stable features were found between repeatability 
study of RIDER data set and reproducibility study of our clinical cohort. Median ICC of repeatability study 
(Phantom and clinical cohort [RIDER]) was as well as reproducibility study (Phantom and clinical cohort) 
was calculated. Median ICC of repeatability and Reproducibility study was compared to find common good 
(ICC > 0.9) stable features.

Volume collinearity analysis. Using the clinical cohort, we assessed the correlation between the GTV and radi-
omic features using the Spearman correlation coefficient (ρ) to account for possible nonlinear dependencies. The 
median Spearman correlation coefficient between the 3 different protocols is used in the analysis.

(1)ICC3 =
MSR −MSE

MSR + (k − 1)MSE

Figure 5.  In this study we investigated both reproducibility and repeatability of radiomic features. The 
repeatability of radiomic features was evaluated using the test retest scans acquired with the IQ phantom 
on three different scanners and with 6 protocols and online available RIDER data set. The reproducibility of 
radiomic features with respect to different acquisition protocols but within the same scanner (intra-scanner 
variability) was evaluated comparing radiomic feature values using the test–retest scans acquired with the 
IQ phantom across the 6 different protocols. A clinical cohort of NSCLC patients was used to investigate the 
reproducibility of radiomic features with respect to 3 different clinical acquisition protocols, with a focus on the 
impact of slice thickness and IV contrast medium.
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Statistical analysis was performed using R (version 3.2.3) using the package psych. p values were corrected 
for multiple comparisons using the false-discovery rate corrections method and statistical significance after 
correction was set at p < 0.05.
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