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The adsorptive behaviour 
of kaolinite to sodium 
dodecyl benzene sulphonate 
and the structural variation 
of kaolinite
Xiaoming Ni1,2, Zheng Zhao1*, Zhiheng Li3 & Quanzhong Li2

Analysis of the adsorptive behaviour of kaolinite to sodium dodecyl benzene sulphonate (SDBS) at 
different concentrations can provides a basis for selecting the best concentration. The adsorptive 
capacity and adsorptive behaviour of kaolinite to SDBS at different concentrations were studied 
using ultraviolet spectrophotometer, pseudo-first-order adsorption kinetics model, and pseudo-
second-order adsorption kinetics model. Scanning electron microscopy with energy dispersive 
spectrometry (SEM–EDS), X-ray diffraction (XRD), and infrared spectroscopy (FTIR) were used to study 
the variation characteristics of surface structure, crystallinity indices, and main functional groups on 
kaolinite before, and after, adsorption. The results show that as the SDBS concentration increase, the 
adsorptive capacity of kaolinite to SDBS increase. The adsorption process can be accurately fitted by 
the pseudo-secondary adsorption kinetic model, which means the adsorptive behaviour was mainly 
chemical in origin. The adsorption of SDBS by kaolinite mainly occurs on the surface. The solidification, 
lamellar aggregation, and crystallinity index of kaolinite are more obvious after the adsorption of 
SDBS, but the interlayer spacing of kaolinite did not change to any significant. After the adsorption of 
SDBS, the intensity ratio of 1000–1008 cm−1 bands changed significantly, indicating the change of the 
chemical environment, and the adsorptive behaviour was chemical.

Coal rocks, sandstone and shale reservoirs often contain clay minerals such as kaolinite. When hydraulic fractur-
ing is carried out on these reservoirs, clay minerals and fracturing fluids in the reservoirs are prone to produce 
effects such as velocity sensitivity, alkali sensitivity and salt sensitivity, which have a great impact on the effect of 
reservoir reconstruction. After adding surfactant to the fracturing fluid, surface active agents are often adsorbed 
on clay minerals1–4 to change the surface structure of clay minerals and reduce the above effects. Sodium dodecyl 
benzene sulphonate (SDBS) is a commonly used anionic surfactant5, discovering the adsorption characteristics 
of SDBS on the surface of kaolinite minerals can provide a basis for the selection of the optimum concentration 
thereof.

The adsorptive behaviour of solids to surfactants can be described by fitting the adsorption process at differ-
ent times using classical models. Among them, the methods for measuring the adsorptive capacity are mainly 
spectrophotometric and liquid chromatographic techniques. The spectrophotometric measurement method 
involves supernatant being collected from centrifuged liquid for measurement of absorbance. Then the adsorptive 
capacity is obtained according to the relationships between concentration and absorbance. This method, due to 
its ease of operation, is a common method used for testing the adsorptive capacity6,7. Liquid chromatography 
is based on the small differences in physical and chemical properties with regard to the solubility, adsorptive 
capacity, and ion exchange capacity of substances. These should be combined with the differences between the 
partition coefficient of mobile and fixed phases: the various substances to be measured were separated through 
the distribution of their fixed and mobile phases, according to the difference in relative solubility between both 
phases8,9. The adsorptive capacity (for quantitative evaluation) also requires spectrophotometry. The commonly 
adsorption kinetic models used in fitting adsorption processes include the pseudo-first-order adsorption kinetic 
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model, pseudo-second-order adsorption kinetic model, Elovich kinetic model, and Bangham adsorption rate 
model10–15. It is generally believed that pseudo-first-order adsorption kinetics model is more accurate for the 
adsorption process fitting of physical adsorption, while the pseudo-second-order adsorption kinetics model is 
more accurate when simulating chemical adsorption16–18. The structural change characteristics of minerals after 
adsorption of anionic surfactant were mainly detected by scanning electron microscopy with energy dispersive 
spectrometry (SEM–EDS), X-ray diffraction (XRD), and infrared spectroscopy (FTIR)19–24.

Herein, the adsorptive capacity of kaolinite to SDBS at different concentrations under different time was 
tested with the help of ultraviolet spectrophotometry, and the adsorption type of SDBS was determined by fitting 
the adsorption process with the classical model. SEM–EDS, XRD, and FTIR were used to test the differences in 
element content, layer spacing, and main functional groups before and after adsorption. The structural changes 
of kaolinite were thus obtained. The research can provide a basis for selecting the best concentration of SDBS.

Experimental samples
The main samples required for the experiment were the anionic surfactant SDBS and kaolinite minerals. The 
SDBS (analytically pure) used in the experiment was produced by Fangzheng Reagent Factory, Beichen District, 
Tianjin, China. In the SDBS (C18H29NaO3S), the active substance content is ≥ 90%, the sodium salt content is ≤ 7%, 
and the moisture content is ≤ 3%. The block sample had good crystallinity and few impurities (the kaolinite con-
tent is greater than 95%). The kaolinite sample was pulverised and then tested by X-ray diffraction and energy 
spectral analysis. The chemical formula of the kaolinite powder was Al2Si2O5(OH)4. The oxidic composition and 
mass fraction of each mineral in kaolinite are shown in Table 1.

Research methods
The adsorptive behaviour of kaolinite to SDBS. 

(1)	 The test for adsorptive capacity.

1.	 Sample preparation
	   We weighed 2.000 g of kaolinite (three pieces) on a precision balance and placed them into a conical 

bottle. 200 mL of SDBS solutions with concentrations of 3 mmol/L, 4 mmol/L, and 5 mmol/L were thus 
prepared.

2.	 Absorbance test
	   The three different concentrations of SDBS solutions were poured into the conical flask containing 

kaolinite and then stirred on a magnetic agitator (set the operating temperature as 25 °C during the 
experiment). The upper clear solution was filtered after stirring for 0 min, 20 min, 40 min, 60 min, 
90 min, and 120 min, respectively, then the absorbance of the filtrate was measured by 201 UV spec-
trophotometer (The test wavelength of the ultraviolet spectrophotometer ranged from 190 to 1100 nm 
and the wavelength accuracy was ± 0.8 nm).

3.	 Adsorptive capacity calculation
	   The absorbance peak of SDBS occurs at about 223 nm, and when the solution concentration is 

3–5 mmol/L, the absorbance peak has a good linear relationship with the concentration of SDBS5:

where, C is concentration of SDBS, mmol/L; A represents the peak wavelength of absorbance.
	   According to the absorbance test results of filtered filtrate, in combination with formula (1), the 

adsorptive capacity can be calculated as follows:

where, qt is the adsorptive capacity at time t, mmol/g; C0 represents the initial concentration, mmol/L; 
Ct is the concentration at time t, mmol/L; V is the volume of the solution, L; m is the mass of the kao-
linite, g.

(2)	 Determination of the adsorptive behaviour of kaolinite to SDBS
	   The adsorptive behaviour of kaolinite to SDBS was investigated mainly by comparing the adsorption 

process with the classical adsorption kinetic model.
	   Wherein, the fitting formula of pseudo-first-order adsorption dynamics equation to characterise physical 

adsorption is as follows5:

where, qe is the equilibrium absorption capacity, mmol/g; k1 is the first-order adsorption constant, min−1.

(1)C = 4.80071A+ 0.4465

(2)qt =
(C0 − Ct)V

m

(3)qt = qe
[

1− exp(−k1t)
]

Table 1.   The oxidic composition of kaolinite.

Mineral Component Al2O3 SiO2 Fe2O3 TiO2 MgO CaO Na2O K2O Others

Kaolinite Mass fraction (%) 39.2 43.67 0.32 1.98 0.068 0.01 0.028 0.094 14.63
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	   The fitting formula of pseudo-second-order kinetic model to characterise chemical adsorption is as 
follows5:

where, k2 is the second-order adsorption constant, g·mmol−1·min−1; k2qe
2 is the initial adsorption time, 

mmol·g−1·min−1.

The structural variation of kaolinite before and after adsorption.  Centrifuge the mixture of kao-
linite and different concentrations SDBS solutions after adsorption, and dry the precipitate in a thermostatic 
drying chamber. Together with the original kaolinite, respectively, marked as the Original sample, 3 mmol/L 
SDBS after adsorption, 4 mmol/L SDBS after adsorption, 5 mmol/L SDBS after adsorption, and in preparation 
for the experiment.

(1)	 SEM–EDS testing before and after adsorption
	   The surface morphology of kaolinite before and after adsorption of SDBS were studied by using the 

SEM–EDS, which was from Carl Zeiss AG, Germany. The experiment was carried out in Henan Polytechnic 
University. The acceleration voltage of the experiment was 0.2–30 kV, and the apparatus able to analyse 
elements from Be to U. The specific methods are as follows:

1.	 Gold plating for the four kaolinite samples before and after adsorption.
2.	 Observe the four gold-plated samples under SEM with different magnifications, and assay the element 

content by EDS.
3.	 Analyse the changes of surface morphology and element content before and after adsorption.

(2)	 XRD testing before and after adsorption
	   XRD was used to test the variations of surface structure and crystallinity index of kaolinite before and 

after adsorption of SDBS. The experiment was carried out in Henan Polytechnic University using D8 X-ray 
diffractometer manufactured by BRUKER-AXS, Germany. The light source adopts X-ray phototube copper 
target radiation (Cu, λ 1.5406A). The divergent slit, anti-scatter slit, Sola slit, and receiving slit were 1.0 mm, 
1.0 mm, 2°, and 0.2 mm, respectively. The Angle measurement range of this experiment is 2° ~ 90° and 
the scanning mode was step-scan with a step length and scanning speed of 0.1° and 3 s/step. The specific 
testing process is as follows:

1.	 Grind the four samples to less than 200 mesh and place them into the test tray for compaction.
2.	 Test the four samples by XRD, and compare the difference before and after adsorption.
3.	 Calculate the layer spacing
	   According to the Bragg Equation25 and the 001 peak position θ001, the layer spacing d001 can be can 

be calculated by the following formula:

4.	 Calculate the crystallinity indices
	   The crystallinity indices Hi can be calculate from XRD data26:

where, A and B are the heights of two adjacent diffraction reflections, and At is the distance between 
the highest reflection of the two adjacent diffraction reflections and the back bottom line.

(3)	 FTIR testing before and after adsorption
	   FTIR was used to test the functional group changes of kaolinite before and after adsorption of SDBS. The 

experiment was carried out in Henan Polytechnic University using 70 FTIR manufactured by BRUKER 
VERTEX, Germany. The measurement ranges of spectral area, step-scan time resolution, and resolution 
were 4000 to 400 cm−1, 5 ns, and 0.4 cm−1, respectively. The specific method is as follows:

1.	 Weigh 0.010 g of the four kaolinite samples, and mix them with 1.500 g KBr in a ratio of 1:150, respec-
tively.

2.	 Grind them using an agate mortar until the sample particles were less than 200 mesh equivalent spheri-
cal diameter, then place into the thermostatic drying chamber at 80 °C for 24 h.

3.	 Grind the dry mixed powder in an agate mortar for 1–2 min, and form tablets for infrared spectroscopy.

Experimental results
Analyses on the adsorptive behaviour of kaolinite to SDBS.  The adsorptive capacity of kaolinite to 
SDBS was calculated according to the experimental design, and the results are shown in Fig. 1.

In Fig. 1, the adsorptive capacity increased with concentration, and the adsorptive capacity of kaolinite to 
SDBS with three different concentrations increased slowly over time.

(4)qt = k2qe
2t/

(

1− k2qet
)

(5)d001 =
�

2 sin θ001

(6)Hi =
A+ B

At
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According to formulae (3) and (4), different models were used to fit the experimental process. The fitting 
results and main adsorption parameters are listed in Table 2.

A variety of error analysis method, including the root mean square error (RMSE), chi-squared distribution 
(χ2), G party inspection (G2), error sum of squares (ERRSQ), composite relative error function (HYBRZD), 
Marquardt proportion standard deviation derivative (MPSD), average relative deviation (ARE), sum of absolute 
error (EABS), absolute pose error (APE), Akaike information criterion (AIC), Mallows Cp (Mallows), etc., were 
used in the discussion of the correlation of fitting (Table 3).

From the calculated results of various error functions in Tables 1 and 2, the pseudo-secondary adsorption 
kinetic model returned a smaller error and was more consistent with the adsorption performance, indicating that 
the adsorption on the kaolinite surface of SDBS is mainly chemical. The adsorption constant decreases gradually 
with the increased concentration of SDBS, this is mainly because the repulsion between adsorbed molecules and 
free SDBS molecules in solution increases with the increase of SDBS concentration.

The structural variation of kaolinite before, and after, adsorption.  Surface morphology variation 
characteristics of kaolinite before, and after, adsorption.  SEM scanning results for part of the samples before and 
after the adsorption of SDBS by kaolinite are shown in Fig. 2, and the EDS test results are shown in Figs. 3, 4, 5.

Figure 2 shows that the structure of kaolinite layers after adsorption of SDBS is clearer, and the phenomenon 
of plate formation is more obvious. As can be seen from Figs. 3, 4, 5: O, Al, and Si are the main elements found 
on the surface of the kaolinite, while a small amount of C mainly originates from the SEM sample holder or 
some carbonate impurities thereon. According to the results of energy spectral analysis, the content of element 
O is higher, Al and Si have little difference in their contents. It is believed that the unit structure of kaolinite is 
composed of a layer of silicon-oxygen tetrahedron and a layer of aluminium-oxygen octahedron, with a high 
crystallinity therein27,28, which meets the experimental requirements.

Characteristics of interlayer change before, and after, kaolinite adsorption.  The interlayer change before and after 
kaolinite adsorption is shown in Fig. 6.

According to the XRD test results of kaolinite under the original conditions and after absorbing SDBS of 
different concentrations (Fig. 6), it can be found that no new characteristic reflections were generated for kao-
linite before and after adsorption. The 2θ of 001 reflection for kaolinite samples in the original state and after 

Figure 1.   Adsorptive capacity of SDBS on kaolinite at various SDBS concentration under different adsorption 
time.

Table 2.   Fitting results of pseudo-first order and pseudo-second order model at different concentrations.

Concentration of SDBS The pseudo-first order model qe(exp)/mmol/g qe(cal)/mmol/g k1/min−1

3 mmol/L qt = 0.01772 × (1−e−0.05844×t) 0.0186 0.0177 0.058

4 mmol/L qt = 0.02416 × (1−e−0.05714×t) 0.0246 0.0241 0.057

5 mmol/L qt = 0.05722 × (1−e−0.04906×t) 0.0588 0.0572 0.049

Concentration of SDBS The pseudo-second order model qe(exp)/mmol/g qe(cal)/mmol/g k2/ mmol·g−1·min−1

3 mmol/L qt = t/(582.6025 + 50 × t) 0.0186 0.0182 4.291

4 mmol/L qt = t/(430.3774 + 36.75119 × t) 0.0246 0.0241 3.138

5 mmol/L qt = t/(231.368 + 15.11944 × t) 0.0588 0.0587 0.988
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absorbing 3 mmol/L, 4 mmol/L, and 5 mmol/L SDBS are basically consistent, indicating that the kaolinite layer 
spacing D001 crystallinity indices did not change significantly. The SDBS was hardly adsorbed between layers 
of kaolinite, and the adsorption mainly occurred on the surface.

According to Formula (6), the crystallinity indices of kaolinite under the original state and after absorbing 
different concentrations of SDBS is calculated (Fig. 7). The required parameters and calculation results are shown 

Table 3.   Error analysis of the fitting results of kaolinite adsorption kinetics under different SDBS 
concentrations.

Error Function Model

Pseudo-first order kinetic model
Pseudo-second order adsorption 
model

3 mmol/L 4 mmol/L 5 mmol/L 3 mmol/L 4 mmol/L 5 mmol/L

RMSE(10–3) 0.71 0.91 2.34 0.42 0.74 0.93

χ2(10–4) 1.25 1.62 4.76 0.42 0.96 0.73

G2(10–4) 3.00 4.50 15.44 0.81 0.69 2.41

ERRSQ(10–6) 2.01 3.32 21.82 0.72 2.18 3.44

HYBRD(10–4) 1.25 1.67 4.72 0.42 0.97 0.73

MPSD(10–3) 7.88 8.45 10.44 2.49 4.33 1.60

ARE 0.17 0.16 0.21 0.11 0.13 0.07

EABS (10–3) 2.80 3.18 9.95 1.75 3.02 3.80

APE% 3.52 3.14 4.18 2.10 2.69 1.59

AICC − 81.46 − 78.46 − 67.15 − 87.65 − 80.97 − 78.25

Mallows(10–3) 2.83 3.63 9.34 1.69 2.95 3.70

Figure 2.   SEM test chart before and after the adsorption of kaolinite, (a) Original sample (b) 3 mmol/L SDBS 
after adsorption (c) 4 mmol/L SDBS after adsorption (d) 5 mmol/L SDBS after adsorption.

Figure 3.   EDS scan of samples before adsorption of kaolinite.

Figure 4.   EDS scan of kaolinite after the adsorption of 4 mmol/L SDBS.
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in Table 4. The results shows that after the adsorption of SDBS, the crystallinity indices of kaolinite increased 
significantly, and when the SDBS concentration was 4 mmol/L, the crystallinity indices reached the maximum, 
which is consistent with the SEM observation results.

Changes in major functional groups before, and after, kaolinite adsorption.  According to the experimental 
method (“Research methods”), the infrared spectrum testing results of kaolinite before and after adsorption 
were obtained (Fig. 8).

The infrared spectrum test results of kaolinite under the original conditions and after absorbing SDBS of 
different concentrations were compared (Fig. 8). It is found that after absorbing SDBS on kaolinite, the bending 
vibration peaks of –CH3 and –CH2– appeared at 1475–1350 cm−1 indicating that kaolinite has adsorbed SDBS. 
The intensity ratio of νSO3

- at 2370 cm−1 increased significantly, which also proved the existence of adsorption 
phenomenon. The intensity ratio of the internal hydroxyl at 3620 cm−1 and the external hydroxyl at 3690 cm−1 was 
significantly weakened, and with the increase of SDBS concentration, the weakening was more obvious, which 
indicates that chemical combination occurred between SDBS and the hydroxyl of the kaolinite. The significant 
decrease of νSiO at 1107 cm−1 and that of δ(Al–)OH at 914 cm−1 suggested that chemical adsorption occurred 
between SDBS and Si and Al. The intensity ratio of 1000–1008 cm−1 bands of the tetrahedral layer changed sig-
nificantly, indicating the change of the chemical environment after kaolinite adsorbed SDBS.

Conclusion

(1)	 The linear relationship between absorbance and concentration-absorbance measured by spectrophotometer 
was used to calculate the adsorptive capacity and adsorptive behaviour of SDBS on the surface of kaolinite 
at different concentrations (3 mmol/L, 4 mmol/L, and 5 mmol/L) at different times. The results showed that 
the higher the SDBS concentration, the higher the adsorptive capacity, but the higher the concentration, 
the lower the initial adsorption rate. Its adsorption is best described by the pseudo-secondary adsorption 
kinetics model, suggesting mainly chemical adsorption.

Figure 5.   EDS scan of kaolinite before and after adsorption. (a) Original sample (b) 3 mmol/L SDBS after 
adsorption (c) 4 mmol/L SDBS after adsorption (d) 5 mmol/L SDBS after adsorption.

Figure 6.   Comparison of XRD test results.
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(2)	 The results of SEM–EDS, XRD, and FTIR show that SDBS was mainly adsorbed on the surface of kaolinite. 
After the adsorption of SDBS, the solidification and lamellar aggregation of kaolinite were more obvious, 
the crystallinity index of kaolinite increased significantly, and the crystallinity index reached the maximum 
when the SDBS concentration was 4 mmol/L. In addition, the intensity ratio of 1000–1008 cm−1 bands of 
the tetrahedral layer changed significantly, indicating that the adsorptive behaviour was chemical.

(3)	 The adsorption behaviours of kaolinite mineral to SDBS with different concentrations were identified, 
however, rock contains kaolinite, montmorillonite, illite, and other clay minerals; mineral concentration, 
formation temperature, formation water pH, and composition are likely to affect the adsorption behaviour 
of SDBS. Future work should focus on analysis of the clay under different environments and the adsorption 
mechanisms of dodecyl benzene sulphonic acid sodium.

Figure 7.   Calculation of crystallinity indices of kaolinite.

Table 4.   The required parameters and calculation results of crystallinity indices.

Sample A B At Hi

Original sample 51.0 21.0 74.0 1.06

3 mmol/L SDBS after adsorption 67.5 27.0 87.0 1.09

4 mmol/L SDBS after adsorption 54.5 42.5 73.0 1.33

5 mmol/L SDBS after adsorption 83.0 41.5 99.0 1.26
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