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Protein co‑expression networks 
identified from HOT lesions 
of ER+HER2–Ki‑67high luminal 
breast carcinomas
Kimito Yamada1,2,7, Toshihide Nishimura3,7*, Midori Wakiya4,7, Eiichi Satoh5,7, 
Tetsuya Fukuda6,7, Keigo Amaya1, Yasuhiko Bando6, Hiroshi Hirano4 & Takashi Ishikawa2

Patients with estrogen receptor‑positive/human epidermal growth factor receptor 2‑negative/
Ki‑67‑high (ER+HER2–Ki‑67high) luminal breast cancer have a worse prognosis and do not respond 
to hormonal treatment and chemotherapy. This study sought to identify disease‑related protein 
networks significantly associated with this subtype, by assessing in‑depth proteomes of 10 lesions 
of high and low Ki‑67 values (HOT, five; COLD, five) microdissected from the five tumors. Weighted 
correlation network analysis screened by over‑representative analysis identified the five modules 
significantly associated with the HOT lesions. Pathway enrichment analysis, together with causal 
network analysis, revealed pathways of ribosome‑associated quality controls, heat shock response 
by oxidative stress and hypoxia, angiogenesis, and oxidative phosphorylation. A semi‑quantitative 
correlation of key‑protein expressions, protein co‑regulation analysis, and multivariate correlation 
analysis suggested co‑regulations via network‑network interaction among the four HOT‑characteristic 
modules. Predicted highly activated master and upstream regulators were most characteristic to 
ER‑positive breast cancer and associated with oncogenic transformation, as well as resistance to 
chemotherapy and endocrine therapy. Interestingly, inhibited intervention causal networks of 
numerous chemical inhibitors were predicted within the top 10 lists for the WM2 and WM5 modules, 
suggesting involvement of potential therapeutic targets in those data‑driven networks. Our findings 
may help develop therapeutic strategies to benefit patients.

Breast cancer is heterogeneous and comprises diverse biological subtypes that respond differently to primary 
therapies and clinical  outcomes1. The 12th St. Gallen International Breast Cancer Conference (2011) Expert 
Panel adopted the classification of five molecular subtypes of invasive breast cancer which have been differenti-
ated using the immunohistochemistry (IHC)-based expression of estrogen receptor (ER), progesterone receptor 
(PgR), human epidermal growth factor receptor 2 (HER2), and Ki-672. Ki-67 is a nuclear marker of cell pro-
liferation, and its high expression levels in breast cancer are associated with worse outcomes. Currently, Ki-67 
measurement is not included in routine clinical decision-making due to a lack of clarity regarding its exact role. 
Recent studies indicated that a decrease in Ki-67 expression after neoadjuvant endocrine treatment may predict 
long-term  outcome3. There is also an urgent need to standardize the analysis of Ki-67 expression and validate its 
clinical utility. Notably, tumor heterogeneity remains a potential issue. The luminal-B subtype is defined by IHC 
as ER-positive/HER2-negative/Ki-67-high (ER+HER2–Ki-67high) tumors. However, this definition does not 
include all luminal-B tumors, among which approximately 6% are negative for both ER and HER2 (ER−HER2−). 
Moreover, the Ki-67 cut-off point to distinguish luminal A and luminal B has not been  standardized1.
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Luminal-B tumors comprise 15–20% of breast cancers, and are characterized by a more aggressive phenotype, 
higher histological grade and proliferative index, and a worse prognosis. This subtype is associated with a higher 
recurrence rate and lower survival rates after relapse compared with the luminal-A subtype. The Ki-67 labelling 
index is a clinically validated prognostic factor in early breast cancer. In the neoadjuvant setting, it predicts the 
likelihood of pathological complete response to chemotherapy. Furthermore, Ki-67 in the residual tumor and 
changes in the Ki-67 labelling index between primary and residual tumors are prognostic factors for long-term 
 outcomes4. At the Tokyo Medical University Hospital Hachioji Medical Centre (Hachioji, Tokyo, Japan) 671 
patients with breast cancer received surgical operation between 2015 and 2019. Among these cases, the propor-
tions of subtypes were as follows: luminal-A (58%), luminal-B (20%), luminal-HER2 (11%), HER2 (2%), and 
triple-negative (9%) (Fig. S1a). The luminal-B cases showed a worse recurrence-free survival compared with 
the luminal-A cases (log-rank test: p < 0.0000001) (Fig. S1b). The ER + HER2 − luminal B cases with high Ki-67 
(> 50%) were found to be the high-risk group (log-rank test: p < 0.005) among luminal B cases (Fig. S1c). Of note, 
high Ki-67 (> 70%) was measured in only 21 of those cases (16%).

Advances in high accuracy mass spectrometry (MS) has rendered clinical proteomics feasible to perform 
shotgun sequencing and quantitative analysis of proteins expressed in clinical specimens. Proteome data obtained 
through this approach can be used to identify key disease-related proteins and therapeutic  targets5. A laser micro-
dissection (LMD) technique enables the collection of target cells of a certain type from sections of formalin-fixed 
paraffin-embedded (FFPE) cancer tissue (Fig. S2)6, 7. Label-free spectral counting and identification-based semi-
quantitative shotgun proteomic analysis of microdissected target cancerous cells of a certain type, that character-
ized luminal B breast cancer tumors of ER+HER2− and Ki-67 score (> 80%), were used. Weighted correlation 
network analysis, termed weighted gene co-expression network analysis (WGCNA)8, is an extensively applied 
unsupervised clustering method based on the correlation network of gene and/or protein  expression9–13. This 
study aimed to identify disease-related protein networks associated with HOT lesions, for which the WGCNA 
pipeline and hypergeometric-based over-representative analysis (ORA) was applied.

Results
Proteome datasets of ER+HER2–Ki‑67high luminal breast carcinomas. MS-based proteomic 
analysis was performed using 10 microdissected lesions comprising five HOT and five COLD spots obtained 
from the five FFPE tissue specimens of this subtype. These specimens were selected for their preserved condi-
tion, tumor area, and well-clarified pathological diagnosis and molecular marker status (ER+HER2–Ki-67high 
(> 80%)) (Table 1). Pre-surgical treatment was not performed in any of the cases.

A total of 1,862 proteins were significantly identified from all the HOT and COLD lesions; of these, approxi-
mately 65% were commonly expressed (Fig. S3a). The proportion of proteins unique to HOT lesions was approxi-
mately 26%, whereas that of proteins expressed in the COLD lesions was approximately 10%. Overall, 476 and 
180 proteins were characteristic of the HOT and COLD lesions, respectively. Gene ontology (GO) analysis was 
performed on the GO Biological process, GO Molecular Function, and Protein class using the Protein Analysis 
THrough Evolutionary Relationships (PANTHER) version 14.1 software program (Paul D. Thomas, University 
of Southern California, Los Angeles, CA, USA)14. Results of the GO analysis were similar between the HOT 
and COLD groups (Fig. S3b). Proteins were abundantly associated with cellular process, localization, cellu-
lar component organization or biogenesis, biological regulation, metabolic process and response to stimulus, 
in biological process (GO); binding and catalytic activity in molecular function (GO); cytoskeletal protein, 
transporter, nucleic acid-binding protein, protein-binding activity modulator, translational protein, metabolite 
interconversion enzyme, protein modifying enzyme, membrane traffic protein, and chaperone in protein class 
(GO). The fold changes and relative abundances of all identified proteins for both HOT and COLD lesions are 
visualized in Fig. S4.

Table 1.  Clinicopathological information of patients with luminal B breast cancer. CT computed tomography; 
HER2 human epidermal growth factor receptor 2; PgR progesterone receptor; TNM tumor-node-metastasis. 
*This is a case corresponding to so-called occult cancer. That is, the primary lesion was small and the 
metastatic lesion was found first. pT1aN2aM0: High malignant type of Grade 3, Ki-67 high in stage IIIA. 
Lymph node metastases were first discovered. The surgical specimen was n (5/19), but the size of the invasive 
cancer (infiltration diameter) was only 2 mm and 1 mm. The distance between the two was 3 mm, but 
lymphatic invasion was remarkable.

Patient No

Sample ID (Ki-67 score) 
A, HOT lesion;
B, COLD lesion Age

Tumor 
location

Tumor size 
on CT (mm)

TNM classification
Clinical 
stage

Biomarkers & status

c-T c-N c-M ER, % PgR, % HER2 Ki-67, %

Patient 1 1A (69.2%)
1B (20.1%) 78 L) DCE 20 × 20 × 6 T4b N1 M0 IIIB  + 50 0  − 0 90

Patient_2 2A (75.6%)
2B (14.3%) 63 L) C 42 × 32 × 21 T2 N1 M0 IIB  + 80 20  − 1 80

Patient_3 3A (58.9%)
3B (13.0%) 80 L) D 25 × 22 × 15 T2 N1 M0 IIB  + 100 70  − 1 90

Patient_4 4A (86.4%)
4B (54.0%) 52 L) C 25 × 20 × 15 T2 N0 M0 IIA  + 90 0  − 1 80

Patient_5 5A (66.7%)
5B (51.3%) 44 L) C’ 2* T1a N2 M0 IIIA  + 90 0  − 0 80
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Identification of data‑driven key protein networks by WGCNA. Co-expression protein networks 
are defined as undirected, weighted networks. Modules are clusters of highly interconnected proteins, which 
correspond to clusters of proteins with high absolute or positive  correlations8. We identified 28 protein modules 
by constructing a weighted correlation network and clustered all the identified proteins (Fig. 1). A soft thresh-
old power of 10 was selected to define the adjacency matrix according to the criteria of approximate scale-free 
topology, with a minimum module size of 5 and a module detection sensitivity deepSplit of 4. The correlations 
between resultant modules and two clinical traits (HOT and COLD) were determined to identify protein mod-
ules with upregulated or downregulated expression in the HOT or COLD lesion samples. We could not identify 
modules which were significantly correlated with clinical traits (i.e., |r|> 0.5 and p < 0.05) throughout the 28 
modules identified (Fig. S5). However, several WGCNA modules exhibited moderate correlations characteristi-
cally with the clinical trait − HOT (|r|> 0.4), which includes WM2 (light green), WM5 (cyan), WM6 (tan), and 
WM20 (dark grey). The WM5 (cyan) module indicated the highest correlation and significance of its member 
proteins within the module membership versus gene significance (Corr. = 0.96, p = 7.4 × 10−30) (Fig. S5).

Statistical ORA. Trait correlation analysis between eigen components of WGCNA modules and clinical 
traits often tends to overlook important modules for investigating disease-related molecular networks. Regard-
ing clinical traits which are quite close, such as HOT and COLD in this study, a difficulty in trait-module rela-
tionship would be encountered to attain a high significance in the identification of key WGCNA modules. 
Statistical  ORA13 would assist in evaluating potential key WGCNA modules with identified proteins uniquely 
expressed and upregulated in the HOT trait. Notably, 476 and 180 proteins were uniquely expressed in the HOT 
and COLD lesions, respectively; while 297 and 136 proteins were differentially upregulated, respectively, with 
|RSC|> 1 (higher than twice fold change) and p < 0.05 in G-statistics (Figs. S3a and S4). The overlaps between the 
WGCNA-derived protein modules and identification-based significantly expressed proteins were subsequently 
assessed using the over-representation test. We confirmed five important WGCNA modules that showed signifi-

Figure 1.  Protein modules identified by weighted gene co-expression network analysis (WGCNA). (a) 
Protein dendrogram obtained by clustering the dissimilarity based on consensus topological overlap with the 
corresponding module. Colored rows correspond to the 28 modules identified. (b) Dendrogram of consensus 
module eigen-proteins obtained on the consensus correlation. (c) Pairwise correlations between the modules in 
the heatmap of eigen-protein expressions.
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cant overlap (maximum q-value among the groups < 0.05) with protein groups uniquely and/or highly upregu-
lated in the HOT trait (Fig. 2a).

Functional enrichment analysis of WGCNA modules screened by ORA. Our WGCNA analysis 
followed by ORA-based screening identified the five protein modules significant to proteins expressed uniquely 
and upregulated in the HOT lesions: WM2 (light green), WM5 (cyan), WM6 (tan), WM11 (red), and WM20 
(dark grey) (Fig. 2b). The biological connectivity among the proteins in each module was analyzed by map-
ping the module proteins in the human protein–protein interaction (PPI) network, and among the biological 
pathways by pathway enrichment  analysis15. Figure 3 shows data-driven protein co-expression networks; hub 
proteins for respective modules identified using the cytoHubba plugin16 and eigen-proteins are indicated in red 
and blue dashed circles, respectively, and pathway enrichment results identified for the HOT trait are shown. 
Similarly, data-driven protein co-expression networks and pathways enriched for the COLD trait are presented 
in Fig. S6.

The enriched pathways of the WM2 (light green) module included mRNA metabolic process, signal-recog-
nition particle-dependent co-translational protein targeting to membrane, nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay, ribonucleoprotein complex, and ribosome (Fig. 3b). The hub protein guanine 
nucleotide-binding protein subunit beta-2-like 1 (GNB2L1) is known as the receptor of activated protein C 
kinase 1 (RACK1), which is a component of the 40S ribosomal subunit involved in translational repression and 

Figure 2.  Overlapping proteins unique to the clinical traits and/or upregulated under the HOT or COLD 
traits, and those from the weighted gene co-expression network analysis (WGCNA). (a) Results of identified 
proteins and spectral counting-based semi-quantitative comparison. Each row represents results for each 
protein group. The red and pink cells in the HOT and COLD columns indicate that the proteins in the group 
are uniquely expressed and significantly upregulated, respectively (upregulated with |Rsc|> 1 (HOT > COLD 
or HOT < COLD). The fourth column shows the number of proteins in each protein group. The fifth column 
provides notes for each protein group. The WGCNA modules with significant overlap with each protein group 
are listed in the sixth column (‘Modules’ column). (b) Overlap in proteins between the groups according to the 
protein expression profiles and the modules by WGCNA. Each row in the embedded table represents the overlap 
analysis results for each module. The first and second columns in the table represent module ID and color name 
of the module, respectively. The third column represents the number of proteins in each module. The fourth, 
fifth, sixth, and seventh columns indicate the q values for overlap in proteins between a module by WGCNA 
and the four protein groups. In the five columns, significant q-values are highlighted in red. The eighth column 
represents the value of the most significant q-value (max q-value) in each module. The nine modules with max 
q-values < 0.05 are listed in order.
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initiation of the ribosome quality  control17. The module member protein ELAVL1, the RNA-binding protein 
HuR, is also involved in adenylate-uridylate-rich element-mediated mRNA decay. A breast cancer study using 
IHC of 160 primary breast carcinomas revealed that higher RACK1 expression was correlated with shorter overall 
survival, and suggested a correlation between RACK1 and the commonly used clinicopathological biomarkers 
(e.g., Ki-67 and ER) in breast  cancer18.

The enriched pathways of the WM5 (cyan) module involved peptide biosynthetic process, translation, orga-
nonitrogen compound metabolic process, and translational initiation (Fig. 3b). The hub protein elongation factor 
1-alpha 1 (eEF1α1) encoded by EEF1A1 belongs to the translation factor-related (TRAFAC) class translation 
factor GTPase superfamily. It strongly promotes the heat shock response, which protects cancer cells from pro-
teotoxic stress, such as oxidative stress and  hypoxia19. EEF1A1 mRNA levels are downregulated in most breast 
cancers, and this low expression has been associated with poor prognosis for patients with ER-positive breast 
 cancer20. In contrast, the protein eEF1α1 was overexpressed in both ER and progesterone receptor-positive and 
lymph node-negative ductal breast carcinomas, where it should be noted that mRNA expression and protein 
expression of EEF1A1 are  opposite20.

The enriched pathways of WM6 (tan) included intracellular transport, organonitrogen compound biosyn-
thetic process, membrane organization, and metabolism of amino acids and derivatives (Fig. 3b). The subnetwork 
3–1 (Fig. 3a) is involved in the oxidation–reduction process, detoxification of reactive oxygen species (ROS), 
and tumor protein p53 (TP53) regulates metabolic genes, in which thioredoxin reductase 1 (TXNRD1) and 
peroxiredoxin 2 (PRDX2) are the main members in the network cluster of redox-active center and selenocyst-
eine. TXNRD1, the top hub protein in this module, protects cancerous cells against oxidative stress by reducing 
thioredoxin 1 (TXN), which reduces oxidized cysteines in cellular proteins and scavenges peroxides by  PRDX21. 
TXNRD1 is upregulated in many tumors, such as oral squamous cell  carcinoma22, lung  cancer23, and breast 
 cancer24. The enzymatic TXN/TXNRD1 system involves a key mechanism governing S-nitrosothiol homeostasis. 
However, the ER-positive status of breast tumors has been associated with significantly lower levels of TXNDR1 

Figure 3.  Data-driven protein co-expression networks and pathway enrichment results obtained for the HOT 
trait. (a) The co-expression networks of respective modules: (1) WM2, (2) WM5, (3) WM6, (4) WM11, and 
(5) WM20 modules. Dotted circle nodes in blue and red represent eigen-proteins and/or hub proteins for 
the respective module, respectively. (b) Top 10 pathways enriched for the protein core networks obtained for 
biological process (GO) and Reactome pathways.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1705  | https://doi.org/10.1038/s41598-021-81509-9

www.nature.com/scientificreports/

protein  expression24. Indeed, we also observed the low expression of TXNDR1 compared with TXN in this study, 
which may be relevant to the HER2-negative breast carcinomas. High TXN expression enhances angiogenesis 
through upregulation of protein expression of hypoxia-inducible factor 1alpha (HIF-1α) and vascular endothelial 
growth factor (VEGF). It also inhibits apoptosis by binding to the pro-apoptotic proteins, apoptosis signal-
regulating kinase 1 (ASK1) and phosphatase and tensin homolog (PTEN), which promote cancer cell  growth21. 
It was suggested that an impairment of the TXN/TXNRD1enzymatic system is associated with the development 
of resistance against hormonal therapies.

The enriched pathways of the WM11 (red) module included macromolecule localization, interspecies inter-
action between organisms, respiratory electron transport, adenosine triphosphate synthesis by chemiosmotic 
coupling, and heat production by uncoupling proteins, and mRNA Splicing—Major Pathway (Fig. 3b). The 
subnetworks 4–1 and 4–2 are involved in oxidative phosphorylation and mRNA Splicing—Major Pathway, 
respectively (Fig. 3a). The hub protein cyclin-dependent kinase 1 (CDK1) plays a key role in regulating cell 
cycle progression, and is a potent therapeutic target for inhibitors in the treatment of cancer. MYC has been an 
attractive therapeutic target for the treatment of breast cancer, whereas a direct inhibition of MYC remains chal-
lenging. Kang et al. recently proposed that targeting of CDK1, but not CDK4/6 or CDK2, could be selectively 
lethal to MYC-dependent human breast cancer  cells25. CDK1 is currently considered the best CDK target for 
breast cancer  therapy26.

The WM20 (dark grey) module was enriched with pathways including the establishment of protein localiza-
tion to organelle, protein targeting, and extracellular exosome (Fig. 3b). The top hub proteins in this module 
included heat shock protein (HSP) HSP90-alpha (HSP90AA1), T-complex protein 1 subunit alpha (TCP1/
CCT1), and T-complex protein 1 subunit zeta (CCT6A), which also belong to HSPs. HSPs play a crucial role as 
molecular chaperones under carcinogenic stress conditions. Overexpression of HSP90AA1, TCP1/CCT1, and 
CCT6A results in poor survival for patients with breast  cancer27, 28.

Semi‑quantitative protein expression and multivariate correlation analysis. Sonntag et al. per-
formed reverse-phase protein array-based tumor profiling for hormone receptor-positive breast cancer. Through 
this analysis, caveolin 1 (CAV1), nucleoside diphosphate kinase (NDKA), ribosomal protein S6 (RPS6), and 
Ki-67 were identified as top candidates for biomarker  signatures29. 40S RPS6 is a substrate for p70S6 kinase 
(p70S6K) and a major factor in translational mechanisms, including protein synthesis, cell growth, prolifera-
tion, and metabolism. This study revealed that spectral counting-based expression of PRS6 (PS6) was quan-
titatively correlated with major proteins of the HOT-characteristic four modules, including RACK1, EEF1A1, 
TXNRD1, and HSP90AA1; nevertheless, it did not correlate with those of the COLD-characteristic four mod-
ules (Fig. 4a). Protein co-regulation analysis using  ProteomeHD30 also exhibited that RACK1 was co-regulated 
with RPS6 (0.999656), EEF1A1 (0.999593), MCTS1 (0.996626), TXNRD1 (0.9926), HSP90AA1 (0.998816), 
TCP1 (0.999514), and CCT6 (0.999449) – the numbers in parentheses are percentile scores. These results were 
confirmed by multivariate correlation analysis (JMP software; SAS Institute, Cary, NC, USA) performed for 46 
key proteins including eigen- (or hub-) proteins, demonstrating a close inter-network interaction in a kind of 
stoichiometric manner among the four following modules: WM2, WM5, WM6, and WM20 (Fig. 4b).

Master and upstream regulators predicted by ingenuity pathway analysis (IPA). We conducted 
an analysis of causal networks and upstream regulators for the identified modules, using the IPA (http://www.
ingen uity.com)  software31. Table 2 lists in brief the top master regulators predicted to be activated or inhibited 
(|z-value|> 2.0) for the WGCNA modules associated with the HOT lesions. The top 10 master regulators with 
high values in activation or inhibition score (z-score) in causal networks significantly associated with the HOT 
lesions (WM2, WM5, WM6, WM11, and WM20) and COLD lesions (WM7, WM12, WM18, and WM24), are 
presented in Tables S1 and S2, together with their participating regulators and target molecules in the datasets.

MAPK-interacting serine/threonine-protein kinases 1 and 2 (MNK1/2), encoded by MNK1/2 (MKNK1/2), 
were highly activated. MNK1/2 interplays by modulating oncogene eukaryotic initiation factor 4E (EIF4E) 
between the two major signaling pathways, Ras/MNK and PI3K/AKT/mechanistic/mammalian target of rapa-
mycin (PI3K/AKT/mTOR), which are important in tumorigenesis, oncogenic transformation and progression, 
and  chemoresistance32, 33. The PI3K/Akt/mTOR pathway is frequently activated in breast cancer; of note, PIK3CA 
is the most common mutation in ER-positive breast cancer. F2R, also termed proteinase-activated receptor 1 
(PAR1), encodes a seven-transmembrane G-protein-coupled receptor (GPCR) family member. It was reported 
that F2R/PAR1, as a direct transcriptional target of Twist, enhances the tumorigenic and metastatic capacity of 
breast cancer cells by suppressing the Hippo pathway and activating epithelial-mesenchymal  transition34. FGFR2 
is a tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors, playing a crucial role 
in the regulation of cell proliferation, differentiation, migration, apoptosis, etc. The FGFR2 locus was reported as 
the top hit with the risk variants identified repeatedly in genome-wide association studies for ER-positive breast 
 cancer35. Genome-wide association studies analyzing 4,398 cases with familial breast cancer causes and 4,316 
controls identified five single-nucleotide polymorphisms of FGFR2 significantly associated with breast  cancer36. 
SRPK1 is a serine/arginine-rich protein-specific kinase and one of the core splicing  factors37; it is highly expressed 
in more aggressive basal breast cancer. High expression levels of SRPK1 correlated with low metastasis-free sur-
vival in patients with ER-positive, but not ER-negative, breast  cancer38. NOX4 is a ROS-producing NOX protein 
which has an oncogenic function and produces ROS in the  mitochondria39. AATF, also termed CHE-1, is involved 
in transcriptional regulation, cell cycle control, DNA damage responses, and cell  death40. SLC2A4, is also termed 
glucose transporter type 4, insulin-responsive (GLUT4). High activation of the GLUT4 causal network most likely 
indicates its estrogen receptor 1 (ESR1)-mediated  enhancement41. In addition, it may be involved in metabolic 
reprogramming to oxidative phosphorylation under hypoxia, which increased the activity of the mitochondrial 

http://www.ingenuity.com
http://www.ingenuity.com
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oxidation of  pyruvate42. Both BMP1 receptor and ACVRL1 are members of the BMP receptors, which may be 
important in breast cancer promotion and progression. BMP1 receptor comprises BMPR1A and BMPR1B, which 
belong to transmembrane serine/threonine kinases, the cytokine growth factor transforming growth factor 
beta (TGFβ) family. Overexpression of BMP receptors exhibits tumor-promoting phenotypes with increased 
invasion and metastasis, whereas BMP receptors act mostly as tumor  suppressors43. ACVRL1 encodes activin 
receptor-like kinase 1 (ALK1), which is also a type I receptor of the TGFβ superfamily. Since inadequate efficacy 
of VEGF-targeted agents (including bevacizumab) has been realized, ALK1 has attracted considerable attention 

Figure 4.  Correlations of representative proteins expressed among all the modules identified for the HOT and 
COLD traits. (a) Spectral count-based semi-quantitative correlations found for eigen- (and/or hub) and other 
key proteins versus the ribosomal protein S6 (RPS6/RS6), which marks cancer cell growth and proliferation. (b) 
Multivariate correlation analysis (MVA) for the spectral counting-based expression of 46 eigen- (and/or hub-) 
proteins and other key proteins.

Table 2.  A brief list of the top master regulators predicted to be activated or inhibited (|z-value|> 2.0) for the 
five WGCNA modules which are associated with the HOT lesions.

Module ID (color) Highly activated master regulator (z-score) Highly inhibited master regulator (z-score)

WM2 (lightgreen) NMK1/2 (4.123), MYC (3.873), MYCN (2.828), and MLXIPL (2.646) chemical drug interventions: 5-fluorouracil (− 2.714), ST1926 (− 2.828), siroli-
mus (rapamycin) (− 3), SGI-1776 (− 4)

WM5 (cyan)
coagulation factor II thrombin receptor (F2R/PAR1) (3.357), integrin beta-4 
(ITGB4) (3.266), fibroblast growth factor receptor 2 (FGFR2) (3.162), and 
SRSF protein kinase 1 (SRPK1) (2.714)

chemical drug interventions: imatinib (− 2.837), emodin (− 2.887), lovastatin 
(− 2.982), AEE788 (− 3), sitravatinib (− 3.441), and 3D185 (− 4.243)

WM6 (tan) endothelin-1(EDN1) (3.182), NADPH oxidase 4 (NOX4) (3.051), apoptosis-
antagonizing transcription factor (AATF) (2.828), and Vegf (group) (2.475)

SD-1008 intervention (− 2.502) and synaptic functional regulator FMR1 
(FMR1) (− 3)

WM11 (red)
solute carrier family 2, facilitated glucose transporter member 4 (SLC2A4) 
(3.742), bone morphogenetic protein 1 (Type 1 BMP1) (3.402), activin 
receptor-like kinase 1 (ACTVRL1) (2.828) and insulin receptor (INSR) (2.646)

inositol hexakisphosphate kinase 2 (IP6K2) (− 2.746), mTORC1 (complex) 
(− 2.921)

WM20 (darkgrey
p21-activated kinase 2 (PAK2) (2.333), nuclear factor, erythroid 2 like 2 
(NFE2L2) (2.236) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR 
) (2.121)

N/A
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as an alternative pathway for the regulation of neo-angiogenesis44, 45. PAK2 encodes serine/threonine-protein 
kinase PAK2, which is involved in various signaling pathways, including cytoskeleton regulation, cell motility, cell 
cycle progression, apoptosis, or proliferation. Anti-estrogen resistance in ER-positive breast cancer is associated 
with activated insulin-like growth factor 1 receptor (IGF1R). Zhang et al. performed a kinome siRNA screening 
study that identified 10 regulators of IGF1R mediated anti-estrogen. These regulators included the tamoxifen 
resistance suppressors and inducers, among which PAK2 is the strongest resistance  inducer46. NFE2L2 (or Nrf2), 
encoding the transcription factor Nrf-2 (nuclear factor, erythroid 2 like 2), is a master regulator of antioxidant 
 response47. Overexpression of Nrf-2 may contribute to tumorigenesis and chemoresistance by upregulating its 
target  genes48. It was also reported that low NFE2L2 mRNA expression levels may be an independent predictor 
of poor prognosis, especially in ER-positive breast  cancer49. HMGCR  encodes 3-hydroxy-3-methylglutaryl-
coenzyme A reductase (HMG-CoA reductase), a transmembrane glycoprotein, which is the key enzyme in 
cholesterol biosynthesis and the target for statin treatment. High mRNA levels of HMGCR together with other 
genes in the mevalonate pathway were associated with resistance to statin treatment and poor survival in breast 
 cancer50. The cholesterol biosynthesis pathway was recently shown to be upregulated in ER-positive breast cancer 
cell lines resistant to estrogen deprivation. This finding suggested that dysregulation of cholesterol biosynthesis 
may be a mechanism of endocrine resistance in hormone receptor-positive breast  cancer51. Representative causal 
networks associated with the HOT trait are presented in Fig. 5, together with their target molecules in the dataset. 
Those associated with the COLD trait are presented in Fig. S7.

Discussion
Our study identified five significant protein-network modules associated with disease mechanisms of this malig-
nant luminal breast carcinomas using WGCNA following in-depth proteomic analysis. The WM2 module cen-
trally involves pathways of ribosome-associated quality control of mRNA and protein including the nonsense-
mediated decay. Through these pathways, tumors exploit gene expression for their survival, downregulating 
the expression of tumor suppressor genes. The WM5 and WM6 modules were both involved in the heat shock 
response process and angiogenesis caused mainly by oxidative stress and hypoxia. The hub proteins PRDX2 and 
lactate dehydrogenase A (LDHA) in the WM6 network module are a peroxide scavenger and key enzyme in 
aerobic glycolysis, respectively. Their function is to protect cancer cells against both oxidative stress and hypoxia. 
The hub HSP proteins and highly activated NFE2L2/Nrf2 pathway enriched in the WM20 module predominantly 
participate in pathways of heat shock response and/or oxidative stress. Regarding the WM11 module, CDK1 
plays a central role in cell cycle progression and, together with its subnetwork, is involved in oxidative phos-
phorylation. Collectively, most data-driven protein networks are commonly associated with activities of heat 
shock response, angiogenesis, and cancer cell survival. A semi-quantitative correlation of key-protein expression, 
protein co-regulation analysis using ProteomeHD, and multivariate correlation analysis suggested co-regulations 
via network-network interaction among the four key modules characteristic to the HOT lesions.

Highly activated master and upstream regulators of causal networks predicted to the five data-driven protein 
networks were mostly characteristic to ER-positive breast cancer, as well as associated with oncogenic transforma-
tion, resistance to chemotherapy, and endocrine therapy. The integrative networks constructed from the repre-
sentative master and participating regulators predicted for the HOT-characteristic WGCNA modules exhibited 
a predominant activation of ESR1, MYC, nuclear receptor 4A1 (NR4A1), and NFE2L2 (Fig. S8). Interestingly, 
the top causal networks predicted for the WM2 and WM5 modules listed highly inhibited interventions by 
numerous chemical inhibitors, indicating the involvement of potential therapeutic targets. The WM2 module 
included 5-fluorouracil, sirolimus (rapamycin), and SGI-1776, while the WM5 module included imatinib, emo-
din, lovastatin, AEE788, and sitravatinib (Fig. 6).

The limitation of this study is the number of patients examined, which was attributed to only these 5 cases 
of Ki-67 values at HOT > 80-% available in our hospital, corresponding to 3.8% (5/133) of the total Luminal-B 
like cases. We plan to verify/validate the results of this study by using a larger sample size of the external cohort 
being accumulated in the future.

In conclusion, the WGCNA combined with ORA-based protein screening was successfully applied to clinical 
proteomic datasets. Our results could identify key data-driven networks and their upstream regulators character-
izing the HOT lesions. The limitation of this study is the small number of patients analyzed. We are planning a 
larger cohort study of patient-derived samples, including genomic alteration analysis to investigate core data-
driven proteogenomic networks. This approach will provide clinically important information on proteogenomic 
landscapes of ER+HER2–Ki-67high malignant luminal breast cancer.

Methods
FFPE tissue specimens and sample preparation. A total of 671 patients underwent surgical breast 
cancer resection at the Tokyo Medical University Hachioji Medical Centre between 2015 and 2019. Pathological 
specimens were independently reviewed by three pathologists (MW, ES, and HH) to confirm that they satisfied 
the 2015 WHO classification of breast tumors (histological criteria)52. Only 21 tumors were histologically con-
firmed as ER+HER2–Ki-67high (> 70%) luminal B breast cancers. Of those, five cases with high Ki-67 (> 80%) 
were selected for investigation in this study. FFPE tumor tissue blocks from the corresponding five surgical spec-
imens were obtained without patient identifiers from the Tokyo Medical University Hospital and Hachioji Medi-
cal Centre. Informed consent was provided by all participating patients, and the study protocol was approved 
by the institutional review board of the Tokyo Medical University Hospital (approval no. H-266). The study was 
conducted in accordance with the tenets of the Declaration of Helsinki.

The terms HOT and COLD are defined as follows: HOT spot, the highest density of Ki-67-positive cells in 
the lesion (i.e., area with the highest Ki-67 value); COLD spot, the lowest density of Ki-67-positive cells (i.e., 
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area with the lowest Ki-67 value). For tissue microdissection, sections (thickness: 10 μm) from the FFPE tumor 
blocks were cut onto DIRECTOR slides (OncoPlex Diagnostics Inc., Rockville, MD, USA). Prior to dissec-
tion, the sections were de-paraffinized and stained only with hematoxylin using standard histological methods. 
Microdissection was performed using a Leica LMD7 Microdissection Microscope (Leica, Wetzlar, Germany) 
(see Fig. S2). Typically, a total area of 5  mm2 with approximately 19,000 tumor cells was transferred from the 
FFPE sections via laser dissection directly into the cap of a 200-μL low-binding tube. Proteins were extracted 
and digested with trypsin using Liquid Tissue MS Protein Prep kits (OncoPlex Diagnostics Inc.) according to 
the instructions provided by the  manufacturer53. The procedures were previously  described6, 7.

Briefly, dried microdissection pellets were suspended in 20 μL of Liquid Tissue buffer, heated at 95 °C for 
90 min, and then cooled on ice, at which point 0.1 μg of trypsin was added to each tube. The tubes were then 
incubated at 37 °C for 18 h. The digested samples were dried and resuspended in 50 μL of 2% acetonitrile aque-
ous solution containing 0.1% TFA. Finally, the digested samples were frozen at − 80 °C until further processing.

MS‑based proteomic analysis. The digested individual samples (5 μL for a single run) were analyzed in 
triplicate by liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis using reverse-phase LC 

Figure 5.  Causal network modules of (a) MNK1/2, (b) F2R/PAR1, (c) NOX4, (d) BMP1 receptor, (e) PAK2, 
and (f) HMGCR, together with their target molecules in the dataset, which were representatively associated 
with the HOT trait. Node shapes indicate molecular types: triangle, kinase; square (dashed), growth factor; 
rectangle (horizontal), ligand-dependent nuclear receptor; rectangle (vertical), ion channel; diamond (vertical), 
enzyme; diamond (horizontal), peptidase; trapezoid, transporter; oval (horizontal), transcription regulator; oval 
(vertical), transmembrane receptor; double circle, complex; and circle, other. Red or light red colors indicate 
highly or moderately increased expression of a mutant protein in the dataset. Orange/light orange and blue/
light blue colors indicate the extent of confidence for predicted activation and inhibition, respectively. Lines 
denote predicted relationships. A solid or dashed line indicates direct or indirect interaction, respectively. 
Orange, leading to activation; blue, leading to inhibition; yellow, findings inconsistent with the state of a 
downstream molecule; grey, not predicted effect. BMP1, bone morphogenetic protein 1; F2R/PAR1, coagulation 
factor II thrombin receptor/ proteinase-activated receptor 1; MNK1/2, MAPK-interacting serine/threonine-
protein kinases 1 and 2; NOX4, NADPH oxidase 4; PAK2, p21-activated kinase 2; HMGCR, 3-hydroxy-3-
methylglutaryl-CoA reductase.
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interfaced with a Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) via a 
nano-ESI device Dream-Spray (AMR Inc., Tokyo, Japan). The LC system consisted of an Ultimate 3000 HPLC 
System (Thermo Fisher Scientific), a trap-cartridge L-column (0.3 mm × 5.0 mm, CERI, Tokyo, Japan), and a 
capillary separation column (Zaplous column alpha-PepC18, 3 μm, 12 nm, 0.1 mm × 150 mm, AMR Inc.). An 
auto-sampler (HTC-PAL, CTC Analytics, Zwingen, Switzerland) loaded an aliquot of samples into the trap, 
which was then washed with solvent A (2% acetonitrile aqueous solution containing 0.1% trifluoroacetic acid) 
to concentrate the peptides in the trap and desalt them. Subsequently, the trap was connected in series to the 
separation column, and the peptides were eluted from the whole column with 0.1% formic acid aqueous solution 
and acetonitrile by linear 5–40% acetonitrile concentration gradient over 90 min at a flow-rate of 500 nL  min−1. 
The mass spectrometer was operated in data-dependent acquisition mode.

All LC–MS/MS data were acquired using Xcalibur, version 4.0.27.19 (Thermo Fisher Scientific) in high-res-
olution data-driven analysis (DDA) mode, with the survey scan (MS in the mass range m/z 400–1600) acquired 
in the Orbitrap at 70,000 resolution (at m/z 200) in profile mode. The top ten most intense peaks from the survey 
scan were selected for fragmentation with higher-energy collisional dissociation with a normalized collision 
energy of 27 and an isolation window of m/z 1.6. The dynamic exclusion time for precursor ions selected for 
MS/MS fragmentation was 10 s, and the automatic gain control target values for MS and MS/MS were 1 × 106 
and 1 × 105, respectively.

Peptide sequence matching was performed using the MASCOT software ver. 2.6.0 (http://www.matri xscie nce.
com) against the UniProt Homo sapiens database downloaded in January 2017. A target-decoy search strategy 
was employed for increased confidence in protein  identifications54. This search considered tryptic peptide can-
didates, and the formylation of lysine and oxidation of methionine were considered as variable modifications. 
The MASCOT search engine considered a precursor mass tolerance of 10 ppm and a fragment bin tolerance of 
0.02. The validity of the peptide spectrum matches was assessed using the MASCOT software. All identification 
results were reported with < 1% FDR, both at the peptide and protein levels.

The expression levels of identified proteins were assessed by spectral count-based protein quantification 
(Fig. S4). Fold changes in protein expression in the base 2 logarithmic scale (RSC)55 and normalized spectral 
abundance factors (NSAF)56 representing relative abundances of expressed proteins were calculated using the 
spectral count (SpC)—that is the number of MS/MS spectra assigned to each protein.

Weighted correlation network analysis. Weighted-gene co-expression network analysis (WGCNA)8 
was used to identify systems-level differences in the protein expression pattern of the HOT and COLD spots in 
malignant luminal breast tissues. The similarity in protein expression patterns for all protein pairs was calcu-
lated according to their pairwise Pearson’s correlation coefficient, i.e., the similarity between proteins i and j was 
defined as (1 − ri,j)/2, where ri,j is the Pearson’s correlation coefficient of the protein expression patterns between 
these two proteins. We performed the network topology analysis for various soft-thresholding powers ranging 

Figure 6.  The causal networks of chemical drug interventions (SGI-1776, imatinib, emodin, lovastatin, 
AEE788, and sitravatinib) are predicted to be highly inhibited in the WM5 (cyan) network module.

http://www.matrixscience.com
http://www.matrixscience.com
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from 1 to 100 to choose an optimal value to balance between independence and mean connectivity. The power 
had been set to 10, under which the network reaching to the scale-free topology. By implying a soft threshold-
ing parameter, the weighted gene expression network emphasizes highly correlated protein pairs and filters low 
correlations. This reduces the noise of correlation in the adjacency matrix until the network resembles a scale-
free graph. Next, to measure the connection strength between all protein pairs, the topological overlap measure 
(TOM) was calculated from the adjacency matrix. TOM dissimilarity matrix (1-TOM) was subsequently used 
to perform average linkage hierarchal clustering, which generated a protein clustering tree with modules cor-
responding to the branches of the tree. Dynamic tree cutting was used to trim the branches and identify protein 
modules.

Modules were summarized by the first principal component referred to as eigen-protein in the text. Module 
membership, defined as the correlation between the protein expression profile and the module eigen-protein, 
was measured with values ranging 0–1; 0 represents a gene that is not part of the module, while 1 represents 
high connectivity to the module. Subsequently, the module-trait association was determined using the correla-
tion between the module eigen-protein and the two clinical traits (HOT and COLD). WGCNA analysis was 
performed using the WGCNA R-package8, implemented as a gadget in the GARUDA PLATFORM (The Systems 
Biology Institute, Tokyo, Japan).

PPI network construction. We used the Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database (version 10.5) to construct a protein interaction network for a protein  module15. STRING 
networks were calculated under the criteria for linkage only with experiments, databases, text mining, and co-
expression with the default settings i.e., medium confidence score: 0.400, network depth: 0 interactions. Func-
tional enrichment results were obtained for canonical pathways under p < 0.05. Proteins in a protein module 
were mapped in the protein interaction network from the STRING database, to produce the results of the enrich-
ment analysis on the biological process (GO) and Reactome pathways.

A hub protein refers to a “highly connected protein.” The proteins inside co-expression modules exhibit 
high connectivity, and the proteins within the same module may play similar roles. The PPI networks were 
reconstructed using the Cytoscape software (version 3.7.1.), followed by importation of the results obtained 
from the STRING PPI network analysis of eigen-proteins in each module. We identified hub proteins in each 
module according to their intra-modular connectivity and correlation with module eigen-proteins. The top 20 
high-degree proteins were identified using the cytoHubba plugin16. The three top-ranked genes in each module 
were considered to be hub proteins.

Causal network analysis by IPA. Upstream regulators and causal networks were predicted using the 
IPA  software31. Protein expression data (quantile-normalized for selected modules) were used as input datasets. 
Causal networks (p < 0.05) were predicted from the WGCNA network modules significantly associated with the 
two clinical traits (HOT and COLD), where their activation or inhibition was defined by z-values > 2.0 or <  − 2.0, 
respectively.

Data availability
The unfiltered MS datasets generated and analyzed in this study have been deposited in the in the ProteomeX-
change (http://prote omece ntral .prote omexc hange .org) and jPOST with the dataset identifiers PXD021912 and 
JPST000981, respectively.
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