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Sharpness recognition based 
on synergy between bio‑inspired 
nociceptors and tactile 
mechanoreceptors
Adel Parvizi‑Fard1, Nima Salimi‑Nezhad1, Mahmood Amiri2*, Egidio Falotico3,4 & 
Cecilia Laschi3,4,5

Touch and pain sensations are complementary aspects of daily life that convey crucial information 
about the environment while also providing protection to our body. Technological advancements 
in prosthesis design and control mechanisms assist amputees to regain lost function but often they 
have no meaningful tactile feedback or perception. In the present study, we propose a bio‑inspired 
tactile system with a population of 23 digital afferents: 12 RA‑I, 6 SA‑I, and 5 nociceptors. Indeed, the 
functional concept of the nociceptor is implemented on the FPGA for the first time. One of the main 
features of biological tactile afferents is that their distal axon branches in the skin, creating complex 
receptive fields. Given these physiological observations, the bio‑inspired afferents are randomly 
connected to the several neighboring mechanoreceptors with different weights to form their own 
receptive field. To test the performance of the proposed neuromorphic chip in sharpness detection, a 
robotic system with three‑degree of freedom equipped with the tactile sensor indents the 3D‑printed 
objects. Spike responses of the biomimetic afferents are then collected for analysis by rate and 
temporal coding algorithms. In this way, the impact of the innervation mechanism and collaboration 
of afferents and nociceptors on sharpness recognition are investigated. Our findings suggest that the 
synergy between sensory afferents and nociceptors conveys more information about tactile stimuli 
which in turn leads to the robustness of the proposed neuromorphic system against damage to the 
taxels or afferents. Moreover, it is illustrated that spiking activity of the biomimetic nociceptors is 
amplified as the sharpness increases which can be considered as a feedback mechanism for prosthesis 
protection. This neuromorphic approach advances the development of prosthesis to include the 
sensory feedback and to distinguish innocuous (non‑painful) and noxious (painful) stimuli.

One of the main functions of the somatosensory system is to respond to the various types of tactile  stimuli1. 
Touch sense provides valuable and essential contact information and allows us to interact with the environment 
and perform daily  tasks2. Meissner corpuscles, Merkel cells, Ruffini endings, and Pacinian corpuscles are the 
primary skin mechanoreceptors that transmit tactile information to the upper layers of the nervous system. The 
Merkel cells and Ruffini endings are labeled as slowly adapting (SA) and respond to the sustained tactile stimuli. 
Meissner and Pacinian corpuscles which are known as rapidly adapting (RA) mechanoreceptors, respond to the 
onset and offset of the tactile  stimulation1,3. These mechanoreceptors are innervated by the first-order neurons 
of the tactile pathway. The innervation pattern enables individual afferents to encode a portion of the geometric 
characteristics of the touched  objects4. More recently, it is demonstrated that tactile information  coding5 and 
tactile features  extraction4 are also done by fingertip. Indeed, activation of tactile afferents spatially encodes the 
contact stimuli and sends the tactile information to the upper layers of the somatosensory pathway.

Free nerve endings (nociceptors) are placed in the exterior layer of the skin (epidermal layer) and are widely 
distributed over the body. They convey the tactile stimuli to the spinal cord leading to the perception of a painful 
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 experience6. Free nerve endings innervate the skin, bones, muscles, heart, and most of the internal organs. Nocic-
eptors behave as high-threshold mechanoreceptors (HTMR) and respond to harmful stimuli through Aβ, Aδ, and 
C nerve  fibers3. The mechanism of pain perception has individual peripheral receptors and includes a complex 
and chemically unique set of central  circuits7. It has been demonstrated that pain perception is increased when 
nociceptors are  active7. In this way, we can perceive a range of innocuous and noxious feelings.

Despite substantial progress in the design and control of  prosthesis8, sensory perception of prosthetic hands 
is at the beginning of the road. Due to the importance of the tactile sense and its significant role in prostheses, it 
has undoubtedly attracted much attention to the development of new tactile sensors and bringing back sensory 
information in amputees. Recent studies focus on replicating the behavior of biological tactile receptors using 
sophisticated skin  dynamics9 and neuromorphic  systems10 to improve the efficiency and performance over 
traditional techniques. The flexible electronic  elements11–13, self-healing14,15 recyclable  materials16, mechanore-
ceptor-inspired  elements14,17, and optoelectronic strain  sensors18 have been proposed for prosthetic limbs. In 
this research, a novel neuromorphic system is designed and then tested by taking into account the biological 
features of mechanoreceptors and nociceptors for interpretation of tactile information.

Neuromorphic systems replicate the biological functions and spike-based neuronal processing and are broadly 
based on the analog and digital  realization19. Neuromorphic sensory systems have made a great step forward 
in recent years using a new form of asynchronous output representation which provides timing information 
similar to the action potentials in the biological neuronal  systems20. In the last few years, the application of 
spiking neural networks and neuromorphic implementations in tactile systems has been  increased10,21–23. One 
of the most effective methods of realizing these computational neural models is digital circuit implementation 
due to their high performance for practical  applications24–30. Digital execution with Field-Programmable Gate 
Array (FPGA) offers parallel computations and flexibility for algorithm investigation while filling time and per-
formance limitations. FPGAs have broad applications in the neural network  simulations31 and motivate further 
 exploration32,33. An approximate circuit technique was used to implement tactile data processing on FPGA for 
the e-skin  applications34. Furthermore, the spiking neural network implemented on FPGA was proposed for bi-
directional interaction with living neurons cultured in microelectrode  array35. The spiking model of cutaneous 
mechanoreceptor is implemented on the digital hardware (FPGA) to identify the distinct pressure  stimuli36. For 
simulation and digital execution of the SA-I and RA-I afferents on the FPGA, the Izhikevich neuron model was 
frequently used in recent studies due to its rich dynamics which is suitable for tactile sense  modeling36,37. Salimi-
Nezhad and his  colleagues38 implemented a population of afferents on the FPGA to realize the spatial coding 
and used a glove covered by pressure sensors to recognize objects during grasping. A neuromorphic system for 
pain perception and self-protection of a hand prosthesis was introduced by Osborn and his  colleagues37. They 
fabricated a multilayered e-skin which imitates the behavioral characteristics of mechanoreceptors and nocicep-
tors to provide sensory feedback for a prosthesis.

Given the fact that the majority of tactile information collected from the environment is encoded not only 
in multiple sub-modalities but also through a population of different afferent types, in the present research 
a bio-inspired digital system for the first layer of tactile sensory pathways including SA-I/RA-I afferents and 
nociceptors is designed. Specifically, the concept of the nociceptor is functionally implemented on the FPGA for 
the first time. One of the main features of tactile afferents is that their distal axon branches in the skin, creating 
complex receptive  fields39. Consequently, the innervation concept to form receptive fields is also integrated into 
the proposed tactile neuromorphic systems. The digital afferents have receptive fields that overlap each other. To 
have a bio-inspired model for the SA-I/RA-I afferents and nociceptor, the Izhikevich neuron model is consid-
ered. Moreover, similar to the biological afferents which are not synaptically connected and only convey tactile 
information from the fingertip to the spinal cord for further processing, here, we have implemented a popula-
tion of afferent circuits while considering the innervation concept to build receptive fields. Next, we investigate 
how the collaboration of afferents and nociceptors facilities sharpness recognition. It should be pointed out 
that utilizing the innervation technique in the prosthetic/robotic applications not only reduces the number of 
implemented afferents which in turn decreases the cost and power consumption of the neuromorphic devices but 
also high-resolution tactile sensors can also be handled. Furthermore, by implementing the nociceptors in the 
proposed tactile neuromorphic system, the concept of pain feeling also emerges. This can provide the prosthesis 
self-protection to avoid injury during haptic exploration. Indeed, sensor arrays are exposed to damage that can 
adversely affect the performance of the neuromorphic  system40. Considering the role of nociceptors and mecha-
noreceptors, simultaneously, makes the system to be robust against damage in taxels or afferents/nociceptors to 
some extent. The bio-inspired tactile system includes a population of 23 digital afferents (12 RA-I, 6 SA-I, and 5 
nociceptors). Using the proposed system, we explore how the collected spike responses can be used for sharpness 
classification. In particular, first, the impact of the afferent innervation and creation of receptive field on the firing 
pattern is investigated. Second, the contribution of tactile afferents and nociceptors on sharpness recognition is 
explored. Third, the fault tolerance characteristic of the biomimetic system is addressed.

Procedure
The human tactile system converts the contact events at the fingertip to trains of action potentials (spikes) 
and then transmits to upper processing layers (Fig. 1a right). The biological SA-I afferents produce a sustained 
response to a static indentation of the  skin41 and the biological RA-I afferents respond only to the onset and offset 
phases of  indentation42. Similarly, we have developed a new communication architecture for e-skins that can 
functionally mimic the behavior of mechanoreceptors and afferents/nociceptors (Fig. 1a left). Tactile informa-
tion is collected from the pressure sensor grid and then transmitted to the neuromorphic system through the 
interface circuit (Fig. 1b). A population of 23 afferents (12 RA-I, 6 SA-I, and 5 nociceptors) is digitally realized 
in the FPGA (Fig. 1c). The ratio of these two afferents is according to previous  research42 and can be scaled up 
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easily based on the applications. The data which are delivered to the FPGA comes from three groups. Individual 
digital SA-I afferent receives its inputs directly from the specified receptive field. For each digital RA-I afferent, 
from its receptive field, the derivative of the input signal is first calculated and then is rectified to be applied 
to the Izhikevich neuron  model22,38,43,44. This is due to the fact that based on the biological evidence, the RA-I 
afferents respond to dynamic skin deformations, hence, for the trapezoidal indentation profile, the RA-I affer-
ents are activated during the onset and offset phases. Individual digital nociceptor also receives the sensor data 
from all taxels. In this case, we detect the number of taxels (‘NoT’) that exceeds the predefined thresholds. Next, 
the maximum current value (‘MCV’) of the 25 taxels is determined and then the division of ‘MCV’ over ‘NoT’ 
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Figure 1.  The proposed architecture for the FPGA-based tactile neuromorphic system. (a)-Left: Artificial 
pathway on the prosthetic hand that transduces the contact events to spiking responses in the parallel 
computational mechanism. The pressure signal obtained from the tactile sensor is converted to the current, I, 
(in the interface circuit) to feed as the input to the Izhikevich digital circuit (implemented on the FPGA). (a)-
Right: Different mechanoreceptors distributed across the patch of skin. The afferent fibers transmit the tactile 
information obtained by the skin mechanoreceptors to the spinal cord. (b) The interface circuit connects the 
sensor array to the FPGA and performs innervation and receptive field creation for the digital afferents which 
are implemented on the FPGA. (c) The bio-inspired circuits of 12 RA-I, 6 SA-I, and 5 nociceptors are executed 
on the FPGA to generate the spike responses. The designed digital circuits convert the data from the interface 
circuit to the appropriate spike trains and send them to the PC by UART protocol. (d) The recorded firing 
patterns of the population of 23 biomimetic circuits from the FPGA for a sample of sharp objects.
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is calculated (shift to the right in the FPGA). Finally, this value is applied to the Izhikevich neuron model to 
produce spikes. To analyze the tactile data, all 23 obtained spike trains are transmitted to the Personal Computer 
(PC) through the Universal Asynchronous Receiver-Transmitter (UART) interface. The spike trains of the digital 
afferents and nociceptors are illustrated in Fig. 1d and Movie S1.

To show the performance of the proposed bio-inspired tactile system in a real application, an experimental 
setup is developed. A 5 × 5 pressure tactile sensor is mounted on a custom-made robotic system with three-
degree of freedom to touch the 3D-printed objects with different sharpness (Fig. 2a). Two groups of objects are 
employed in the experiments. Group-I is contained cone-shape objects with various sharpness and Group-II is 
included cube-shape objects with different widths (Fig. 2b) (objects are described in detail in “Methods”). The 
indentation track followed a trapezoidal profile and lasted 2500 ms in total, including 250 ms for onset, 250 ms 
for offset with constant speed, and 2000 ms for hold phase (Fig. 2c). An individual object has been touched by 
tactile sensor 10 times, and considering 8 objects (both Group-I and Group-II), 80 trials in total were recorded 
for the purpose of sharpness classification.

Results
Receptive fields of SA‑I and RA‑I afferents. The 18 biomimetic digital circuits (6 SA-I and 12 RA-I) 
which have been implemented on the FPGA innervate the 25 channels of the tactile sensor through the inter-
face circuit. In this case, spatially nearby taxels of the tactile sensor are connected to one afferent with differ-
ent weights, creating complex receptive fields (Fig. 3a). Based on the experimental observation, the first-order 
neurons in the tactile sensory pathway branch in the skin and form many transduction  sites4. This arrangement 
constitutes a peripheral neural system for signaling geometric features of the touched objects. Relying on this 
concept, we offer the innervation concept in the robotic applications between the sensor’s taxels and digital 
afferents. In other words, a few numbers of afferents are acquired to cover the whole area of the tactile sensor. 
The implemented digital afferents randomly innervate the mechanoreceptor grid (sensor’s elements) with dif-
ferent weights. The receptive fields also have overlaps which in turn produce diverse spiking responses. Now it 
is investigated how the afferents encode the stimuli into spiking activity utilizing the innervation mechanism. 
Some samples of receptive fields with various innervation patterns have been illustrated in Fig. 3a. For examin-
ing the afferents responses, the first 3-principal components of the feature space obtained from the spike count 
algorithm are extracted by Principal Component Analysis (PCA) as the inputs of the K-nearest neighbor (KNN) 
classifier (Fig. S1). Figure 3b shows the sharpness classification accuracy of 8 objects (Group-I and -II) when dif-
ferent numbers of tactile sensor elements including 1, 3, 7, and 9 taxels are innervated on average by one afferent 
in separate experiments. As can be seen, the innervation method improves the classification performance. By 
expanding the receptive field, the spiking activity of afferents is also increased (Fig. 3c). Increasing the number of 
innervated taxels decreases the unused taxels and thus the whole sensor area is covered by the afferents. It should 
be pointed out that digital afferents have randomly innervated the sensor taxels. Next, we analyze the obtained 
spike responses from a neuroscience point of view and consider two main protocols for neural processing: rate 
coding and temporal coding. For the former, the number of spikes (spike count) is computed and for the latter, 
using the spike temporal pattern we calculate the Victor and Purpura distance (spike timing). In this way, the 
objects are classified based on the firing patterns of the digital afferents/nociceptors at the population-level45 
(“Methods”). Interestingly, the performance curves of both firing rate and spike timing algorithms, are similar 
and begin to increase after emission of the first few spikes (Fig. 3d–f). The results shown in Fig. 3d–f are based 

Figure 2.  Illustration of the experimental setup which includes a robotic system with three-degree of freedom, 
tactile sensor, and 3D-printed objects. (a) The custom-built robot is equipped with a 5 × 5 tactile sensor. Red 
dash lines illustrate the touch protocol, where the sensor touches different objects. (b) Tactile sensor and 
3D-printed objects. (c) Trapezoidal indentation profile. The hold phase of indentation lasts two seconds. Each 
object is touched by the tactile sensor 10 times and spike responses of the bio-inspired afferents/nociceptors are 
collected for further analysis.
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on the innervation of three taxels by each afferent. As can be seen, spatial coding is relatively stronger than the 
time coding for sharpness detection. Generally, these findings motivate the researchers to use the receptive fields 
in tactile neuromorphic devices in order to reduce the number of implemented artificial afferents when using 
high-resolution tactile sensors and consequently decrease the cost and power consumption.

Contribution of tactile afferents and nociceptors. Touching an object at low and moderate levels of 
physical contact is informative and can also be pleasant, however, it may be turned into noxious touch at a higher 
intensity. Pain perception helps us to avoid such situations. Nociceptors cause painful feelings to warn us that 
the body tissue is damaged or is in danger of being damaged. We demonstrate how the bio-inspired nociceptor 
model response to sharp object and also we assess the contribution of afferents and nociceptors in identifying 
the painful touch experience to protect the prosthetic hand from being damaged. The Izhikevich neuron model 
is used to mimic the spiking neural activity of tactile  receptors46. It preserves neural dynamics while maintain-
ing computational efficiency. In the Izhikevich neuron model, diverse firing patterns can be easily obtained by 
adjusting parameters and thus offers it as a good candidate for converting the obtained signals from sensor taxels 
to spike trains. It also has been used for the implementation of SA-I and RA-I afferents on the FPGA in recent 
 researches36,38. To model the spiking responses of the SA-I/RA-I afferents and nociceptors, here, we use the regu-

a)

Figure 3.  The impact of the innervation on the classification performance of the robotic data. (a) The samples 
of the receptive field for SA-I and RA-I afferents innervate the tactile sensor elements (taxels). (b) Classification 
performance of digital SA-I and RA-I afferents in distinct time windows when the receptive field size is changed. 
Spike count algorithm is used right after the sharp objects are touched by the sensor. (c) The firing rate with 
respect to the variation in receptive field size. Classification performance of (d) all objects, (e) Group-I objects, 
and (f) Group-II objects for the total population in different time windows using spike count (blue) and spike 
timing (orange) algorithms when three taxels are innervated by the digital afferents on average.
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lar spiking and fast spiking modes of the Izhikevich model, respectively. The dynamics are chosen to functionally 
adapt to the biological behavior of the SA-I/RA-I and free nerve  endings37. When an object is touched by the tac-
tile sensor array, a higher number of active taxels indicate a larger distribution of the pressure on the artificial fin-
gertip, which is considered as an innocuous (non-painful) tactile stimuli. On the other hand, activating a lower 
number of taxels with high pressure is assumed as a noxious touch. Two cones and two cubes from Group-I and 
-II are shown in Fig. 4a. The activation patterns of the tactile sensor are illustrated in Fig. 4b when the objects are 
touched. The bio-inspired afferents/nociceptors which have been implemented on the FPGA encode the tactile 
stimuli in the spatiotemporal pattern of spiking activity. Figure 4c shows the spike responses recorded from the 
FPGA for two different indention profiles. Generally, deeper indention (stronger contact) leads to an increase 
in the firing rate. As can be seen in Fig. 4c, the nociceptors (neuron #1-5 shown in red) strongly respond to the 
sharper objects. Next, we investigate the contribution of each afferent/nociceptor, in sharpness detection. The 
results are illustrated in Fig. 5 for the spike count algorithm. The synergy between digital nociceptors and digital 
SA-I afferents shows better sharpness recognition compared to the collaboration between digital nociceptors and 
digital RA-I afferents (Fig. 5a,c). This may be caused by the inherent characteristics of the RA-I afferents which 
respond to the transient phase of contact (onset and offset of contact). In our experiment, the object indents 
into the sensor and remains unchanged until the end of the trial, hence, the RA-I afferents are silent during the 
holding phase (Fig. 4c). On the other hand, SA-I afferents provide consistent responses during the onset, hold 
phase, and offset of each trial (Fig. 4c). The mean firing rate of each bio-inspired SA-I/RA-I/nociceptor circuit 
is depicted in Fig. 5b,d. Interestingly, it shows that the sharper objects decrease the firing activity of bio-inspired 
SA-I/RA-I, while, increase the firing responses of the bio-inspired nociceptors. This is because of the involving 
fewer taxels for sharper objects.

Figure 4.  Responses of the bio-inspired SA-I/RA-I/nociceptors circuits to different objects. (a) Two different 
groups of objects with two different levels of sharpness are used to elicit responses. (b) Pressure pattern of 
the tactile sensor during indentation of each object by the custom-built robotic system. (c) Spiking activity 
of the bio-inspired afferents (RA-I (blue), SA-I (orange)) and bio-inspired nociceptor (red) for two levels of 
indentation (1 and 1.4 mm). As the object sharpness is increased, the spiking responses of the digital circuits of 
the SA-I/RA-I are decreased while firing patterns of the bio-inspired nociceptors are increased.
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Fault‑tolerance feature of the tactile neuromorphic system. This section aims to explore the 
robustness of the proposed bio-inspired system. Figure 6a illustrates healthy and injured skin. Because of the 
skin injury, some of the mechanoreceptors are probably affected, however, we are still able to recognize differ-
ent objects with the help of unaffected mechanoreceptors which show the robustness of the biological tactile 
 system47. Fault-tolerance capability is an increasingly important feature for robotic/prosthetic hands, especially 
for remote  applications40,48,49. Robustness in neuromorphic systems leads them to be more employed in a variety 
of applications. To examine the fault-tolerance characteristic of the proposed bio-inspired tactile system we 
perform two experiments. In the first one, we randomly select several taxels and making them defective and in 
the second experiment we randomly deactivate digital neurons in the FPGA (Fig. 6b) and thus they cannot fire 
and generate spikes anymore. For the taxel damage experiment, according to the fault level, we set the output 
signal of the number of taxels to zero in the interface circuit and thus these taxels will be disabled or damaged. 
Furthermore, we consider both cases in which both taxels and afferents are disabled.

Figure 6c shows that increasing the number of disabled taxels/afferents leads to a decrease in the general 
performance of the KNN classifier as is expected. Nevertheless, it illustrates that the proposed digital bio-inspired 
system has a fault tolerance characteristic. In this case, when the amount of fault in both afferents and taxels 
is increased up to 50%, the performance level is only decreased around 30% and thus 70% of input stimuli are 
correctly classified. Noteworthy, the chance level is about 12.5% (Fig. 6c). Indeed, even when there are some 
disabled taxels/afferents, the obtained spike trains from the bio-inspired tactile system contain enough infor-
mation, and this is one of the main advantages of the innervation mechanism which has been employed in this 
neuromorphic structure. Therefore, with this amount of large damage, the classification performance is five 
times higher than the chance level.

Conclusion
The bio-inspired technology is trying to add the skin-like sensory ability to robotic/prosthetic hands to provide 
information of the hand position (proprioception) and grip  forces44. Recently, there are good achievements in the 
realization of tactile prosthesis and robotic hands. However, the current systems should be advanced by finding 
appropriate methods from biological mechanisms and then transferring to real operation. This research offered 
an innovative approach for manufacturing sensory systems and opened a new window for analysis of digital 
afferents and nociceptors from a neuroscience point of view. This technical approach artificially replicated the 
firing responses of the SA-I/RA-I afferents as well as nociceptors to be employed in the bio-robotic and prosthetic 
applications. Applying the concept of innervation and receptive field in robotic/prosthetic applications reduces 

Figure 5.  Contribution of the individual bio-inspired afferents and nociceptors in sharpness detection. 
Classification accuracy for each population of SA-I/RA-I/nociceptor and their combination for (a) Group-I 
objects and (c) Group-II objects. The mean firing rate of digital afferents and digital nociceptors during the 
response to (b) Group-I and (d) Group-II objects. For the sharpness classification, the spike count algorithm for 
500 ms has been used.
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the cost of afferent implementation and consequently, high-resolution tactile sensors can be derived by fewer 
artificial afferents.

The recorded spike trains from bio-inspired afferents/nociceptors were reliable and contained enough infor-
mation to be able to decode the input stimuli with high accuracy. Indeed, it was shown that the synergy between 
bio-inspired SA-I/RA-I afferents and nociceptors, yields an acceptable accuracy in sharpness recognition even 
when several taxels or afferents were damaged. According to the results, we observed that disabling the number 
of taxels causes the innocuous tactile acts as a noxious stimulation. This outcome is similar to the injured skin 
experiment in which a harmless touch may be perceived as an unpleasant sensation.

The proposed bio-inspired tactile system can be easily scaled up based on the required accuracy and applica-
tion. It is also possible to use other neuron models such as Adaptive Exponential Integrate-and-Fire (AdExIF) 
instead of the Izhikevich neuron model which needs low hardware resources for digital implementation and 
can be addressed in future studies.

Methods
The tactile sensor was connected to a custom-made robot with three-degree of freedom and touched different 
objects. To collect the data, a sensor array with 5 rows and 5 columns (25 channels in total) was used and each 
sensor element was represented by a variable resistor. Eight 3D-printed objects with different sharpness ordered 
in two groups (Group-I, -II) were utilized for the experiment (Fig. 2b). The indentation direction followed a 
trapezoidal profile and lasted 2500 ms in total (Fig. 2c). The sensor raw data was converted to digital values 
using a 10-bit analog-to-digital converter (ADC) in the interface circuit. The data was then sent to the personal 
computer, using the Python environment, through serial communication.

Receptive fields for SA-I and RA-I afferents were formed as 5 × 5 coefficient matrices in the interface circuit. 
Then each element of the coefficient matrices was multiplied one to one by the corresponding taxel data. After 

Figure 6.  Robustness of the proposed bio-inspired system against taxel and afferent/nociceptor damage. 
(a) Schematic of the healthy and injured skin. (b) several taxels (top) and afferents (bottom) are randomly 
damaged (black squares and dark neurons, respectively). According to the fault level, the output signal of the 
damaged taxels is set to zero in the interface circuit (taxel fault experiment) or the digital neurons in the FPGA 
are deactivated and thus they cannot fire anymore (afferent/nociceptor fault experiment). (c) Classification 
performance for damaged taxels (blue), damaged neurons (orange), and both (green).
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that, the summation of the obtained matrix was considered as the input current for the individual SA-I affer-
ent. For the RA-I afferents, after getting the summation, the derivative and rectification operations were also 
applied and then fed as the input current to the Izhikevich digital circuit implemented on the FPGA. The entire 
data collected from the tactile sensor were transmitted to the digital nociceptors on the FPGA to produce spike 
responses functionally compatible with the biological observation.

To analyze the spiking activity of the afferents, we used spike count and spike timing methods. By applying 
PCA, the dimension of the feature space was reduced to three. As shown in Fig. S1, features are appropriately 
clustered in separate groups and the desired classes can be accurately recognized by conventional classifiers such 
as KNN. Figure S2 shows that there is no significant difference between the performance of the KNN and Support 
Vector Machine (SVM) classifiers, although the performance of the KNN classifier is a little bit better for longer 
time windows. For the KNN, K was set to five. For classification, 80% of samples were randomly grouped to 
serve as the training set and the remaining 20% samples were considered as the test set. Fivefold cross-validation 
was also used. The data samples were divided into 5 subsets. Each time, one of these 5 subsets was used as the 
validation set and the remaining 4 subsets formed the training set. Finally, the average performance across all 5 
trials for each subset was computed.

Tactile sensor. We used a custom-built tactile sensor consisting of a force-sensitive conductive material 
that was sandwiched between two layers of conductive traces as rows and columns. The tactile sensor has 5 rows 
and 5 columns arranged with 2.8 mm pitch (14 mm × 14 mm active area). The sensor was covered by a silicone 
layer to disperse the indentation force. As pressure was applied, the resistance decreased and then returned to 
its original value as the pressure was removed. In this work, the sensor grid played the role of both nociceptors 
and mechanoreceptors.

Setup. The custom-built robotic setup was consisted of three stepper motors correspond to each axis (X, Y, 
Z). The movement resolution was about 10 µm in each direction. The sensor was placed on the Z-axis and moved 
vertically to touch the 3D-printed objects.

Stimuli objects. Two groups of objects were used. The first group (Group-I) were four cone-shaped objects 
with a flat base diameter of 20 mm for all and the apex diameters of 1, 3, 5, and 9 mm. The second group (Group-
II) were four cube-shaped objects with a length of 20 mm for all and the widths were 1, 3, 5, and 9 mm. These 
objects were fabricated using 3D printing technology.

Interface circuits. The readout circuit was comprised of two analog multiplexers and a 32-bit ARM core 
microcontroller with a 10-bit ADC. Analog multiplexers were utilized to determine the rows and columns of 
the tactile sensor for data collection. The ADC converted the output of each taxel (sensor element) to the digital 
signals and the microcontroller transferred the data to the FPGA.

Hardware implementation. The digital SA-I/RA-I afferents and nociceptors were implemented on the 
ZedBoard (a particular ZYNQ evaluation board). The ZedBoard is composed of two major sections: Program-
mable Logic (PL) and Processing System (PS). The PL section is a reconfigurable digital platform and the PS 
section is a dual-core ARM cortex-A9 processor. We used the PS section during data collection and data trans-
ferring to the personal computer using the UART interface. When the whole data was stored in the personal 
computer, then the classification was carried out offline. The purpose of the offline analysis is to show that 
obtained spike responses are informative and convey information in their spatiotemporal pattern.

Izhikevich neuron model is a compromise between the leaky integrate-and-fire (LIF) neuron model and 
Hodgkin-Huxley (HH) neuron model because of its efficient mathematical computations and diverse dynamical 
responses. In this research, the Izhikevich spiking model was first discretized using the Euler method, and then 
the digital circuit was implemented on FPGA.

The Izhikevich model is described as  follows46:

v and u are the membrane potential of the neuron and the membrane recovery variable, respectively. I is the input 
current. a, b, c, and d are the constant neuron parameters. ks scales the input current. For s = 1 the neuron has the 
regular spiking dynamic and when s = 2 the neuron is in the fast spiking mode. k1 and k2 are equal to 1/32 and 
1/8, respectively.  Cm is the capacitance value for dimensionality consistency and is equal to 1 F. The parameter 
values of the Izhikevich model for two dynamics including regular spiking and fast spiking were listed in Table 1. 
These parameters were adapted and taken  from46.

(1)v′ = 0.04v2 + 5v + 140− u+ ks
I

Cm
, where (s = 1, 2)

(2)u′ = a(bv − u)

(3)ifv ≥ 30 mV → then

{

v ← c
u ← u+ d
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Equations (1)–(3) with regular spiking dynamic were used to describe the spiking part of the SA-I afferent 
 model36 and with the fast spiking dynamic were used for  nociceptors37.

The methodology proposed by Cassidy et al.50 is an efficient way to implement digital circuits with less 
hardware utilization. Following this method, we multiply Eq. (1) by 0.78125 which simplifies the parameter 
values to be with the power of two and hence facilitates the digital implementation. In this way, Eq. (1) can be 
rewritten as follows:

For the RA-I afferent, we utilize the method reported  in38, and obtain the following equations for spike 
generation:

k3 is a constant factor that scales the input and τ is the time constant and their values are 128 and 1 s, respectively. 
It should be pointed out that the regular spiking dynamic is also used for the RA-I afferent model.

To implement the digital circuits, the Euler method was utilized to discretize the differential equations. The 
discretizing step was dt = 1 ms. Discretizing the Eqs. (2)–(4) for the SA-I afferent and nociceptor yields:

Similarly, for the RA-I afferent, Eqs. (5)–(7) are discretized as follows:

The register length was N = 32 on the FPGA (1 bit for sign, 13 bits for the integer part, and 18 bits for the 
fractional part) to obtain an acceptable trade-off between hardware utilization and  precision36. Hardware utiliza-
tion for the neuromorphic system is presented in Table 2.

(4)v′ =

(

1

32

)

v2 + 4v + 109.375− u+ ks
I

Cm
, where (s = 1,2)

(5)v′ =

(

1

32

)

v2 + 4v + 109.375− u+ k3
τ

Cm
I ′

(6)u′ = a(bv − u)

(7)ifv ≥ 30 mV → then

{

v ← c
u ← u+ d

(8)

v[n+ 1] = v[n]+

((

1

32

)

∗ v[n] ∗ v[n]+ 4 ∗ v[n]+ 109.375− u[n]+ ks ∗ I[n]

)

, where (s = 1,2)

(9)u[n+ 1] = u[n]+ a ∗ (b ∗ v[n] − u[n])

(10)ifv[n+ 1] ≥ 30 mV → then

{

v[n+ 1] ← c
u[n+ 1] ← u[n] + d

(11)v[n+ 1] = v[n]+

((

1

32

)

∗ v[n] ∗ v[n]+ 4 ∗ v[n]+ 109.375− u[n]

)

+k3 ∗ (I[n+ 1]− I[n])

(12)u[n+ 1] = u[n]+ a ∗ (b ∗ v[n] − u[n])

(13)ifv[n+ 1] ≥ 30 mV → then

{

v[n+ 1] ← c
u[n+ 1] ← u[n] + d

Table 1.  Parameter values of the Izhikevich neuron model.

Parameter Regular spiking Fast spiking

a 0.02 s−1 0.1 s−1

b 0.2 s−1 0.2 s−1

c − 65 mV − 65 mV

d 8 mV 2 mV
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Spike timing analysis in population‑level. For decoding based on temporal information of the spike 
patterns, the Victor and Purpura distance (VPd)45 was used. This metric is a measure of spike-train synchrony 
by computing the minimal cost necessary to transform one spike train into another, employing basic operations 
(spike deletion, spike insertion, spike shift). A detailed description of the VPd method was reported  in51.

Data availability
All data are available from the corresponding author upon reasonable request.

Code availability
All analyses reported in this work were made with custom code written in Python 3.7 and will be available from 
the corresponding author upon reasonable request. Moreover, the last version has been uploaded at: https ://githu 
b.com/Resea rch-lab-KUMS/Sharp ness-Recog nitio n.
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