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Ranking of a wide multidomain set 
of predictor variables of children 
obesity by machine learning 
variable importance techniques
Helena Marcos‑Pasero1,6, Gonzalo Colmenarejo2,6, Elena Aguilar‑Aguilar1, 
Ana Ramírez de Molina3, Guillermo Reglero4,5 & Viviana Loria‑Kohen1*

The increased prevalence of childhood obesity is expected to translate in the near future into a 
concomitant soaring of multiple cardio‑metabolic diseases. Obesity has a complex, multifactorial 
etiology, that includes multiple and multidomain potential risk factors: genetics, dietary and physical 
activity habits, socio‑economic environment, lifestyle, etc. In addition, all these factors are expected 
to exert their influence through a specific and especially convoluted way during childhood, given the 
fast growth along this period. Machine Learning methods are the appropriate tools to model this 
complexity, given their ability to cope with high‑dimensional, non‑linear data. Here, we have analyzed 
by Machine Learning a sample of 221 children (6–9 years) from Madrid, Spain. Both Random Forest 
and Gradient Boosting Machine models have been derived to predict the body mass index from a 
wide set of 190 multidomain variables (including age, sex, genetic polymorphisms, lifestyle, socio‑
economic, diet, exercise, and gestation ones). A consensus relative importance of the predictors has 
been estimated through variable importance measures, implemented robustly through an iterative 
process that included permutation and multiple imputation. We expect this analysis will help to shed 
light on the most important variables associated to childhood obesity, in order to choose better 
treatments for its prevention.

Excess body weight in children has become a major public health problem worldwide. According to the WHO 
European Childhood Obesity Surveillance Initiative, 1 out of 3 European children between 6 and 9 years of age 
were overweight or obese in  20151.

Despite the unexpected plateauing of childhood obesity rates observed in developed  countries2, Spain main-
tains one of the highest European  rates3. According to the ALADINO study, the prevalence of overweight and 
obesity in Spanish children is 23.2% (22.4% boys, 23.9% girls) and 18.1% (20.4% boys, 15.8% girls),  respectively4.

Childhood obesity often leads to obesity in adults, and it is considered as one of the main risk factors asso-
ciated with the development of noncommunicable  diseases5, such as type 2 diabetes mellitus; dyslipidemia; 
hypertension; non-alcoholic fatty liver disease; cardiovascular disease and premature mortality in adulthood. 
The greater the severity of obesity, the higher is the risk of cardio-metabolic diseases, mainly in  children6.

The multifactorial etiology of obesity is well known and includes genetic susceptibility, dietary and physi-
cal activity habits, social and health factors and, especially in the case of children, a permissive and obesogenic 
lifestyle that begins in the mother’s womb and continues throughout childhood and  adolescence6–8. In this 
respect, Machine Learning (ML) techniques are useful tools to analyze this convoluted phenomenology, as they 
are especially adapted to model complex, nonlinear relationships in high-dimensional  data9. This is the case in 
methods like Random Forest (RF)10, which are based on an ensemble of decision trees built on random sam-
ples with replacement of the training set (the so-called “bagging” or bootstrap averaging of models), and with 
random subsets of the predictor variables used at each split in the decision trees. The prediction for new data 
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results from averaging the prediction of all the trees in the RF. This approach allows an extensive search in the 
space of predictive models (even with many predictor variables), thereby increasing the accuracy of the predic-
tion, as well as the stability against noisy variables. Overfitting is also prevented by using bootstrap subsamples 
with random subsets of predictor variables that decorrelate the trees. In addition, RF includes an estimation of 
the external prediction error, the so-called “out-of-bag” (OOB) prediction, from the training data, by averaging 
for each instance the predictions of the trees that were developed without that instance. More importantly, RF 
permits the assessment of the relative importance of the predictor variables by the calculation, for each variable, 
of the increased OOB error after permuting repeatedly that variable: the higher the increase in the OOB errors 
after permutation, the more important the variable would  be10. This is especially interesting for explanatory 
purposes of the predicted endpoint.

Another robust ensemble-based ML method is Gradient Boosting Machines (GBM)11. In this case, the deci-
sion trees are added sequentially, where one tree is fitted to reduce the prediction error of the previous ones. 
Normally a stochastic version of this approach is used, using at each new added tree a random subsample (e.g. 
50%) of the whole dataset, in order to decorrelate the trees and thus result in predictions with less variance. GBM 
are also amenable to perform variable importance calculations.

There have been some recent efforts to use ML techniques to model obesity and other body mass index 
(BMI)-related endpoints (for a recent review,  see12). However, these are mostly related to adult samples, while 
for the case of children the work has been limited, in some cases preliminary and with restricted variable sets, in 
any case genetic  ones13–22. For a recent comprehensive review of the childhood obesity field,  see23. An interesting 
approach in two recent  works20,21 is the use of electronic health record (EHR) databases to develop ML models 
for childhood obesity, but their objective is mainly predictive, not explanatory, no genetic variables were used, 
and no variable importance techniques were used to rank the predictors. Children obesity has peculiarities that 
make it to require specific modeling efforts, due to the huge hormonal and metabolic changes that occur in this 
period. Therefore, there is a lack of ML models for pediatric samples and with high-dimensional, multidomain 
variable sets, especially those focused on estimating the relative importance of these variables.

The use of ML to rank predictor variables by their importance has been described for e.g. non-calcified coro-
nary  burden24, attention-deficit and hyperactivity  disorder25, and Crohn’s  disease26. In the case of obesity, there 
is one study where RF has been used to rank variables in the prediction of BMI for adolescent  girls22, although 
in that case the set of variables is more restricted both in number and domains, mostly of psychological nature 
and with no genetic data.

Thus, for this work we set out to analyze a pediatric sample by ML and predict its BMI based on a large set 
of 190 variables from different domains: single nucleotide polymorphisms (SNPs), lifestyle, social, health, diet, 
exercise, and gestation ones. The sample was a group of schoolchildren of Madrid (Spain) enrolled in the GEN-
YAL study for the prevention of childhood obesity, and here we perform a cross-sectional analysis of the baseline 
data. Using variable importance estimations, we attempted to rank the variables and identify those more strongly 
associated with the target, in order to better characterize the important features for children obesity. We tried 
both RF and GBM models, in order to assess the robustness of the estimated ranks, and derived a consensus 
variable importance score for all the predictors by combining the predictions of the two models. This consensus 
ranking will assist in developing better prevention strategies that will result in better expectations for quality of 
life and longevity in the future.

We have to stress at this point that we use here the term “predictor variable” in an statistical sense, where the 
values of one or more independent or predictor variables are used to obtain the value (predict) for a dependent 
variable (in this case BMI), through a fitted model. Given the cross-sectional nature of the data, we are actually 
modelling associations of BMI with other variables at a given point in time, and not forecasting future values of 
BMI given some current values of the independent variables, as it would be in a longitudinal setting.

Results
Exploratory analysis. Table S1 (Supplementary Material) collects the 190 predictor variables used in the 
analysis. They are grouped in different domains: characteristics of schoolchildren (3); genetics (1, from 11 SNPs); 
physical and leisure activities (24); diet, food and nutrients (80); risk factors of pregnancy and birth (39); social, 
health and demographic factors (43).

The average age of the 221 participants was 6.75 ± 0.73 years (52.50% were girls (n = 116) and 47.50% boys 
(n = 105)). According to the WHO criteria, 32.2% of the schoolchildren evaluated had excess weight (EW) (18.1% 
overweight and 14.1% obesity). These figures were 25.4% and 19.0% when the International Obesity Task Force 
(IOFT) standard or the national criteria of the Orbegozo Foundation were used, respectively.

Table 1 shows the main descriptive characteristics regarding the schoolchildren families. Regarding the 
nutritional status of the parents, 57.5% of the fathers and 30.4% of the mothers had EW.

The main diet, physical activity and birth characteristics of schoolchildren by sex are summarized in Table 2.
The variants distribution of the set of SNPs selected for the genetic risk score (GRS, see Methods) are pre-

sented in Table 3. These gene variants were consistent with the Hardy–Weinberg equilibrium in all the cases 
(p-values ≥ 0.05).

Random forest model and variable importance’s. As described previously, we derived a RF model 
to predict the BMI in this sample. Multiple imputation was included in the calculation of the standardized 
importance scores Tj for each predictor variable xj in the dataset. A total of 100 imputations were performed 
(see “Methods” section). On average, the RF models explain 55.07% of the variance, as estimated by the OOB 
pseudo-R2. Figure 1 shows a plot of the average predicted BMI by the RF models vs the actual BMI. We can see 
some degree of miscalibration in the plot, as the best-fit line (dashed line; continuous line is the x = y line) shows 
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an intercept different from 0 (− 4.06) and a slope slightly different from 1 (1.23), so the model makes worse pre-
dictions for very high values of BMI.

Through permutation of the OOB data, and within the imputation loop, we could obtain the scaled average 
variable importance of the different predictor variables. Figure 2 shows the resulting variable importance plot 
for the top-30 predictor variables. The use of multiple imputation allowed in addition to analyze in a robust 
way the variability of the rank of these variable importance’s, by estimating their mean rank and corresponding 
confidence intervals. Figure 3 shows the mean average rank and corresponding 95% confidence intervals of the 
30 most important predictor variables.

The five most important variables are (in this order): Familiar nutri-status perception (Perception of the 
person completing the questionnaire about child’s nutritional status) > Relation TEI-TEE (%) (Percentage of 
difference between Total Energy Intake (TEI) and Total Energy Expenditure (TEE)) > BMI of the father > BMI of 
the mother > Mother’s Meals (number of daily food servings of the mother). These variables are very well ranked, 
with both Familiar nutri-status perception and Relation TEI-TEE (%) having a null confidence interval in their 
average rank, as in all the imputations they were the first- and second-most important variables, respectively. 
The BMI of both parents share the same narrow confidence interval (3–4), while Mother’s Meals had a slightly 
larger confidence interval (5–7).

The next-important variables (in decreasing importance) are IPAC (Individual Physical Activity Coeffi-
cient) > GRS (genetic risk score) > Vit D (Vitamin D (mcg): quantity of daily vitamin D intake) > Mother’s disease: 
HTG (Mother has hypertriglyceridemia by medical diagnose), with increasingly larger confidence intervals: 
(5–7), (5–26), (6–30) and (8–30), respectively.

The following variables show much larger confidence intervals, so that although on average they show an 
increasing rank, their ranking for new samples is expected to be less well defined.

Gradient boosting machine model and relative importance’s. For comparison purposes, and to 
check the robustness of the obtained variable importance’s, an alternative method to rank the variables was used, 
namely scaled relative importance’s in a Gradient Boosting Machine, again implemented within an imputation 
loop. Figure 4 displays the corresponding scaled relative importance bar plot. We can see a rather similar picture 
as with RF, with 20 out of 30 top predictor variables shared between the two plots, and the four top variables 
(Familiar nutri-status perception, Relation TEI-TEE (%), Mother’s BMI, and Father’s BMI) being the same and 
in the same order. However, the exact ordering for the rest of the variables is not fully preserved, which is not 
unexpected given that the two methods use different functional forms, the metrics used to measure the impor-
tance of variables are also different, and the rankings themselves have increasing variability upon moving to less 
important predictor variables (e.g. Fig. 2), making unfeasible to assign an exact ranking.

Table 1.  Main social and economic characteristics of the families. NR/UN no response/unknown.

Father Mother

Age (years) (x ± SD) 42.3 ± 6.7 39.5 ± 5.2

Country of birth % (n)

Spain 72.8 (142) 70.6 (142)

Other (Romania, Ecuador, Colombia, Paraguay, etc.) 27.2 (53) 29.4 (59)

Educational levels % (n)

No education 0.5 (1) 0.5 (1)

Primary Education 7.6 (15) 4 (8)

Secondary Education 36.5 (72) 30 (61)

Higher n 49.7 (98) 62.7 (127)

NR/UN 5.7 (11) 2.5 (5)

Employed % (n)

Yes 85.3 (167) 72.6 (146)

No 14.7 (28) 27.4 (53)

Income % (n)

 < 12 k€ 16.4 (33)

12–18 k€ 10.0 (20)

18–24 k€ 4.5 (9)

24–30 k€ 10.0 (20)

30–36 k€ 5.0 (10)

36–42 k€ 5.5 (11)

42–48 k€ 3.0 (6)

 > 48 k€ 28.9 (58)

NR/UN 16.9 (35)
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Table 2.  Main diet, physical activity and birth and perinatal characteristics of the schoolchildren by sex. Data 
expressed as mean (x) ± standard deviation (SD). BMI body mass index, WC waist circumference, SBP systolic 
blood pressure, DBP diastolic blood pressure, TEE total energy expended, EI energy intake, CHD carbohydrate, 
PFA polyunsaturated fatty acids, MFA monoinsaturated fatty acid, SFA saturated fatty acid, p/d portions/day, 
IPAC individual physical activity coefficient, TAWH total active weekly hours, IAS healthy eating index 

General Girls Boys

PN x ± SD N x ± SD N x ± SD

Birth and perinatal characteristics

Birth weight (g) 160 3182.96 ± 541.93 80 3109.66 ± 466.73 80 3256.25 ± 601.99 0.087

Birth BMI (kg/m2) 137 12.77 ± 1.81 67 12.58 ± 1.64 70 12.95 ± 1.95 0.280

Length of breastfeeding (months) 164 9.04 ± 8.29 77 9.62 ± 8.88 87 7.74 ± 7.74 0.493

Anthropometric data

Height (cm) 221 124.74 ± 6.41 105 123.75 ± 6.63 116 125.63 ± 6.10 0.029

Weight (kg) 221 26.60 ± 6.03 105 26.37 ± 6.07 116 26.81 ± 6.00 0.555

Fat mass (%) 218 20.59 ± 7.17 103 20.50 ± 7.60 115 20.67 ± 6.80 0.635

Muscle mass (%) 189 28.00 ± 2.98 90 27.96 ± 2.52 99 28.03 ± 3.35 0.501

WC (cm) 220 59.73 ± 7.29 104 59.73 ± 7.21 116 59.74 ± 7.40 0.621

BMI (kg/m2) 221 16.92 ± 2.63 105 17.04 ± 2.73 116 16.82 ± 2.55 0.448

Blood pressure data

SBP (mmHg) 221 95.38 ± 9.16 105 93.82 ± 9.51 116 96.79 ± 8.62 0.016

DBP (mmHg) 221 63.65 ± 6.54 105 62.88 ± 6.61 116 64.35 ± 6.42 0.084

Cardiac frequency (lpm) 221 87.49 ± 11.47 105 89.96 ± 10.83 116 85.26 ± 11.61 0.002

Physical and leisure activities

IPAC 198 1.58 ± 0.11 92 1.57 ± 0.09 106 1.60 ± 0.12 0.054

Sleeping hours 198 9.92 ± 1.09 92 9.92 ± 1.19 106 9.92 ± 1.00 0.938

TAWH (h) 224 3.74 ± 1.81 105 3.46 ± 1.62 116 4.03 ± 1.94 0.025

TEE (kJ/day) 198 7256.02 ± 1000.69 92 7103.49 ± 975.32 106 7388.40 ± 1008.10 0.029

Intake data

EI (kJ/day) 201 7755.46 ± 1407.94 93 7582.32 ± 1286.16 108 7894.91 ± 1494.10 0.125

CHD (% total EI) 201 44.48 ± 5.30 93 44.43 ± 5.73 108 44.53 ± 4.93 0.900

Simple sugars (% total EI) 201 20.15 ± 4.08 93 20.17 ± 3.63 108 20.13 ± 4.45 0.539

Vegetable fibre (g) 201 18.17 ± 5.82 93 17.76 ± 5.73 108 18.52 ± 5.91 0.185

Proteins (% total EI) 201 16.55 ± 2.17 93 16.60 ± 2.16 108 16.51 ± 2.18 0.778

Fats (% total EI) 201 38.96 ± 5.02 93 38.96 ± 5.44 108 38.95 ± 4.65 0.987

SFA (% total EI) 201 13.29 ± 2.27 93 13.25 ± 2.35 108 13.33 ± 2.20 0.806

MFA (% total EI) 201 17.23 ± 3.25 93 17.20 ± 3.49 108 17.25 ± 3.04 0.927

PFA (% total EI) 201 4.84 ± 1.50 93 4.83 ± 1.57 108 4.85 ± 1.44 0.826

Cholesterol (mg/day) 201 325.99 ± 102.14 93 322.46 ± 99.66 108 329.03 ± 104.60 0.796

Calcium (mg) 201 922.02 ± 220.22 93 909.32 ± 201.94 108 932.96 ± 235.22 0.449

Iron (mg) 201 12.00 ± 3.44 93 11.98 ± 3.96 108 12.02 ± 2.95 0.218

Zinc (mg) 201 8.59 ± 1.93 93 8.40 ± 1.75 108 8.76 ± 2.06 0.198

Magnesium (mg) 201 248.73 ± 50.49 93 242.54 ± 44.68 108 254.06 ± 54.66 0.081

Phosphorus (mg) 201 1299.11 ± 237.66 93 1276.62 ± 219.51 108 1318.48 ± 251.64 0.214

Selenium (µg) 201 77.88 ± 25.42 93 76.30 ± 21.74 108 79.24 ± 28.24 0.701

Thiamine (mg) 201 1.30 ± 0.51 93 1.27 ± 0.52 108 1.32 ± 0.50 0.196

Riboflavin (mg) 201 1.84 ± 0.54 93 1.85 ± 0.62 108 1.83 ± 0.47 0.504

Folic acid (µg) 201 241.19 ± 63.24 93 237.68 ± 62.18 108 244.20 ± 64.27 0.467

Vitamin D (µg) 201 2.15 ± 1.84 93 2.21 ± 1.93 108 2.09 ± 1.76 0.665

Cereals and grains (p/d) 201 4.05 ± 1.45 93 3.95 ± 1.59 108 4.15 ± 1.32 0.069

Vegetables (p/d) 201 2.48 ± 1.05 93 2.51 ± 1.13 108 2.46 ± 0.98 0.722

Fruits (p/d) 201 1.42 ± 0.93 93 1.46 ± 0.95 108 1.39 ± 0.91 0.689

Milk and dairy products (p/d) 201 2.61 ± 0.80 93 2.59 ± 0.76 108 2.63 ± 0.84 0.850

Meats, fish and eggs (p/d) 201 2.45 ± 0.90 93 2.46 ± 0.91 108 2.44 ± 0.91 0.881

Quality of the diet data

IAS 201 65.03 ± 10.84 93 65.54 ± 11.56 108 64.59 ± 10.21 0.535

Number of daily intakes 200 4.95 ± 0.66 92 4.89 ± 0.82 108 4.99 ± 0.48 0.930

KIDMED index 200 6.50 ± 1.91 93 6.51 ± 1.93 107 6.50 ± 1.90 0.863
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Consensus variable importance’s. Given that the two methods yielded reasonably similar rankings of 
variables, a combined variable importance was calculated for each variable by averaging the normalized variable 
importance matrices of the two methods. The corresponding variable importance plot is displayed in Fig. 5. 
Here, after the four conserved top variables (Familiar nutri-status perception > Relation TEI-TEE (%) > Moth-
er’s BMI > Father’s BMI) the next five most important variables are, in decreasing importance, Mother’s 
meals > Prot(%TEI) > GRS > Mother’s disease: HTG > IPAC. We will focus our Discussion on this consensus score 
(CS) of importance’s.

Discussion
The results of the anthropometric measurements in the current study showed that one out of four studied school-
children had an excess of weight. These figures, similar to those reported in the latest ALADINO national study, 
reflect the magnitude of the childhood obesity problem in our  society4.

ML is a suitable approach in predictive analytics, and it has started to be used both for early preventive recom-
mendations related to lifestyle, and to build decision-support tools for disease risk  prediction12,27. Additionally, 
in view of the crucial role that prevention plays to control the high obesity prevalence, the identification of its 
most important risk factors could help to develop effective nutritional and educational intervention strategies. 
In this sense, in this study, we attempted to rank a wide set of 190 predictor variables from different domains in 
order to predict the BMI of children by means of ML models of the RF and GBM types.

Therefore, the novelty of the current study stems from the use of a very large number of variables from widely 
different domains (genetic, nutritional, exercise, social and health, lifestyle, birth and pregnancy) and their rank-
ing by variable importance estimations. To our  knowledge23, there is no parallel in the literature in this regard 
by this use of such a large multidomain set of variables for childhood obesity.

Table 3.  Single Nucleotide Polymorphisms selection for the GRS design. SNP single nucleotide 
polymorphism, HWE Hardy–Weinberg equilibrium, MAF minor allele frequency.

SNP HWE p value MAF Genotype (%)

rs925946 0.6997 0.2568 GG (55.91) GT (36.82) TT (7.27)

rs7647305 0.9316 0.1833 CC (66.97) CT (29.41) TT (3.62)

rs7190492 0.0704 0.3773 GG (41.82) AG (40.91) AA (17.27)

rs10938397 0.3367 0.4615 AA (30.77) AG (46.15) GG (23.08)

rs368794 0.9477 0.3416 AA (43.44) AT (44.80) TT (11.76)

rs1137101 0.7369 0.4295 AA (31.82) AG (50.45) GG (17.73)

rs17782313 0.9549 0.1705 TT (68.64) CT (28.64) CC (2.73)

rs2568958 0.4587 0.3688 AA (41.18) AG (43.89) GG (14.93)

rs10913469 0.2257 0.1886 TT (67.27) CT (27.73) CC (5.00)

rs7903146 0.7012 0.3402 CC (44.29) CT (43.38) TT (12.33)

rs6548238 0.2053 0.1977 CC (65.91) CT (28.64) TT (5.45)

Figure 1.  Scatter plot of the average predicted vs observed BMI for the RF models. Dashed line, best-fit line; 
continuous line, x = y line.
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We can see that the most important variable in our CS (Fig. 5) is the Familiar nutri-status perception, which 
has not explanatory character but shows the parents awareness of the nutritional status of their children, which 
has anyhow a variable degree of underestimation, especially for overweight/obese children, as we (data not 
shown) and others have  observed28. The next-important variable (Relation TEI-TEE(%)) is the questionnaire-
based percentage of difference between the Total Energy Intake (TEI) and Total Energy Expenditure (TEE), 
which is a measure of the energy balance of the child. In this context, it is well established that obesity entails that 
dietary energy intake exceeds energy  expenditure29. Nevertheless, these results should be viewed with caution, 
since as the literature reviewed suggests, self-reported dietary measures by questionnaires are not fully adequate 
to describe the energy  balance30, and there are more accurate ways to calculate the TEE than physical activity 
 questionnaires31,32. However, although non-optimal, our questionnaire-based TEI and TEE do contain valuable 
information about the energy input and expenditure, and thus the Relation TEI-TEE (%) variable results in one 
of the best predictors for BMI.

The following three variables of the model are Mother’s BMI, Father’s BMI, and Mother’s Meals. These vari-
ables would comprise genetic, diet and lifestyle aspects, indicating that children inherit to a large extent their 
parents’ nutritional  status33,34. These predictors may be interesting in order to use them in predictive models for 
obesity even before birth, and as a matter of fact they are frequent predictor variables of simple logistic regres-
sion models for childhood  obesity23.

The 6th variable in importance (Prot (%TEI)) is a measure of the percentage of protein consumption within 
the diet, stressing the importance of a balanced nutritional strategy to prevent obesity. Prot (%TEI) is followed by 
the genetic risk score (GRS), that supports the genetic component of the BMI in children. This variable aggregates 
several genetic single nucleotide polymorphisms well described to affect childhood obesity, and has been used 
previously in studies of pediatric based-populations35,36. GRSs have been a great success in the study on polygenic 
diseases, and it could be seen as a personalized risk management strategy for obesity and overweight. Similar 
polymorphism-based genetic scores have been described for other pathological cases like breast cancer, prostate 
cancer, coronary artery disease, type 1 diabetes, type 2 diabetes and Alzheimer’s  disease37,38.

The following two variables in order of importance are mother’s hypertriglyceridemia (Mother’s disease: HTG) 
and IPAC score. Regarding the mother’s hypertriglyceridemia as a predicting factor for children BMI, previous 
studies have linked the biochemical and body composition variables between adolescents and their parents, 
which find significant results in BMI and total cholesterol between father and son, and hypertriglyceridemia, 
with inadequacies of LDL or HDL shared both by adolescents and  parents39. In addition, the link between obesity 

Figure 2.  Variable importance plot of the top-30 predictor variables for the GENYAL sample, according to the 
RF models to predict childhood BMI.
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and increased risk for hypertriglyceridemia in children has been  studied40, and can explain the association found 
in this work. In turn, IPAC is a measure of the total physical exercise performed by the child as obtained from 
of the IPAC calculation, which stresses the influence of calories consumption by physical activity in the final 
nutritional  status41, and nowadays, it is considered as essential focus in health promotion and obesity prevention 
research at early  ages42.

As was said in the Introduction, there is a single case of ML variable importance analysis (through RF) used 
in the prediction task of childhood  obesity22. The work of Rehkopf et al.22 had a longitudinal setting and the 
predicted endpoints were different, namely BMI percentile change after 10 years in adolescent girls, as well as 
transition from normal weight to overweight or obesity. The predictor variable set was more limited (41 vari-
ables) and with a more restricted set of domains: diet, physical activity, psychological, social and parent health, 
lacking genetic and gestational variables. In their case, psychological variables, a domain that is absent in our 
dataset, appeared within the most important variables; this is probably not unexpected, given that the sample 
was composed of adolescent girls, were this domain would be of more importance. We think that this domain 
would be of less importance in our 6–8 years old children.

We would like to point out some putative limitations of our study. One is the indirect  nature43,44 of the BMI 
for obesity diagnosis. However, BMI is considered as a great adiposity marker and is the most practical and low-
cost method, making it the most preferred  one6. On the other hand, in pediatric samples it is frequent the use of 
age- and sex-specific BMI z-scores instead of raw BMI. However, our sample has a very narrow distribution of 
ages, with 84% of the children being 6–7 years old, and 16% 8 years old, and we did not observe significant differ-
ences between the two sexes. Therefore, we decided to use raw BMI instead, as the z-scores are quite dependent 
on the population they are based on.

Likewise, the use of dietary and physical activity questionnaires may lead to reporting bias and it has been 
criticized. To avoid or minimize such biases there is an increased need for objective measures of food intake 
(e.g. by use of biomarkers) and physical activity (e.g. by use of movement sensors). However, because of the high 

Figure 3.  Mean average rank and 95% confidence intervals of the 30 most important predictor variables from 
the RF models to predict childhood BMI.
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costs of such methods, questionnaires are still the most widely used instruments for determining frequency and 
duration of physical activity and frequency and quantity of food intake, as questionnaires are relatively cheap 
and efficient instruments for collecting data on a large scale in a relatively short time  span45. Nevertheless, this 
information should be interpreted with caution. Another limitation was the sample size, but it is important to 
consider that this study is framed in an intervention study of five years and corresponds to a baseline cross-
sectional analysis. Therefore, at this point this model was derived for explanatory purposes, in order to identify 
the predictors most associated to BMI. The cross-sectional nature of the present baseline dataset prevents its 
use from demonstration of causality, or for predictive purposes. This model rather suggests variables that would 
be important for childhood obesity, in order to be further tested in longitudinal settings. The new accumulated 
data along the study will be incorporated in order to derive models for predictive purposes to target appropriate 
preventive interventions to ameliorate effectively children obesity.

From the statistical modelling point of view, variable importance techniques can be subject to  biases46,47. 
However, our use of a permutation approach avoids overestimation of categorical variables with many classes, and 
in preparing our dataset, we removed highly-correlated variables that could also be overestimated. In addition, 
the picture obtained from the GBM analysis is rather similar to the RF one, with up to 20 the 30 top variables 
shared variables between the two methods, and exactly the same four top variables. This gives confidence in the 
general conclusions above described about the influence of the different predictor variables. We must also take 
into account that many of these variables are correlated, so that the way that one method achieves a best fit will be 
different that the other given their different algorithms, while modeling basically the same physical mechanism. 
For instance, the important variable IPAC in the RF plot, is missing from the GBM plot, while in the latter Active 
transport to school instead appears. However, a large component of the physical activity of the child (measured by 
IPAC) would be going to school walking or biking, and this is measured by the Active transport to school variable. 
In the GBM plot sleep time is the fifth most important predictor, and the GRS has lower importance. In spite of 
that, there is a large similarity between the two descriptions of childhood obesity, taking into consideration that 
the dataset contains up to 190 predictor variables.

Finally, it is worth highlighting the homogeneity of the sample in terms of distribution by sex and the absence 
of genetic relatedness and stratification (since the Hardy–Weinberg equilibrium is met by all the SNPs). In 

Figure 4.  Scaled relative importance plot of the top-30 predictor variables for the GENYAL sample, according 
to the GBM model.
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addition, the sample shows a large representativeness with six schools from three different areas of the Commu-
nity of Madrid involved, which allows to have a better knowledge of the situation throughout the Community 
and not from a specific school or area.

Methods
Study design. The GENYAL sample included 221 schoolchildren (116 girls and 105 boys) in 1st and 2nd 
grades (6–8 years of age) from 6 different public primary schools among the Community of Madrid (Spain). The 
Ministry of Education of this Community was responsible for the sampling of the schools, covering a variety 
of socioeconomic status of different districts, so that the selection was representative of the household income 
distribution in Madrid as defined by the Spanish National Statistics  Institute48. Briefly, GENYAL is a long-term 
clinical trial (ClinicalTrials.gov NCT03419520) for childhood obesity prevention. The duration of the project 
is planned to last 5 years (2017–2021) with annual data collection, including anthropometric and nutrigenetic 
assessment and questionnaires about physical activity, dietary and social and health aspects. On this basis, the 
main objective of GENYAL study was to design and validate a predictive model that identifies those children 
who would benefit most from actions aimed at reducing the risk of obesity and its complications through ML 
algorithms. The results shown in this paper corresponding to a cross section from data collected in the first year 
of the study (2017).

Ethical issues. The research was approved by the Research Ethics Committee of the IMDEA Food Founda-
tion (PI:IM024). The study protocol follows the guidelines laid down in the Declaration of Helsinki and was 
performed in accordance with relevant regulations. All families signed their written informed consent to par-
ticipate.

Anthropometric measurements. Height was determined using a Leicester height rod with a millimetric 
accuracy (Biological Medical Technology SL, Barcelona, Spain). Body weight, fat mass percentage and muscle 

Figure 5.  Consensus Variable Importance plot of the top-30 predictor variables for the GENYAL sample, after 
the RF & GBM models to predict childhood BMI.
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mass percentage were assessed using a Body Composition Monitor (BF511- OMRON HEALTHCARE Co., Ltd, 
Kyoto, Japan). Waist circumference were taken using a non-elastic tape (KaWe Kirchner & Wilhelm GmbH, 
Asperg, Germany; range 0–150 cm, 1 mm of precision). For blood pressure monitorization, an automatic digital 
monitor was used (OMRON M3-Intellisense) using a cuff suitable for children.

Children were measured at their schools early in the morning by trained dietitians following standard tech-
niques and the international WHO guidelines specific for this  population49. Measurements were taken twice in 
a row, considering the average as the result. BMI was calculated as weight in kg per height in squared meters; 
children were classified as normoweight, overweight or obese according to percentiles of the Faustino Orbegozo 
 Foundation50, of the International Obesity Task Force (IOFT)51, and WHO growth  standards52. The results of 
overweight and obesity rates were unified as a single category called excess weight (EW). Parents’ BMI was 
calculated from the weight and height data reported by themselves.

SNP selection, genetic risk score and genotyping. DNA was obtained from saliva samples col-
lected the same day of the anthropometric evaluation. Genomic DNA was extracted according to the protocol 
described by Stratec INVISORB Spin Tissue Mini Kit. For genotyping, the DNA samples were loaded in TaqMan 
OpenArray Real-Time PCR plates (Life Technologies Inc., Carlsbad, CA, USA) already configured with the 
specific selected SNPs with specific waves for each allele marked with a different fluorophore to determine the 
genotype. This process was made using the OpenArray AccuFill System (Life Technologies Inc., Carlsbad, CA, 
USA). Once it was charged, a PCR was made and the chips were read in the QuantStudio 12 K Flex Real-Time 
PCR Instrument (Life Technologies Inc., Carlsbad, CA). The results were analyzed using the TaqMan Genotyper 
software (Life Technologies Inc., Carlsbad, CA, USA), which assigns automatically the genotype to each sample 
according to the amount of detected signal for each fluorophore. Data analysis was made by TaqMan Genotyper 
Software v1.3 (autocaller confidence level > 90%)53. Call rates for all SNPs were > 96%, and genotype frequencies 
were in Hardy-Weingberg equilibrium (p > 0.05).

For the purpose of this study, 11 SNPs (BDNF-AS rs925946, ETV5 rs7647305, FTO rs7190492, GNPDA2 
rs10938397, KCTD15 rs368794, LEPR rs1137101 (Q223R), MC4R rs17782313, NEGR1 rs2568958, SEC16B 
rs10913469, TCF7L2 rs7903146 and TMEM18 rs6548238) were selected. These SNPs were included by consid-
ering their specific relationship with childhood BMI according to previous researches, having been identified 
by genome-wide association studies (GWAS) and the absence of linkage disequilibrium between them. From 
these SNPs, a GRS was developed as the total sum of risk alleles in the 11  SNPs53.

Questionnaires, data collected and predictor variables used. Different self-reported question-
naires were sent to families by email or in paper format according to the parents’ preference, filled by at least 
one of the parents and collected by researchers. This questionnaires were based on the surveys used in previous 
national studies (ALADINO and ELOIN)4,54,  KIDMED55, etc.

The data obtained were processed and cleaned. Finally, a total of 190 variables obtained were classified into 
categories according to their specific nature. (Table S1, supplementary material). These variables are described 
in what follows.

Characteristics of schoolchildren. Three variables were taken into account in this category: age, sex and school 
year.

SNP selection and GRS. The GRS, obtained from 11 SNPs variables well described as significant in childhood 
obesity, was used in this domain. The GRS for each child was obtained as the sum of the number of risk alleles 
of each of the 11 SNPs over all the SNPs, by considering that each SNP can contain 0, 1 or 2 risk alleles: e.g. if 
the risk allele is A, and the SNP appears as GG, GA and AA genotypes, the corresponding number of risk alleles 
would be 0, 1, and 2, respectively. Therefore, the GRS is defined as:

Were NRAi is the number of risk alleles of SNP i.

Physical and leisure activities. 24 variables regarding physical activity and free time data were obtained by an ad 
hoc questionnaire, based on the surveys used in previous national studies (ALADINO and ELOIN), after receiv-
ing content validation by a group of dietitians and exercise science experts. A 48-h physical activity record was 
collected, corresponding to 24 h of a week day and a complete weekend  day56 to obtain the Individual Physical 
Activity Coefficient (IPAC) and the Physical Activity Coefficient (PAC) through the coefficient defined by the 
 WHO49 and by the Institute of  Medicine57, respectively.

Diet, food and nutrients. 80 variables were also gathered from dietary information through parent self-
reported ad hoc questionnaires. These questionnaires were delivered to the parents with the corresponding fill-
ing instructions. Before processing, the responses of the questionnaires were checked by the researchers, and 
parents were phone called in case of unclear or omitted data. The questionnaires included were, the KIDMED 
validated  questionnaire55, a 48-h food record of two non-consecutive days, a weekday and a weekend day, as 
recommended by the European Food Safety Authority  guidelines58, and analyzed using the DIAL software (Alce 
Ingeniería, Madrid, Spain) in order to obtain information about macro and micronutrients. Finally, a question-

GRS =

11∑

i=1

NRAi
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naire based on the surveys used in previous national studies (ALADINO and ELOIN) was used after receiving 
content validation by a group of Nutritionist.

Risk factors of pregnancy and birth. 39 variables regarding the maternal and neonatal health and habits were 
obtained from self-reported ad hoc questionnaire completed by parents. This questionnaire was used after 
receiving content validation by a group of dietitians.

Social, health and demographic factors. 43 variables were obtained from self-reported ad hoc questionnaire 
about the family’s status, place of birth, place of residence, etc. This questionnaire was used after receiving con-
tent validation by a group of dietitians.

Statistical modeling. R 3.4.2 (https ://www.r-proje ct.org/) was used for all the modeling and data analysis. 
The sample was initially characterized by a descriptive exploratory analysis. Qualitative data were presented as 
percentages and absolute frequencies while quantitative data were expressed as mean ± standard deviation.

The randomForest package was used to develop the RF models, using as settings 500 decision trees and 5 
permutations per variable for variable importance calculations. missForest package was used for multiple data 
imputation with the default settings; a total of 100 imputations were used. An iterative procedure, similar as the 
one described in Nonyane, et al. and Little et al.59,60, was applied in order to include multiple imputation in the 
variable importance estimation by taking into account both the between- and within-imputation variance in the 
importance scores. The process was as follows:

• For each imputation m, m = 1,…,M we estimated the average importance score of variable xj, ( ̂θmj  , where 
j = 1,…,p) as the average increase in the OOB MSE (Mean Squared Error) after OOB-permuting xj for each 
of the B trees of the RF a total of K times:

  as well as the corresponding standard errors smj .
• From here the average importance score across the M imputations for each variable xj was obtained from:

• Finally, the standardized importance score for each variable xj was calculated using:

where Vj is the weighted sum of the within ( 
−

Wj ) and between ( 
−

Bj ) imputation variances for variable xj:

which are defined as:

The multiple imputation was also used to derive (rounded to the nearest integer) mean and 95% confidence 
intervals for the ranks of the importance scores of the different predictor variables in the RF models.

In order to compare the results with those obtained from other methods, a Gradient Boosting Machine (GBM) 
relative importance plot was also obtained. The gbm package was used to derive the GBM models. Multiple 
models were derived within an imputation loop, and estimates of relative importance were pooled as described 
with the RF models. 100 iterations of imputation and model derivation were performed again. We used GBM 
models with 5000 trees, learning rate of 0.01, bag fraction of 0.5 and interaction depth of 3. The full dataset was 
used for training, and the best number of trees in each model was obtained through fivefold cross-validation. 
The relative importance of a variable j for a single tree T with J terminal nodes, when using regression trees in 
the GBM like in this case is defined  as11

θ̂mj =

K∑

k=1

B∑

b=1

(MSEmkbj −MSEmb )

−

θ j =
1

M

M∑

m=1

θ̂mj

Tj =
θ̂j√
Vj

Vj =
−

Wj +
M + 1

M

−

Bj

−

Wj =
1

M

M∑

m=1

(smj )
2

−

Bj =
1

M − 1

M∑

m=1

(θ̂mj −
−

θ j)
2

https://www.r-project.org/
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where the summation is over the nonterminal nodes t of the J-terminal node tree T, vj is the variable selected for 
splitting in that node, 1() is an indicator function that equals 1 if vt = j and 0 otherwise, and î2t  is the decrease of 
squared error associated to that variable. GBM is an ensemble method, were successive base learners (regression 
trees in our case) are fitted to minimize the residuals of the previous one; therefore, the final relative importance’s 
for the GBM are obtained by averaging for each variable the relative importance’s over all the trees in the model.

In order to derive a consensus variable importance’s, the two 100 imputations × 190 variable matrices of RF 
variable importance’s and GBM relative importance’s, were first min–max normalized (within each model) in 
order to make them comparable. As minimum and maximum, the minimum and maximum average variable 
importance (relative importance for GBM) were used, respectively. After this normalization, the two matrices 
were merged and averaged for each predictor variable, resulting in a normalized score for each. The top-30 scor-
ing variables were then plotted.
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