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Rotatable central composite design 
versus artificial neural network 
for modeling biosorption of  Cr6+ 
by the immobilized Pseudomonas 
alcaliphila NEWG‑2
WesamEldin I. A. Saber1, Noura El‑Ahmady El‑Naggar 2*, Mohammed S. El‑Hersh1, 
Ayman Y. El‑khateeb3, Ashraf Elsayed4, Noha M. Eldadamony5 & 
Abeer Abdulkhalek Ghoniem1

Heavy metals, including chromium, are associated with developed industrialization and technological 
processes, causing imbalanced ecosystems and severe health concerns. The current study is of 
supreme priority because there is no previous work that dealt with the modeling of the optimization 
of the biosorption process by the immobilized cells. The significant parameters (immobilized bacterial 
cells, contact time, and initial  Cr6+ concentrations), affecting  Cr6+ biosorption by immobilized 
Pseudomonas alcaliphila, was verified, using the Plackett–Burman matrix. For modeling the 
maximization of  Cr6+ biosorption, a comparative approach was created between rotatable central 
composite design (RCCD) and artificial neural network (ANN) to choose the most fitted model that 
accurately predicts  Cr6+ removal percent by immobilized cells. Experimental data of RCCD was 
employed to train a feed‑forward multilayered perceptron ANN algorithm. The predictive competence 
of the ANN model was more precise than RCCD when forecasting the best appropriate wastewater 
treatment. After the biosorption, a new shiny large particle on the bead surface was noticed by the 
scanning electron microscopy, and an additional peak of  Cr6+ was appeared by the energy dispersive 
X‑ray analysis, confirming the role of the immobilized bacteria in the biosorption of  Cr6+ ions.

Contamination of water by heavy metal ions is one of the major problems threatening the  ecosystem1,2. Due to 
toxicity and tendency to be persistent in food chains, their occurrence causes a high-risk factor for human health 
and the  environment3. Chromium is one of these metals, which is produced in the environment as a result of 
several industries, e.g. mines, surface finishing, fuel, energy production, pesticide, and steel and iron  industries4. 
Although, it plays a functional role in the synthesis of nucleic acids, as well as, metabolism of proteins, fats, 
and carbohydrates, its toxicity arises from the oxidation status, which acting as the potential of mutagenic and 
carcinogenic to biological tissues in  humans5.

The removal of such metals is an urgent issue from health, economic, and environmental points of view. Sev-
eral conventional methods of heavy metals removal had been described earlier, such as ion exchange, coagulation, 
flotation, reverse osmosis, and electrochemical  process6. The conventional methods were found to have many 
disadvantages, e.g. low efficiency especially in low concentration of metals, intensive energy requirement, and a 
secondary large quantity of  impurities7,8. The alternative procedure is depending upon the biosorption process 
using some of the microorganisms, like fungi and/or bacteria, these techniques of biosorption use microorgan-
isms in an immobilized, dead, or viable biomass  form9–11.
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Kinetics modes of the biosorption process had been proposed, e.g. transportation through the cell membrane, 
insertion into cell wall structure, precipitation, accumulation in the exopolymer layer of the cell, and/or through 
the oxidation–reduction  process2,12. Importantly, the binding process of metals might be due to some polarized 
groups, e.g. phosphate, carboxyl, amino, amido, acetamido, sulfhydryl, and sulfate. The immobilization process 
is one of the protective techniques, which encapsulates the bacterial cells with the benefits of stabilizing cells, 
enhancing their viability against adverse environmental conditions, and confers additional protection during 
 rehydration13,14.

The immobilization of microbial cells refers to the entrapment of cells without loss of vitality and functional 
activity, by which the matrix must be biocompatible and preserves the survival of cells and permeable to oxygen 
and also guarantee the influx of nutrients and the efflux of the toxic  metabolites15. Immobilized cells had been also 
pronounced in several fields of the environmental, pharmaceutical, and food industry, for instance, immobilized 
cells of Azotobacter nigricans were efficient in  Cu2+  removal11. Likewise, EL-Naggar et al.16 investigating the role 
of immobilized cells of P. alcaliphila in removing  Cr6+ during Langmuir and Freundlich modeling.

Modeling by response surface methodology (RSM) has been extensively applied to assess the simultaneous 
influencing response factors and their interaction within the tested range, using a limited number of trials, 
Box–Behnken and central composite designs are two major sorts of  RSM11,16. RSM is a worthwhile statistical 
mathematical system utilized for improving the experimental conditions through the discovery of the analytical 
relationship between inputs and  outputs17. Therefore, modeling using RSM is recommended in the biotechnologi-
cal process such as heavy metals  removal9,14. Modeling by an artificial neural network (ANN) is another category, 
which is recently used to describe a wide range of processes, concerning their mathematical relationships. ANN 
can be, superly, replace the polynomial regression-based modeling approach, such as RSM, which modeling 
the complex nonlinear relationships. The ANN model is hypothetically more accurate because it includes all 
data points of an  experiment18,19. The modeling procedure of ANN includes the choice of network architecture, 
establishing of the hidden layers and neurons number in each layer, learning, training, and, finally, validation 
and verification of the  model20. Besides having advantages of the elucidation of the behavior of the biosorption 
process of metal along with wastewater management, ANNs have been, recently, applied successfully in various 
biotechnological fields as pattern recognition and  forecasting21,22.

To the best of our knowledge, there have been no previous studies done on the modeling of the optimization 
of the biosorption process of  Cr6+ by the immobilized cells of P. alcaliphila. The current study was carried out to 
maximize the biosorption process of  Cr6+ by the immobilized cells of P. alcaliphila NEWG-2 as affected by the 
contact time and initial concentration of  Cr6+ based on RSM and ANN.

Materials and methods
P. alcaliphila strain. In a previous study, P. alcaliphila NEWG-2 was found to be efficient in biosorption 
of  Cr6+ and molecularly identified with an accession number of  MN02526716. This strain was used during the 
current investigation. The bacterial strain was grown on slants contains a fermentation medium solidified with 
15 g/L agar and incubated for 48 h at 25 ± 1 °C. P. alcaliphila NEWG-2 was regularly sub-cultured and preserved 
at 4 °C.

Fermentation medium and bacterial enumeration. The fermentation medium for cell propagation 
was composed (g/l):  MgSO4·7H2O (0.2), glucose (5), yeast extract (5), and pH 7.2. The medium was autoclaved 
at 121 °C for 20 min. In 250-mL Erlenmeyer flasks, P. alcaliphila NEWG-2 has grown on a 50 mL broth medium 
and incubated at 25 ± 1 °C for 48 h under shaking (100 rpm). After incubation period, the bacterial cells were 
separated by centrifugation at 5000 rpm for 20 min.

Bacterial immobilization. Immobilization of P. alcaliphila NEWG-2 was performed in the sodium algi-
nate gel according to the method of EL-Naggar et al.23. To make sphere beads, the cells of P. alcaliphila NEWG-2 
has been mixed with sodium alginate gel, to count  105 CFU per one ml of sodium alginate gel, with continual 
mixing at room temperature for 5 min. Using a 3-mL syringe, beads of inoculated sodium alginate (1.5 ± 0.2 mm 
in diameter) were created by dropping in a cold sterile  CaCl2 (2.5%) with gentle mixing at room temperature. 
The beads were washed with distilled sterilized water several times to remove calcium chloride traces. For stabi-
lization and rigidity, the beads were then held overnight in distilled sterilized water at 4 °C. Another set of beads 
were created using only sodium alginate without bacterial biomass.

The biosorption process was carried out in sterilized separating funnels, which were packed with the alginate 
beads without bacterial cells or alginate-bacterial beads. Solutions of  Cr6+ with different concentrations were 
added and mixed with the beads and left at 30 °C, with initial pH 7. Samples from the various trials were collected 
from the separating funnel effluent and analyzed for the residual ions of  Cr6+.

Potassium dichromate  (K2Cr2O7). K2Cr2O7 (Sigma-Aldrich) was used to prepare various concentrations 
based on the content of  Cr6+ ions. Samples of each sterilized concentration were allowed to contact alginate 
beads, inoculated or not, inside the separating funnel (Simax) for a specific time then fractions of the effluent 
samples were collected to determine the residual  Cr6+.

Screening  Cr6+ removal factors using Plackett–Burman. Because the complete knowledge about the 
 Cr6+ removal system is unavailable, the fractional-factorial Plackett–Burman matrix was performed to check the 
effect, contribution, and significance of the most important process parameters (bacterial cell immobilization in 
alginate beads, the contact time of alginate beads with  Cr6+, and initial concentration of  Cr6+) on  Cr6+ removal by 
P. alcaliphila. The Plackett–Burman design is a screening matrix that aims to find out the importance of factor(s) 
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and at which level in an experiment, consequently, unimportant (noise) factor(s) is screened out to avoid per-
forming extensive study on relatively unimportant factors.

The experimental matrix was constructed from a mixture of categorical and numerical factors to validate 
the relative importance of the tested factors. The three independent variables were screened at low and high 
levels (Table 1). The design matrix and statistical calculations were operated using Minitab software (version 19, 
Minitab Inc., USA) (https ://www.minit ab.com/en-us/).

Modeling using RSM. The modeling technique of RSM was employed. For multiple regression analysis, a 
properly designed experiment was performed to simultaneously resolve multivariate equations. Two variables at 
five levels have been tested using a rotatable central composite design (RCCD). The tested independent variables 
selected for the modeling of the  Cr6+ biosorption process using the immobilized P. alcaliphila NEWG-2 were; 
contact time between bacterial-alginate complex with  Cr6+ and the initial  Cr6+ concentration (Table 2).

The efficiency of the biosorption process was evaluated by measuring the response variable  (Cr6+ removal, 
%), which depends on the two input factors. The design matrix of RCCD, in terms of coded units, contained four 
factorials (± 1), four axial (± 1.414), and five center (0) points; the latter is to estimate the pure error. The relation-
ship between actual values and the coded values of the tested parameters is calculated by the following equation:

where xi is the coded value of an independent factor, ∆Xi is the step-change in the actual value of the variable i, X0 
is the actual value of an independent factor at the center point and Xi is the actual value of an independent factor.

The  Cr6+ removal percent was determined as the response variable. The experimental data were statistically 
assessed by using multiple regression analysis, then F-test, values of correlation coefficient  (R2), prediction error 
sum of squares (PRESS), predicted  R2 and adjusted  R2 were checked to compare and evaluate the significance 
of the regression model. The selected polynomial quadratic model was fitted to the next second-order equation:

where Y is the  Cr6+ removal percent; βij, is the interaction coefficients; βii is the quadratic coefficients; β0 model 
constant; βi, is linear coefficients;  Xi and  Xj are the independent factors.

The predicted response value was calculated based on the preceding equation model was subjected to labora-
tory validation to confirm the fitness and accuracy of the theoretically estimated value of each factor.

Determination of residual  Cr6+. Collected sample fractions were examined for the residual  Cr6+. The 
residual  Cr6+ concentrations were assessed using Atomic Absorption Spectrophotometer “Buck Scientific 
Accusys 211 series, USA by an air/acetylene flame system”24, then the  Cr6+-removal percent was calculated.

Modeling using ANN. A fully connected neural networks platform was constructed with one hidden layer, 
all nodes within the layer have the same activation function (Tan H sigmoid function, exp(− x2)). Response data 
of the RCCD matrix was used to train the machine and develop the predictive model. The data were portioned 
into three sets, i.e., training, testing, and cross-validation, in which 17 runs were used randomly for training, 
while the other 9 data sets were used for testing and validation.

The neural network had three layers. The ANN topology was designated as 2-h-1. The input layer composed 
of two neurons (contact time and initial  Cr6+ concentration, ppm) and the output layer has one neuron  (Cr6+ 

xi = (Xi − X0)/�Xi

Y = β0 +
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∑
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βijXiXj +
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i

Table 1.  Screening matrix of the Plackett–Burman design with the corresponding  Cr6+ removal by P. 
alcaliphila NEWG-2.

Run

Screened parameter

Cr6+-removal, %Bacteria (categorical factor) Numerical factors

Time, h Initial  Cr6+ conc., ppm Response Residual

1 Inoculated (+ 1) 180 450 64.02 0.59

2 Inoculated (+ 1) 480 150 70.09 2.36

3 Uninoculated (− 1) 480 450 33.45 0.54

4 Inoculated (+ 1) 180 450 67.97 4.55

5 Inoculated (+ 1) 480 150 65.42 − 2.31

6 Inoculated (+ 1) 480 450 46.08 − 3.56

7 Uninoculated (− 1) 480 450 33.02 0.11

8 Uninoculated (− 1) 180 450 44.48 − 2.21

9 Uninoculated (− 1) 180 150 66.98 2.20

10 Inoculated (+ 1) 180 150 79.88 − 1.63

11 Uninoculated (− 1) 480 150 53.86 2.87

12 Uninoculated (− 1) 180 150 61.28 − 3.50

https://www.minitab.com/en-us/
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Table 2.  Experimental data of  Cr6+ removal, based on the RCCD matrix of the independent factors and 
the corresponding predicted values obtained of the two tested models (RCCD and ANN). a Nine runs were 
randomly selected by the software for validating the model of ANN, the other 17 runs were used for training. 
b The number between parentheses is the coded values of the tested parameters.

Run

Independent variable

Cr6+ removal, %

Experimental

RCCD ANN

Contact time, min Initial  Cr6+ conc., ppm Predicted Residual Predicted Residual

1a 60 (− 1)b 230 (− 1) 34.85 33.79 1.06 34.21 0.64

2 60 (− 1) 230 (− 1) 34.05 33.79 0.26 34.21 − 0.16

3a 300 (1) 230 (− 1) 75.12 77.41 − 2.29 73.72 1.40

4 300 (1) 230 (− 1) 74.12 77.41 − 3.29 73.72 0.40

5a 60 (− 1) 370 (1) 57.23 58.09 − 0.86 57.22 0.01

6 60 (− 1) 370 (1) 60.73 58.09 2.64 57.22 3.51

7a 300 (1) 370 (1) 74.34 76.94 − 2.60 72.71 1.63

8 300 (1) 370 (1) 74.44 76.94 − 2.50 72.71 1.73

9a 10.3 (− 1.414) 300 (0) 30.21 32.70 − 2.49 29.90 0.31

10 10.3 (− 1.414) 300 (0) 32.21 32.70 − 0.49 29.90 2.31

11a 349.7 (1.414) 300 (0) 81.11 76.88 4.23 80.77 0.34

12 349.7 (1.414) 300 (0) 79.41 76.88 2.53 80.77 − 1.36

13a 180 (0) 201 (− 1.414) 61.27 59.90 1.37 60.50 0.77

14 180 (0) 201 (− 1.414) 60.77 59.90 0.87 60.50 0.27

15a 180 (0) 399 (1.414) 76.53 76.75 − 0.22 78.39 − 1.86

16 180 (0) 399 (1.414) 78.53 76.75 1.78 78.39 0.14

17a 180 (0) 300 (0) 99.61 97.02 2.59 97.22 2.39

18 180 (0) 300 (0) 99.11 97.02 2.09 97.22 1.89

19 180 (0) 300 (0) 91.61 97.02 − 5.41 97.22 − 5.61

20 180 (0) 300 (0) 91.01 97.02 − 6.01 97.22 − 6.21

21 180 (0) 300 (0) 99.58 97.02 2.56 97.22 2.36

22 180 (0) 300 (0) 99.08 97.02 2.06 97.22 1.86

23 180 (0) 300 (0) 95.21 97.02 − 1.81 97.22 − 2.01

24 180 (0) 300 (0) 95.71 97.02 − 1.31 97.22 − 1.51

25 180 (0) 300 (0) 99.59 97.02 2.57 97.22 2.37

26 180 (0) 300 (0) 99.69 97.02 2.67 97.22 2.47

Figure 1.  General architecture scheme of the artificial neural network containing one input layer (2 neurons), a 
hidden layer (7 neurons), and an output layer (one neuron).
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removal %), which is fixed by the number of the tested independent and response factor, respectively. The in-
between layer was tested using h neurons that varied from 3 to 10 in a single hidden layer (Fig. 1).

The trial-and-error search method was applied to train the ANN until a minimum of the root mean square 
error (RMSE) and the sum of squared errors (SSE) was reached, accompanied by the highest value of the  (R2) in 
the validation process. The trained network performance test was calculated based on the precision of the neural 
network to predict outputs that are either similar or very close to the response target value.

Testing the fitness of RCCD and ANN models. To assess the fitness of  Cr6+ biosorption models of 
RCCD and ANN models,  R2, RMSE, mean absolute deviation (MAD), and SSE were used to compare models. 
Besides, the values predicted by both models were plotted against the corresponding trial values to explore the 
fitness of models.

Trial design and statistical examination. Both the statistical regression analysis of the RCCD matrix 
with the experimental results and also the analysis of variance (ANOVA) were accomplished using the statistical 
software package Design-Expert (version 12, Stat-Ease, Minneapolis, USA) (https ://www.state ase.com/softw are/
desig n-exper t/). The ANN topology was set up using JMP 11 software (JMP, Version 11 SAS Institute Inc., Cary, 
NC, 1989–2019), which enables training, validating, and testing using experimental data with several hidden 
neurons. Training of ANN was performed using 17 randomly selected runs by the software, whereas the other 
9 runs were used to check the validity of the trained ANN model. To enhance the prediction accuracy of both 
models, experiments of RCCD were repeated twice, each with three replicates. The mean of each experimental 
run was calculated.

Surface morphology analysis. The immobilized P. alcaliphila NEWG-2 samples were coated with gold 
before and after the biosorption process of  Cr6+ and examined by Scanning Electron Microscopy (SEM).

Energy‑dispersive X‑ray analysis (EDX). The dehydrated immobilized P. alcaliphila NEWG-2 samples 
were examined before and after the biosorption process of  Cr6+ using TEM/EDX to determine the elemental 
sample composition.

Results and discussion
Screening of  Cr6+ removal using Plackett–Burman. It is already known that Plackett–Burman is used 
to achieve two main important approaches; the first is to determine the significance of the examined factors and 
the second is to detect the level (high or low) that significant factor(s) should be tested around. The main goal, 
herein, was to determine the starting point of each of the involved variables in the biosorption of  Cr6+.

A combination of one categorical element (bacterial inoculation) and two numerical elements (contact time 
of alginate beads with  Cr6+ and initial concentration of  Cr6+) were investigated, based on the matrix of Plack-
ett–Burman design, to estimate their significance and relative importance on  Cr6+ removal (Table 1). The results 
show obvious variation among the various runs, yet, the values of the residuals recorded remarkably lower values. 
Residuals are the differences between the experimental (observed) value of the dependent variable  (Cr6+ removal) 
and its corresponding predicted value at each data point. The lower the value of the residuals, the fitness of the 
model data that, consequently, signifies the accuracy of the parameter selection.

The statistical analysis of the Plackett–Burman results was performed. Pareto chart (Supplementary Fig. 1) 
of the standardized effects figures the relative magnitude and the statistical significance of the three variables in 
the descending order. Parameters that pass the reference line (2.31) are significant at 0.05, therefore, the three 
tested parameters were significant on  Cr6+ removal by the investigated bacterium.

According to Table 3, the impact of the three tested variables was explored at the probability (P) level of 0.05, 
in which model terms with P < 0.05 are significant. The three tested variables show significance (P < 0.05). Initial 
chromium concentration followed by contact time recorded the highest contribution percent with a negative 
effect, whereas the bacterial inoculation was positive in its effect. If the effect is negative, a lower concentration 
is to be required during further optimization studies, the vice versa. Also, the positive effect of bacterial inocula-
tion reflects the importance of the tested bacteria in the bioremoval process under immobilization conditions.

To evaluate the aptness of the data and select the model with the best fit,  R2, and adjusted  R2 are estimated.  R2 
defines the variation quantity in the experiential response values that are described by the factor(s). Adding items 
to the model lead to get bigger  R2, but adjusted  R2 is not, because it depends on the significance of the factors, 
not their number, of the model. However, the higher the adjusted  R2 the additional accuracy of the relationship 
between the factors and the response  (Cr6+ removal), consequently, the model fits well the data. Predicted  R2 
illustrates how well the model predicts for the responses in the new experiments, without over-fitting. Increased 
 R2 predicted values suggest high prediction efficiency of the model. Current values show that all the kinds of  R2 
display high validity with the selected variables, being 96.85  (R2), 95.67 (adjusted  R2), and 92.92% (predicted  R2).

Free microbial cells have a key role in the biosorption of heavy metals. Various mechanisms were suggested, 
such as ion exchange, complexation, precipitation,  chelation25. Likewise, the biosorption arises through interac-
tion among charges of metal ions, exopolysaccharides, and cell surface. In this respect, several functional groups, 
i.e., amine, sulfhydryl, phosphate, phosphodiester, hydroxyl in polysaccharides, carboxyl groups in proteins 
provides the polymer an overall negative  charge26. The biosorption by Pseudomonas genus could effectively 
occur through exopolysaccharides, which have a high content of uronic acid that enhanced their capability with 
binding to metal  ions27.

Immobilization techniques have been reported to boost the biological reaction kinetics, especially reaction 
rate, in which the immobilization process stimulates the production of the exopolysaccharides without altering 

https://www.statease.com/software/design-expert/
https://www.statease.com/software/design-expert/
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specific growth  rates28. For example, the immobilized Chryseomonas luteola showed efficiency in the sorption 
of copper, nickel, cobalt, and cadmium compared to alginate beads  alone27.

On the other side, the role of sodium alginate beads alone was stated and was found to absorb some of 
the heavy metals, e.g.,  Cr6+ 16 and  Cu2+ 11 ions. The sodium alginate is a natural polymer produced by marine 
algae, with a chemical structure of mannuronate and guluronate arranged with 1, 4-linkage. The ionic strength, 
permeability, viscosity, and stability could be different due to molecular weight and the ratio of mannuronate 
to  guluronate29. Briefly, all these characters may play a vital task in the sorption process of metals by sodium 
alginate beads.

Modeling of  Cr6+ removal by RCCD. Built on the previous screening of Plackett–Burman the three inves-
tigated factors, were subjected to further study, regarding their interaction and modeling process. Contact time 
and initial chromium concentration were tested around the low levels, because of their negative effect, while all 
experiments were performed using inoculated beads (alginate-immobilized P. alcaliphila), which showed a posi-
tive effect. The empirical design of RCCD of RSM was applied, and the modeling technique was accomplished 
based on the quantitative data acquired from the experimental design. The RCCD has two factors at five levels 
for optimizing the two process variables for maximum removal of  Cr6+.

The results of Table 2 represent the experimental response values of  Cr6+ removal obtained by the various 
RCCD combinations in 26 runs; also the predicted values of RCCD and their residuals were introduced. Residual 
is the difference between the experimental variable  (Cr6+ removal) and its corresponding predicted value at each 
data point. Lower values of the residuals reflecting a close correlation between the experimental values and the 
RCCD-predicted values, subsequently, the appropriateness of the generated model.

Multiple regression analysis. To select the most appropriate kind of regression, the linear, interactive, and 
quadratic models were compared using multiple regression analyses based on the experimental data (Table 4). 
Analysis of the sequential model sum of squares shows that the P value of the quadratic model is the only signifi-
cant model (P < 0.0001), the lack-of-fit value displays insignificant behavior, which a pre-request for the model to 
be fitted. The other summary of the fit statistics confirms that the quadratic model is the most fitting one, having 
the largest values of predicted  R2 (0.9779), adjusted  R2 (0.9827), and  R2 (0.9862) with a small standard deviation 
(3.005). Models with supreme adjusted  R2 and the predicted  R2 are  desired17.

Accordingly, the quadratic second-order polynomial equation was selected and modeled using the results 
of RCCD. The resultant prediction equation was applied for the given levels of contact time and initial  Cr6+ 
concentration, and so, the equation structure, in terms of coded factors, is assumed to be:

ANOVA examination. To check if the equation adequately reflected a genuine association between the 
independent variables (contact time and initial  Cr6+ conc.) and the response  (Cr6+ removal), ANOVA was per-
formed (Table 5).

The high model F-value of 285.30 together with the low lack-of-fit F-value (2.97) means that the model is sig-
nificant. Model fitting is required to be significant; on the other hand, the lack-of-fit is wanted to be insignificant 
because its significance is a source of trouble to the model. Both model and lack-of-fit are opposite to each other.

Cr6+ removal, % = 97.02+ 15.62 (contact time) + 5.96 (initial Cr6+ conc.)

− 6.19 (contact time × initial Cr6+ conc.) − 21.12 (contact time)2

− 14.346 (initial Cr6+ conc.)2.

Table 3.  The effect, contribution, and corresponding F- and P-values for  Cr6+ removal recovered by P. 
alcaliphila NEWG-2 using Plackett–Burman design.

Term Effect Contribution, % F value P value

Model 96.85 82.03 0.000

Linear 96.85 82.03 0.000

Bacteria 16.731 (+ 1) 34.02 86.44 0.000

Contact time − 13.786 23.1 58.69 0.000

Initial chromium concentration − 18.082 39.74 100.97 0.000

Error 3.15

Lack-of-fit 1.73 1.22 0.427

Pure error 1.42

Total 100

Coefficient of determination  (R2) 96.85

Adjusted  R2 95.67

Predicted  R2 92.92
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The calculation of the relative dispersion of the experimental data from the predictions of the polynomial 
model of the second-order indicates the coefficient of variance is sufficiently low (3.996%) to designate that the 
deviation between the experimental and prediction values at each data point is  low18.

The value of  R2 was calculated to be 0.9862, which denotes that 98.62% of investigational data were well-
matched. The adjusted  R2 value (0.9827) is also high to support the model significance. The predicted  R2 of 0.9779 
is in reasonable agreement with the adjusted  R2 indicating the wellness of the model to predict new observations. 
Increased  R2 values indicate that the model is stronger and it has higher predictive efficiency for the  response30.

The sum of squares of prediction error (PRESS) value was reasonably low (288.748), reflecting the lower 
opportunity of an error through the experimental work, consequently, and the predicted values. Estimating the 
signal to noise ratio, using adequate precision, shows a ratio of 44.55, the present ratio is high enough to indicate 
an adequate signal, a ratio greater than 4 is desired which indicate that the tested model can precisely be used 
to navigate the space of  design18.

The two independent variables were further statistically examined for interaction and quadratic effect on  Cr6+ 
removal. All P values were found to be < 0.0001, values less than 0.05 denote that model terms are significant. 

Table 4.  Fitness and adequacy of the models based on the experimental data of the design matrix of the 
RCCD. df the degree of freedom, 2FI two factors interaction, SD standard deviation, R2 determination 
coefficient, PRESS the sum of squares of prediction error.

Source Sum of square df Mean square F value P value

The sequential model sum of squares

Linear versus mean 4470.55 2 2235.27 5.98 0.0081

2FI versus linear 306.53 1 306.53 0.81 0.3768

Quadratic versus 2FI 8105.67 2 4052.84 448.77 < 0.0001

Residual 132.87 18 7.38

Lack-of-fit

Linear 8474.31 6 1412.39 202.61 7.4780

2FI 8167.78 5 1633.56 234.33 0.0000

Quadratic 62.11 3 20.70 2.97 0.0612

Pure error 118.51 17 6.97

Source SD R2 Adjusted  R2 Predicted  R2 PRESS

Model summary statistics

Linear 19.329 0.3422 0.2850 0.1895 10,587.79

2FI 19.407 0.3657 0.2792 0.1506 11,096.32

Quadratic 3.005 0.9862 0.9827 0.9779 288.7478

Table 5.  ANOVA of  Cr6+ removal based on the experimental results of the RCCD matrix. df the degree of 
freedom, PRESS the sum of squares of prediction error.

Source Sum of square df Mean square F value P value

Model 12,882.75 5 2576.55 285.30 < 0.0001

Contact time, min 3902.95 1 3902.95 432.17 < 0.0001

Initial  Cr6+ conc., ppm 567.60 1 567.60 62.85 < 0.0001

Contact time × initial  Cr6+ conc 306.53 1 306.53 33.94 < 0.0001

(Contact time)2 6203.77 1 6203.77 686.94 < 0.0001

(Initial  Cr6+)2 2863.51 1 2863.51 317.08 < 0.0001

Residual 180.62 20 9.03

Lack-of-fit 62.11 3 20.70 2.97 0.0612

Pure error 118.51 17 6.97

Total 13,063.37 25

SD 3.005

Coefficient of variation 3.996

PRESS 288.748

Adequate precision 44.554

R2 0.9862

Adjusted  R2 0.9827

Predicted  R2 0.9779
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In the present study, all model terms are  significant31. All the adequacy and fitness tests confirm the model’s 
effectiveness in predicting the specific model fits at each point of the design space.

Residuals normality and 3D‑surface. To test the normality of the residuals, the normal probability plot 
of the residuals is displayed in Fig. 2A. Expect some scatter, there are no definite patterns, like curves, could be 
observed. On the other hand, the residual points were tightly clustered along the standard line indicating that 
the residuals must follow the normal  distribution32. The 3D response surface plot in relation to the two factors 
(Fig. 2B) was used to understand both the linear and the interaction effects of the two tested variables, also to 
calculate the optimal level of each factor for maximum removal of  Cr6+ ions.

The elliptical curve of the response surface plot displays a clear interaction between the tested  parameters20. 
However, the 3D plot displays that  Cr6+ removal reached its peak (99.995%) with the increment of initial  Cr6+ 
conc. around nearly the center points of the design, reflecting the precision of the selected range of both tested 
factors.

Experimental validation. To resolve the optimal combination of the tested variables, which maximize 
the response. The optimal predicted levels of both tested factors were estimated using the modeling regression 
equation and were found to be 224.6 min of contact time between chromium and immobilized bacteria and 
315.98 ppm of initial  Cr6+ concentration, at these conditions,  Cr6+ removal reached 99.995%. These theoretical 
estimations from the equation were experimentally validated and the response was found to be 99.81%. This 
value is closely related to the theoretical value, substantiating the suitability of the developed model.

Modeling of  Cr6+ removal by ANN. The most common and popular multilayer feed-forward ANN archi-
tecture with the sigmoidal function was developed for modeling the bio-removal process of  Cr6+ by the immo-
bilized P. alcaliphila. The RCCD matrix and their respective experimental response were used for training the 
ANN. The network has two input nodes (contact time and initial  Cr6+ concentration) and one output node  (Cr6+ 
removal).

To determine the architectural structure and the best number of neurons in the hidden layer, numerous hid-
den neurons, and various combinations of ANN-specific parameters such as learning rate, as well as, the initial 
weight and bias value of each layer were tested. Hence, the optimal number of neurons in the hidden layer of the 
ANN was found to be 7 (Fig. 1). Consequently, the resulted architecture of ANN that has the maximum perfor-
mance was found to be 2–7(h)-1. Previous work found that the optimal number of neurons in ANN architecture 
for modeling biosorption of chromium was 4–10-122.

The generality of the ANN model was certified by minimizing the errors in training and validation. The 
network was trained until the  R2 reached its maximum and RMSE, MAD and SSE recorded the lowest values 
(Table 6). Hence, the predicted values, for each experimental run based on the developed ANN model, were 
estimated and given along with the predicted RCCD and experimental values in Table 2. Because any linear 
regression model is not always appropriate for the data, residuals are generally used to assess the aptness of the 
model by defining residual values and determining its trend. The residuals presented as the variance between 
the experimental value of  Cr6+ removal and its corresponding predicted data point at each dataset was found to 
be very low at all tested points. This implies that the ANN can fit the actual experimental data exactly. Recently, 
the ANN modeling has found its way in biosorption of toxic metals such as  lead21,  copper28, and  zinc33, but none 
of them used immobilized cells during modeling process neither by RCCD nor ANN.

RCCD versus ANN models. Both RCCD and the well-learned ANN models were compared regarding 
their predictive capability to remove  Cr6+ by the immobilized P. alcaliphila NEWG-2 strain. The statistical 
parameters that measure and compare the accuracy of both models were estimated (Table 6). The modeling abil-
ity of a given model is reliant on the high value of  R2 and lower values of the RMSE, MAD, and SSE.

R2 measures the correlation between the response values and the predicted values, so, higher value (up to 1) 
reflects a strong correlation between both datasets. Commonly, RMSE is used in regression analysis to authen-
ticate experimental results, since the lower value means that the data are concentrated around the line of best 
fit (prediction errors). MAD, is another statistic that determines the average dispersion of the data around the 
mean, a lower value indicates a lower spread of the data around the mean. Finally, SSE, another assessment of 
the goodness-of-fit, determines the total deviation of the response values from their fitted values, lower value 
implies more fitness of the model.

Given the preceding statistics, both models exhibited high predictive ability. However, comparing the two 
models reveals that RCCD is lower in  R2 and higher in the other goodness-of-fit statistic than the ANN model. 
Therefore, the ANN model has a higher predictive ability than the RCCD model for  Cr6+ removal by the immobi-
lized P. alcaliphila NEWG-2. The current conclusion is conceding with that obtained by Shafi et al.19, who found 
that the ANN models were superior to RSM, recording lower RMSE, MAD, and chi-square and higher for  R2.

Likewise, another overall comparison was performed, in which the linear regression analysis between the 
actual values and those of predicted were drawn for both RCCD and ANN (Fig. 3). Again, the chart plot of 
ANN displays better fitting with a higher  R2 value, which also infers that ANN gives improved optimization 
results compared to RCCD. The graph also shows that the ANN model prediction points lie much closer to the 
line of perfect prediction than the RCCD model. Thus, the ANN model has a significantly higher generalization 
capacity than the RCCD model.

However, there are some merits when modeling using RCCD i.e., the structured nature of the RCCD can 
demonstrate the contributions of each factor in the regression models, thus recognizing the insignificant factors, 
wither single, interaction, or quadratic, in the model and thereby can be eliminated from the model. Moreover, 
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compared to RCCD, ANN modeling consumed extended computational time through many iterative calcula-
tions. However, the generated model by ANN had high predictive accuracy than RCCD. This can be attributed to 
its universal ability to approximate the nonlinearity of the system, compared with the restricted nature of RCCD 

Figure 2.  Normal probability plot of externally standardized residuals (A) and three-dimensional surface curve 
of  Cr6+-removal as combined influence of contact time and initial  Cr6+ conc. by RCCD (B). This figure was 
created by using Design Expert version 12 for Windows software.
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to the second-order polynomial, which requires only a sole step calculation for a response surface  model18,20. 
However, ANN has consistently performed better than the RCCD in all aspects.

The ANN models were adopted in various wastewater treatment, since these techniques are useful in forecast-
ing effluent quality and estimation of metals in a given source, as well as, updating the prediction points upon 
selection of any input or output  variables33,34. Contrarily, the other mathematical methods have difficulty in the 
prediction of desired output in wasted effluents, due to different types of metals, variety of salts, the variation of 
pH and  temperatures33, wherein, the ANN models have been a promising technique in biosorption process of 
heavy metals in the industrial effluent.

Surface morphology analysis. The surface morphology of the immobilized P. alcaliphila NEWG-2 was 
examined by Scanning Electron Microscopy (SEM) before and after the  Cr6+ biosorption. Figure 4A revealed 
a regular surface of the immobilized cells of P. alcaliphila NEWG-2 before the biosorption process. Figure 4B 
clearly shows the presence of glossy particles on the surface of the alginate beads after  Cr6+ biosorption which 
are absent before  Cr6+ biosorption.

Energy‑dispersive X‑ray analysis (EDX). EDX was performed to determine the elemental composition 
and to verify the presence of  Cr6+ attached to the immobilized P. alcaliphila NEWG-2 surface. Comparing the 
EDX spectrum before (Fig. 5A) and after (Fig. 5B) the  Cr6+ biosorption process shows the presence of an addi-
tional  Cr6+ peak after the  Cr6+ biosorption compared to the EDX spectrum before the  Cr6+ biosorption. That, 

Table 6.  Modeling comparison statistics of RCCD and ANN.

Measure RCCD

ANN

Training Validation

Coefficient of determination  (R2) 0.9862 0.9872 0.9935

Root of mean square error (RMSE) 3.005 2.568 1.712

Mean absolute deviation (MAD) 17.892 1.834 1.594

Sum of squares due to error (SSE) 118.51 112.12 26.39

Number of runs used 26 17 9

Figure 3.  Actual versus RCCD and ANN predicted values for chromium removal by P. alcaliphila NEWG-2.
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in turn, proves the capacity of the immobilized P. alcaliphila NEWG-2 to remove  Cr6+ from aqueous solutions. 
Regarding the overall biosorption process, there are two main topics. The first belongs to sodium alginate beads 
that were reported to absorb  Cr6+  ions16, and the second belongs to the microbial cell.

Different mechanisms of bacterial biosorption. Among microbial groups, bacteria have been identi-
fied to be one of the most important bio-sorbents. The biosorption capacity depends not only on the type of 
metal ions but also the type of bacteria, especially the cell wall that contains a variety of surface organic func-
tional-groups, with a high affinity to binding  metals35.

The kinetic biosorption process by individual bacterium biomass may have several mechanisms that work 
complementary or individually. The different mechanisms of biosorption are shown in Fig. 6. Generally, the 
microbial activity towards metal removal including two phases; physical adsorption or ion exchange at the cell 
surface, followed by a slower phase involving active metabolism-dependent transport of metal into bacterial 

Figure 4.  SEM micrograph of the immobilized P. alcaliphila NEWG-2: (A) before and (B) after biosorption of 
 Cr6+.
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 cells36,37. It is, therefore, possible that the metal ion is transferred into the cell and reacts to form a precipitate and 
remaining within the cells, or forming an affine colloidal entrapped by extracellular  polymers38.

Figure 5.  EDX analysis of the immobilized P. alcaliphila NEWG-2: (A) before and (B) after biosorption of  Cr6+.
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In details, bacteria share several mechanisms for heavy metal biosorption, including ion exchange, physi-
cal adsorption on specific binding sites (negatively-charged functional groups) of the cell wall, complexation, 
diffusion, intracellular accumulation, or physicochemical interactions between the metal ions and the bacterial 
cell  wall39.

Concerning Pseudomonas spp., the kinetic process of chromium biosorption suggests an efficient intracellular 
mechanism of chromate uptake by P. aeruginosa and the adsorption process has an endothermic  nature40. The 
rhamnolipids (a low-molecular-weight biosurfactant) content of Pseudomonas spp. plays another important role 
in the bioremoval of chromium and its efficiency may be back to the anionic nature and complexation ability, 
therefore the bio-removal process is positively correlated with rhamnolipids  quantity36,37. additionally, rham-
nolipid production increased when Pseudomonas sp. was exposed to  chromium37.

P. aeruginosa ASU 6a is an example of a bacterium that contains negatively-charged functional groups (car-
boxylate, phosphate, sulfhydryl, and amino groups) that were reported to play a vital role in the biosorption 
 process41. However, ionic exchange by some of the functional groups (e.g., ‒NH, ‒OH, ‒CH, and ‒CONH) and 
electrostatic interaction were reported as the dominant mechanisms presented in biosorption of heavy metals by 
P. plecoglossicida42. Another work reported that the cell wall of P. aeruginosa S22 contains potential complexa-
tion sites such as carboxylate, phosphate, sulfahydryle, and amino (aspartic acid, glutamic acid, histidine, and 
cysteine) groups, the latter group, in especial, has a strong affinity for metal  ions43.

Conclusion
The Plackett–Burman design studies the significance of immobilized cell, contact time, and initial  Cr6+ concen-
tration on biosorption process by P. alcaliphila NEWG-2. Both RCCD and ANN models have a high accuracy in 
the modeling of the  Cr6+ removal process. However, the ANN model showed to be more robust and accurate in 
assessing the prediction of dependent variables, with skill in prediction and generalization, within the training 
region, than the RCCD model. Finally, the ANN model could be recommended to be a fit technique in forecast-
ing and accurate for heavy metals removal throughout industrial effluent treatment.

Received: 15 October 2020; Accepted: 6 January 2021

Figure 6.  Schematic diagram showing the possible kinetic mechanisms of metal ions biosorption by the 
bacterial cell. The photograph was taken by using scanning electron microscope for P. alcaliphila NEWG-2 cells.
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