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Calcium‑based phosphate binder 
use is associated with lower risk 
of osteoporosis in hemodialysis 
patients
Hiroko Hashimoto1, Satomi Shikuma1, Shintaro Mandai2*, Susumu Adachi3 & 
Shinichi Uchida2

Loss of bone mineral density (BMD) is a substantial risk of mortality in addition to fracture in 
hemodialysis patients. However, the factors affecting BMD are not fully determined. We conducted 
a single‑center, cross‑sectional study on 321 maintenance hemodialysis patients who underwent 
evaluation of femoral neck BMD using dual‑energy X‑ray absorptiometry from August 1, 2018, 
to July 31, 2019. We examined factors associated with osteoporosis defined by T‑score of ≤  − 2.5, 
using logistic regression models. Median age of patients was 66 years, and 131 patients (41%) were 
diagnosed with osteoporosis. Older age, female, lower body mass index, diabetes mellitus, and 
higher Kt/V ratios were associated with higher osteoporosis risk. The only medication associated with 
lower osteoporosis risk was calcium‑based phosphate binders (CBPBs) [odds ratio (OR), 0.41; 95% 
confidence interval (CI), 0.21–0.81]. In particular, CBPB reduced the osteoporosis risk within subgroups 
with dialysis vintage of ≥ 10 years, albumin level of < 3.5 mg/dL, active vitamin D analog use, and no 
proton pump inhibitor (PPI) use. In conclusion, CBPB use was associated with lower osteoporosis risk 
in hemodialysis patients. This effect might be partially attributable to calcium supplementation, given 
its higher impact in users of active vitamin D analogs or non‑users of PPI, which modulate calcium 
absorption.

Osteoporosis is characterized by reduced bone mineral density (BMD) and microarchitectural deterioration of 
bone tissue, leading to bone fragility and a consequent increase in the risk of  fractures1,2. Bone disease is a com-
mon complication in patients with chronic kidney disease (CKD), and such a condition is referred to as CKD 
mineral and bone disease (CKD–MBD). According to Kidney Disease Improving Global Outcomes (KDIGO) 
guidelines, CKD–MBD is a systemic disorder of mineral and bone metabolism due to CKD manifested by either 
one or a combination of the following: (1) abnormalities of calcium, phosphorus, intact parathyroid hormone 
(PTH), or vitamin D metabolism; (2) abnormalities in bone turnover, mineralization, volume, linear growth, or 
strength; or (3) vascular or other soft-tissue calcification. Data from the National Health and Nutrition Examina-
tion Survey have suggested that CKD and osteoporosis are highly  coprevalent3,4 .

The incidence of fractures progressively increases according to CKD progression, and patients with CKD, 
particularly those with end-stage disease, have a high risk of fractures, which leads to unfavorable morbidity 
and  mortality5–12. In the Dialysis Outcomes and Practice Patterns Study report including an international cohort 
of hemodialysis patients, the incidence of fractures was reported to be significantly higher for hemodialysis 
patients than for the general population, with a 3.7-fold increase in the unadjusted relative risk of  mortality8. 
Furthermore, a more recent study including a Japanese cohort reported that the mortality rate after fractures 
was 4.8-fold higher in hemodialysis patients than in the general  population11. Therefore, it is essential to prevent 
osteoporosis and fractures to improve the outcome of patients with ESKD.

Dual-energy X-ray absorptiometry (DXA) is a well-established tool for measuring BMD and strongly pre-
dicting the risk of  fracture13,14. Accumulating evidence has revealed that DXA-based BMD predicts the risk of 
incident fractures in patients with advanced CKD, including hemodialysis patients, similar to that observed in 
the general  population15–18. The latest KDIGO 2017 CKD–MBD guidelines recommend measurements of BMD 
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in patients with advanced CKD. More recently, decreased DXA-based BMD was shown to predict a higher risk 
of overall mortality in patients with  ESKD12. However, factors or medications that improve osteoporosis in 
this population have not been fully clarified because of the limited number of studies reported in the literature 
regarding factors associated with BMD in a large number of participants.

Therefore, the present study aimed to investigate clinical factors and medications, particularly including 
CKD–MBD-related medications, that are associated with BMD in maintenance hemodialysis patients using DXA.

Material and methods
Study design and participants. This is a single-center, cross-sectional study including 321 maintenance 
hemodialysis patients who underwent evaluations of femoral neck BMD using DXA from August 1, 2018, to 
July 31, 2019, at our dialysis center. Patients aged > 80 years or those who lacked routine laboratory data were 
excluded. All the patients received hemodialysis three times per week. The study protocol was approved by the 
ethics committee of Shuuwa General Hospital, and the study was performed in accordance with the Declaration 
of Helsinki guidelines regarding ethical principles for medical research involving human subjects. Informed 
consent was obtained from all participants after information about the study.

Data collection. Baseline demographics and characteristics were recorded for each patient. Laboratory tests 
were performed in the first dialysis session of each week. We analyzed laboratory data measured within 1 month 
before DXA measurements, including serum albumin, sodium, calcium, phosphate, and urea nitrogen levels. In 
addition, we analyzed the plasma-intact PTH levels measured within 3 months before DXA measurements. Kt/V 
(Kt/V is a number used to quantify hemodialysis and peritoneal dialysis treatment adequacy) ratios were calcu-
lated using the single-pool Daugirdas formula. Geriatric nutritional risk index (GNRI) is a nutritional marker 
calculated by serum albumin level and body mass index (BMI)19. Percent creatinine generation rate (%CGR) is 
used as estimates of muscle mass and protein nutritional  status20. Cardiovascular disease (CVD) was defined 
as any of the following: stroke, ischemic heart disease, congestive heart failure, or peripheral arterial disease. 
Hypertension was defined as a systolic blood pressure of ≥ 140 mmHg, a diastolic blood pressure of ≥ 90 mmHg, 
or taking antihypertensive agents. Diabetes mellitus was defined as hemoglobin A1C of ≥ 6.5%. Medication-
related data and use of CBPBs, oral or IV-active vitamin D analogs, oral or IV calcimimetics, and PPIs were 
recorded. BMD was measured by DXA using a Horizon WI Bone Densitometer (Hologic Inc, Marlborough, 
Mass, USA). The results were expressed in terms of T-scores and standard deviation (SD) compared with healthy 
young sex-matched controls. Osteoporosis was defined as a T-score of ≤  − 2.5 according to the World Health 
Organization definition.

Statistical analyses. Continuous data are shown as means with SD or medians with interquartile ranges 
(IQR), as appropriate. Categorical variables are expressed as numbers and percentages. Comparisons between 
the osteoporosis and non-osteoporosis groups were performed using the unpaired t test or Mann–Whitney U 
test for continuous variables and the chi-squared test for categorical variables, as appropriate. Multivariate logis-
tic regression analyses were performed to evaluate factors associated with the risk of osteoporosis. Estimates of 
association were expressed as odds ratios (ORs) with the corresponding 95% confidence interval (CI). Subgroup 
analysis using multiple logistic regression analyses were performed to evaluate the effects of CBPBs on BMD 
under specific factors or backgrounds. Univariate and multivariate linear regression analyses were performed to 
examine the relevant factors associated with BMD. All statistical analyses were performed using EZR (Saitama 
Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foun-
dation for Statistical Computing, Vienna, Austria)21. P values of < 0.05 were considered statistically significant.

Results
Baseline characteristics. A total of 321 participants were enrolled in the study. Baseline characteristics 
and demographics of these patients are shown in Table 1. The median age was 66 years (IQR, 55–72 years), 
median dialysis vintage was 9 years (IQR, 5–17 years), 109 (34%) patients were women,138 (43%) were diag-
nosed with CVD, and 146 (46%) had diabetes mellitus. Osteoporosis was diagnosed in 131 (41%) patients. The 
median age was higher, the proportion of women was higher, and mean BMI was lower in the osteoporosis group 
than in the non-osteoporosis group. Median dialysis vintage and the prevalence of comorbidities such as CVD, 
hypertension, and diabetes mellitus were not significantly different in the two groups. With regard to laboratory 
data, mean serum phosphate levels and Kt/V ratios were higher in the osteoporosis group, whereas serum albu-
min, serum calcium, and serum intact PTH levels were not significantly different. The proportion of CBPB users 
was higher in the osteoporosis group, whereas the proportion of calcium-free phosphate binder, calcimimetics, 
and PPI users was not significantly different between the groups.

Factors associated with osteoporosis in hemodialysis patients. To elucidate factors associated 
with low BMD, multivariate logistic regression analysis was performed. As shown in Table 2, older age, female 
sex, lower BMI, diabetes mellitus, lower serum phosphate level, and higher Kt/V ratios were associated with an 
increased risk of osteoporosis. Conversely, the use of CBPBs was associated with a decreased risk of osteoporosis 
after adjustment of potential confounders. The use of CBPBs, active vitamin D analogs, and PPI was not signifi-
cantly associated with BMD.

We further examined the association between covariates and DXA-based BMD using multivariate linear 
regression analysis. Older age, female sex, lower BMI, diabetes mellitus, lower serum calcium level, and higher 
Kt/V ratios were associated with lower BMD (Table 3). The use of CBPBs was associated with a higher BMD, as 
revealed by univariate and multivariate analyses. In addition to these analyses using a T-score, we also examined 
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the BMD values based on absolute measurement (g per  cm2). As shown in the Supplementary Figure 1, the 
BMD values were greater in CBPB users than non-CBPB users particularly among male patients. The univariate 
and multivariate linear regression analyses revealed the factors associated with BMD (Supplementary Table 1), 
which was very similar to those observed in the analysis using a T-score (Table 3). CBPB use was significantly 
associated with greater BMD in a univariate linear regression model, and this association was also marginally 
significant after adjusting for multiple cofounders.

Subgroup analysis. To evaluate the benefits of CBPBs in treating osteoporosis in the specific population 
with ESKD, we used the association between CBPBs and the risk for osteoporosis in various subgroups based on 
multivariate logistic regression models. As shown in Fig. 1, CBPB was particularly associated with a decreased 
risk of osteoporosis in patients with longer hemodialysis vintage, lower serum albumin level, lower intact PTH 
level, and active vitamin D analog use as well as in non-CVD, non-diabetes mellitus, and non-PPI use patients.

To further determine if impact of CBPBs on osteoporosis risk is related to the patients’ nutritional status, we 
performed the additional subgroup analysis with the widely used nutritional status indicators GNRI and %CGR 
19,20. As shown in the Supplementary Figure 2, CBPBs were significantly associated with lower risk of osteoporosis 
in the lower GNRI or %CGR subgroups, which might reflect lower intake of dietary calcium.

Discussion
This study investigated the association of multiple factors and medications with DXA-based BMD in maintenance 
hemodialysis patients and identified CBPB as a factor associated with a lower risk of osteoporosis in addition 
to the conventional risk factors for osteoporosis, including older age, female sex, lower BMI, diabetes mellitus, 
and higher Kt/V ratio. Moreover, we determined that the impact of CBPBs on BMD was greater in users of 
active vitamin D analogs or non-users of PPI, which modulate calcium absorption, suggesting that calcium 
supplementation by CBPBs increases BMD in patients with ESKD. To the best of our knowledge, this study is 
the first to report the beneficial effects of CBPBs on osteoporosis in patients with ESKD, providing new insights 
into osteoporosis treatment in this population.

The present study demonstrated that older age, female sex, lower BMI, and diabetes mellitus were correlated 
with lower BMD; these are well-established risk factors for osteoporosis in both the general population and 
patients with  ESKD22–29. The association between higher Kt/V ratios and lower BMD demonstrated in the present 

Table 1.  Characteristics of the study participants. Data are shown as numbers (percentiles) for categorical 
variables and mean ± SD or median (interquartile range) for continuous variables. P < 0.05 was considered 
significant. BMI, body mass index; Ca, calcium; P, phosphate; PPI, proton pump inhibitor; PTH, parathyroid 
hormone.

Variable
Whole
(n = 321)

Osteoporosis
(n = 131)

Non-osteoporosis
(n = 190) P value

Demographic

Age, years 66 (55–72) 68 (60–74) 63 (52–70)  < 0.001

Female, % 109 (34) 70 (53) 39 (21)  < 0.001

BMI, kg/m2 22.6 (19.5–25.0) 20.7 (18.1–23.1) 23.9 (20.8–26.7)  < 0.001

 < 18.5, % 52 (16) 36 (28) 16 (8)  < 0.001

 18.5–24.9, % 190 (59) 82 (63) 108 (57)

 ≥ 25, % 79 (25) 13 (10) 66 (35)

Dialysis vintage, year 9 (5–17) 10 (5–16) 8 (4–17) 0.3

Hypertension, % 319 (99) 130 (99) 189 (100) 1.0

Cardiovascular disease, % 138 (43) 64 (49) 74 (39) 0.1

Diabetes mellitus, % 146 (46) 62 (47) 84 (44) 0.7

Laboratory data

Albumin, g/dL 3.6 ± 0.3 3.6 ± 0.4 3.6 ± 0.3 0.5

Sodium, mEq/L 137.9 ± 3.2 137.7 ± 32 138.0 ± 3.2 0.6

Calcium, mg/dL 8.8 ± 0.5 8.8 ± 0.5 8.8 ± 0.6 0.8

Phosphate, mg/dL 5.0 ± 1.1 4.7 ± 1.1 5.1 ± 1.1 0.001

PTH, pg/mL 191 (124–283) 195 (118–288) 190 (131–282) 1.0

Kt/V ratios 1.5 ± 0.2 1.6 ± 0.2 1.4 ± 0.2  < 0.001

Medication

Ca-based P binders, % 251 (78) 91 (70) 160 (84) 0.003

Ca-free P binders, % 171 (53) 61 (47) 110 (58) 0.1

Active vitamin D analog, % 247 (77) 107 (82) 140 (74) 0.1

Calcimimetic, % 186 (58) 77 (59) 109 (57) 0.9

PPI, % 158 (49) 70 (53) 88 (46) 0.3
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study was unexpected, although the previous study including a large cohort of hemodialysis patients revealed 
that patients with fractures had higher Kt/V  ratios8. In addition, we investigated the impact of medications, 
including CKD–MBD-related medications and PPI that is a recently identified risk factor for osteoporosis in 
adults and  children30, on BMD and identified the previously unrecognized association between CBPB use and 
the decreased risk of osteoporosis.

It has long been unidentified whether CKD–MBD-related medications, including phosphate binders, modu-
late BMD and the subsequent risk of fracture in patients with ESKD. Recently, a prospective cohort study includ-
ing 537 children with CKD reported that CBPBs reduced the risk of  fractures31. A previous systematic review 
evaluating the effect of various phosphate binders on CKD–MBD-related outcomes of adult patients with CKD 
failed to conclude whether CBPB prevents fractures, possibly due to the enrollment of only one small randomized 
controlled trial based on 148 moderately ill patients with  CKD32,33. A recent Korean population-based cohort 
study demonstrated that phosphate binders, including both CBPBs and non-CBPBs, reduced the risk of fractures 
in patients with  ESKD34. The majority of phosphate binder users in this study were taking CBPBs, suggesting that 
the beneficial effect of phosphate binders was attributable to CBPBs and its favorable impact on BMD.

Calcium carbonate is the most used phosphate binder in patients with ESKD and is also used as a calcium 
supplement in the general population worldwide because of its cost efficiency and relatively high elemental 
calcium content. Although it is important to avoid excess calcium intake and prevent the increased risk of CVD 
events, kidney stones, and gastrointestinal symptom, adequate calcium intake is recommended for skeletal 
health in all age groups because long-term calcium deficiency can lead to osteoporosis and an increased risk of 
 fracture35–40. However, several studies have indicated that the calcium intake in patients with CKD is basically 
low compared with the value recommended by dietary intake  guidelines41,42. Thus, modest supplementation of 
calcium from foods, supplements, and calcium-containing medications, including CBPBs, is recommended for 
patients with CKD to achieve an estimated neutral calcium  balance43. We speculated that calcium supplementa-
tion is among the major factors contributing to the increase in BMD in hemodialysis patients taking CBPBs, and 
the greater benefit of CBPBs among the subgroups with unfavorable nutritional status in our analyses support 
this speculation.

Table 2.  Factors associated with a risk of osteoporosis in maintenance hemodialysis patients. Multivariate 
logistic regression analysis for assessment of osteoporosis risk factors. Model 1, adjusted for age, sex, BMI. 
Model 2, age, sex, BMI, dialysis vintage year, hypertension, CVD, diabetes mellitus. Model 3, age, sex, BMI, 
dialysis vintage year, hypertension, CVD, diabetes mellitus, albumin, sodium, calcium, phosphate, iPTH, Kt/V 
ratios, CBPBs use, CBPB use, active vitamin D analogs use, calcimimetics use, and PPI use. Odds ratios (ORs) 
with the corresponding 95% confidence intervals (95% CIs). P < 0.05 was considered significant. BMI, body 
mass index; Ca, calcium; P, phosphate; PPI, proton pump inhibitor; PTH, parathyroid hormone.

Variable

Model 1 Model 2 Model 3

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Age per 5 years 1.17 (1.04–1.32) 0.010 1.16 (1.02–1.31) 0.022 1.17 (1.02–1.34) 0.029

Female 4.26 (2.50–7.26)  < 0.001 4.88 (2.79–8.51)  < 0.001 3.24 (1.69–6.18)  < 0.001

BMI, kg/m2

< 18.5 2.53 (1.26–5.10) 0.009 2.78 (1.35–5.73) 0.005 2.82 (1.25–6.38) 0.013

18.5–24.9 Reference Reference Reference

≥ 25 0.26 (0.13–0.53)  < 0.001 0.23 (0.11–0.48)  < 0.001 0.30 (0.14–0.66) 0.003

Dialysis vintage per year 1.00 (0.97–1.03) 0.7 1.00 (0.97–1.04) 0.9

Hypertension 0.66 (0.02–20.90) 0.8 1.08 (0.03–35.80) 1.0

Cardiovascular disease 1.37 (0.79–2.38) 0.3 1.33 (0.72–2.46) 0.4

Diabetes mellitus 1.79 (0.96–3.32) 0.038 2.64 (1.31–5.34) 0.007

Albumin, g/dL 1.99 (0.80–4.97) 0.1

Sodium, mEq/L 1.02 (0.93–1.13) 0.6

Calcium, mg/dL 0.62 (0.36–1.06) 0.08

Phosphate, mg/dL 0.72 (0.54–0.95) 0.020

PTH, pg/mL

Q1 1.38 (0.61–3.09) 0.4

Q2 Reference

Q3 1.27 (0.56–2.85) 0.6

Q4 1.56 (0.69–3.55) 0.3

Kt/V ratios per 0.1 1.35 (1.13–1.61)  < 0.001

Ca-based P binders 0.41 (0.21–0.81) 0.011

Ca-free P binders 0.97 (0.54–1.74) 1.0

Active vitamin D analog 1.38 (0.65–2.94) 0.4

Calcimimetic 1.07 (0.59–1.92) 0.8

PPI 1.27 (0.71–2.27) 0.4
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CBPBs were more likely to decrease the risk of osteoporosis, particularly in users of active vitamin D analogs 
and non-users of PPI, as revealed by our subgroup analysis. Vitamin D is also essential to bone health because it 
promotes intestinal calcium absorption. The efficacy of vitamin D alone or with concomitant use of calcium on 
osteoporosis and fractures has been examined in several trials in the general population. These trials revealed 
that vitamin D alone was insufficient but its concomitant use with calcium reduced the risk of  fractures44–48. 
Considering these findings, we speculate that sufficient intake and adsorption of calcium is essential to prevent 
fractures, independent of the evidence of CKD. Furthermore, we demonstrated that CBPBs were less effective 
on BMD in PPI users.

Several studies, including a meta-analysis of case–control and cohort studies, have reported that PPIs are 
positively associated with an increased risk of  fracture30,49–53. One possible explanation for this observation has 
been proposed: PPIs inhibit gastric acid, leading to impaired absorption of  calcium54–56. Thus, this finding also 
supports the fact that calcium supplementation by CBPBs is partially responsible for increased BMD. We also 
demonstrated that CBPBs were effective in patients with reduced serum albumin level, lower BMI, and longer 
dialysis vintage. These results might be associated with the reduced nutrient intake, including calcium, in such 
patients. CBPBs were less effective in the CVD and diabetes mellitus groups. It is possible that a substantial 
proportion of these patients use loop diuretics, which increase calcium excretion.

Since excess of calcium intake might be harmful to CKD patients, the latest KDIGO guideline suggested 
restricting the dose of CBPBs among phosphate  binders57. CBPB use is not associated with increase in mortality 
and vascular event risk compared with placebo in CKD patients. When compared with a calcium-free phosphate 
binder sevelamer, several clinical trials reported that CBPBs were associated with increased risk of vascular 
 calcification58–61. However, the causal relationship between CBPBs and risk of mortality or cardiovascular events 
has yet to be determined, because “none of the studies provided sufficient dose threshold information about 
calcium exposure”57. Sevelamer is known to suppress vascular calcification due to mechanisms unrelated to 
calcium exposure such as improvement of the lipid profile, reduction of inflammation and oxidative  stress57,62,63. 
The previous systematic review also demonstrated that risks of cardiovascular death, myocardial infarction, 
stroke, and coronary artery calcium score progression were not significantly different between a sevelamer and 
CBPBs, while risk of all-cause mortality was higher on CBPB  use32. The findings in this study would provide 

Table 3.  Univariate and multivariate linear regression analyses examining the association between covariates 
and bone mineral density. Bone mineral density is based on a T-score that is the number of standard deviations 
compared with healthy young controls. β coefficients with the corresponding 95% confidence intervals (95% 
CIs). P < 0.05 was considered significant. BMI, body mass index; Ca, calcium; P, phosphate; PPI, proton pump 
inhibitor; PTH, parathyroid hormone; Q, quartile.

Variable

Univariate Multivariate

Coefficient (95% CI) P value Coefficient (95% CI) P value

Age per 5 years  − 0.139 (− 0.205 to − 0.073)  < 0.001  − 0.087 (− 0.147 to − 0.029) 0.004

Female  − 1.181 (− 1.466 to − 0.896)  < 0.001  − 0.781 (− 1.070 to − 0.491)  < 0.001

BMI, kg/m2

 < 18.5  − 1.153 (− 1.536 to − 0.771)  < 0.001  − 0.679 (− 1.027 to − 0.330)  < 0.001

18.5–24.9 Reference Reference

 ≥ 25 0.950 (0.622–1.278)  < 0.001 0.545 (0.234–0.855)  < 0.001

Dialysis vintage per year  − 0.001 (− 0.017–0.015) 0.9 0.007 (− 0.008–0.022) 0.4

Hypertension 0.077 (− 1.809–1.963) 0.9  − 0.032 (− 1.583–1.518) 1.0

Cardiovascular disease  − 0.318 (− 0.616 to − 0.020) 0.036  − 0.217 (− 0.478–0.044) 0.1

Diabetes mellitus  − 0.082 (− 0.380–0.220) 0.6  − 0.475 (− 0.767 to − 0.184) 0.002

Albumin, mg/dL 0.145 (− 0.306–0.596) 0.5  − 0.270 (− 0.658–0.118) 0.2

Sodium, g/dL 0.012 (− 0.035–0.059) 0.6  − 0.020 (− 0.060–0.020) 0.3

Kt/V ratios  − 0.289 (− 0.354 to − 0.223)  < 0.001  − 0.157 (− 0.230 to − 0.083)  < 0.001

Calcium, mg/dL 0.096 (− 0.180–0.372) 0.5 0.238 (0.004–0.471) 0.046

Phosphate, mg/dL 0.177 (0.045–0.309) 0.009 0.097 (− 0.018–0.211) 0.1

PTH, pg/mL

Q1 Reference Reference

Q2 0.328 (− 0.013–0.669) 0.06 0.138 (− 0.211–0.487) 0.4

Q3  − 0.176 (− 0.516–0.163) 0.3  − 0.146 (− 0.500–0.208) 0.4

Q4  − 0.064 (− 0.409–0.280) 0.7  − 0.094 (− 0.463–0.275) 0.6

Ca-based P binders 0.412 (0.055–0.768) 0.024 0.303 (0.006–0.600) 0.046

Ca-free P binders 0.344 (0.049–0.639) 0.023 0.063 (− 0.191–0.317) 0.6

Active vitamin D analog  − 0.373 (− 0.723 to − 0.023) 0.037  − 0.199 (− 0.503–0.105) 0.3

Calcimimetic  − 0.080 (− 0.381–0.219) 0.6  − 0.138 (− 0.391–0.115) 0.2

PPI  − 0.104 (− 0.401–0.192) 0.5  − 0.018 (− 0.267–0.231) 0.9
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novel insights into the association between CBPBs and CKD patients’ outcome, and indicate that CBPBs are 
potentially beneficial for bone health under avoidance of excessive calcium intake and adverse events. Further 
studies are needed to clarify the specific population who could receive therapeutic benefits of CBPBs.

The present study has several limitations. First, this was a single-center observational study. Second, because 
of the cross-sectional observational nature of this study, we could not establish causality. Third, data (such as 
serum bone alkaline phosphatase levels) regarding factors associated with bone metabolism were not available. 
Fourth, our dataset lacked diet inquiry or urinary calcium excretion that might be a nutritional marker of calcium 
intake, although urinary calcium may not reflect the dietary intake as the median dialysis vintage was nine years 
and 90% or more of the study participants were anuric or oliguric. Thus, we performed a subgroup analysis using 
the other nutritional status indicators GNRI and %CGR, and showed the higher impact of CBPBs on BMD under 

Figure 1.  Evaluation of calcium-based phosphate binders’ effects on osteoporosis in various subgroups. Odds 
ratios (ORs) with the corresponding 95% confidence intervals (95% CIs). P < 0.05 was considered statistically 
significant. BMI, body mass index; PPI, proton pump inhibitor; PTH, parathyroid hormone.
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unfavorable nutritional status. Further investigations are warranted to establish the causal relationship between 
the use of CBPB and the prevention of osteoporosis and fractures.

Conclusion
We have demonstrated that oral CBPB use was associated with a lower risk of osteoporosis in maintaining 
hemodialysis patients. The study findings might provide novel insights into osteoporosis treatment in patients 
with ESKD.

Received: 10 July 2020; Accepted: 4 January 2021
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