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Association of serotonin 
system‑related genes 
with homicidal behavior 
and criminal aggression in a prison 
population of Pakistani Origin
Muhammad Imran Qadeer1,3,5*, Ali Amar2,5, Yung‑Yu Huang3, Eli Min3, Hanga Galfalvy4, 
Shahida Hasnain1 & J. John Mann3

The serotonin transporter (SLC6A4), 5‑HT2A (HTR2A) and 5‑HT2B (HTR2B) recepter genes, express 
proteins that are important regulators of serotonin reuptake and signaling, and thereby may 
contribute to the pathogenesis of aggressive criminal behavior. 370 sentenced murderers in Pakistani 
prisons and 359 men without any history of violence or criminal delinquency were genotyped 
for six candidate polymorphisms in SLC6A4, HTR2A and HTR2B genes. An association of higher 
expressing L/L and  LA/LA variants of the 5‑HTTLPR polymorphism was observed with homicidal 
behavior (bi‑allelic: OR = 1.29, p = 0.016, tri‑allelic: OR = 1.32, p = 0.015) and in the murderer group only 
with response to verbal abuse (OR = 2.11, p = 0.015), but not with other measures of self‑reported 
aggression. L/L and  LA/LA genotypes of the 5‑HTTLPR polymorphism were associated with higher 
aggression scores on STAX1 scale of aggression compared to lower expressing genotypes (S/S, S/LG, 
 LG/LG) in prison inmates. No associations were apparent for other serotonergic gene polymorphisms 
analyzed. Using the Braineac and GTEx databases, we demonstrated significant eQTL based 
functional effects for rs25531 in HTTLPR and other serotonergic polymorphisms analyzed in different 
brain regions and peripheral tissues. In conclusion, these findings implicate SLC6A4* HTTLPR as a 
major genetic determinant associated with criminal aggression. Future studies are needed to replicate 
this finding and establish the biologic intermediate phenotypes mediating this relationship.

Aggression and criminal aggressive behavior are a serious concern in most societies worldwide with Pakistan 
being no  exception1,2. The extreme forms of aggressive and anti-social behavior include severe violent behavior 
and homicide. The harm caused by antisocial and criminal behavior includes the victim, their family, society 
and the perpetrator and their  family3–5.

The determinants of human aggressive behavior and criminal aggression are complex and include genetic 
factors and environmental influences (maternal deprivation, violent environment, drug abuse). These effects may 
be mediated via psychiatric disorders and personality traits. In addition to direct gene or environmental effects, 
a complex interplay of genes and environment may contribute in the form of Gene × Gene (G × G) and Gene 
x Environment (G × E)  interactions6–9. The heritability of antisocial behavioral phenotypes, including criminal 
and noncriminal aggression, has been estimated to be approximately 50%10–13.

Serotonin (5-HT) plays a critical role in the modulation of mood, anxiety, aggression, sleep–wake cycle, 
motivation, pain perception and neuroendocrine  function14. Disturbances in the serotonergic system have 
been implicated in the pathophysiology of several psychiatric disorders including pathological and criminal 
 aggression15. Low serotonin turnover rate in brain, as indicated by low 5-hydroxyindoleacetic acid (5-HIAA) 
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concentration in the cerebrospinal fluid, was found in murderers and arsonists and predicts recidivism, and 
other studies report severity of aggressive behaviors correlate with neuroendocrine evidence of low serotonin 
 function16. Moreover, 5-HT2A antagonists may reduce aggression indicating a role for  serotonin17. Therefore, 
genes of serotonin system are candidate genetic determinants of antisocial behavior including aggression and 
criminal  aggression18–20. Surprisingly few studies have examined the role of serotonergic gene variants in aggres-
sion or criminal aggression including  homicide21–23.

The serotonin transporter gene (SLC6A4 or 5-HTT) has several polymorphisms associated with differential 
expression of serotonin transporter. 5-HTTLPR (serotonin-transporter-linked polymorphic region), was origi-
nally reported as a bi-allelic 44 bp insertion/deletion polymorphism in 5′ regulatory region of SLC6A4, with a 
long (L) 5-HTTLPR allele that has a relatively higher gene expression of serotonin transporter than the short 
(S)  allele24–26. Additionally, rs25531 in 5-HTTLPR differentiates the L allele into  LA and  LG, where  LA mediates 
a relatively higher transcriptional efficiency of SLC6A4 as compared with alleles  LG and  S27,28. The 5-HTTLPR 
polymorphism has been associated with a range of psychopathological conditions including aggression and 
violent behavior, but with inconsistent results and no clear conclusions as to what allelic combination confers 
the increased  risk29.

Serotonin Transporter Intronic VNTR Enhancer (STin2) is a functional 17 bp VNTR polymorphism of 
human SLC6A4 gene, and consists of 9, 10 or 12 repeat  alleles30,31, and the 12 repeat allele has greater gene 
expression of SLC6A432. Similarly, rs1042173 is another functional polymorphism, located in 3′ noncoding 
region of the SLC6A4 gene, and may influence the mRNA expression of serotonin  transporter33,34. Studies of 
both of these SLC6A4 polymorphisms report inconsistent results for their association with  aggression35,36 and 
different psychiatric  disorders37,38.

The HTR2A receptor is one of the most abundantly expressed serotonin receptors in the  brain39, and is located 
mainly on post-synaptic  neurons40. The rs6311 single nucleotide polymorphism in the HTR2A promoter affects 
 expression41. Most studies investigating rs6311 failed to find any significant association with psychiatric traits 
such as  aggression42, suicidal  behavior43 or  schizophrenia44 although there are  exceptions45. Similarly, rs17440378 
is an intronic SNP in HTR2B gene, another important serotonin receptor in the brain, and was recently reported 
to be a significant genetic determinant of aggression in cannabis-exposed subjects from a Caucasian GWAS study 
with functional  annotations46.

Because the most extreme phenotype may be the most informative in terms of genetic associations, the 
present study investigated the association with homicidal behavior and self-reported aggression of six different 
polymorphisms in these three serotonergic system-related genes in sentenced prisoners of Pakistani origin.

Results
The basic characteristics of the study sample set (including demographic details and parameters pertinent to 
measures of self-reported aggression) are as described  previously47 and summarized in Supplementary Table S1. 
Only male prison inmates were included in this study. The mean age of the prison inmates was 36.4 ± 11.8 years, 
most had a middle class social status (≈72%), a high school education (≈59%) and 56% had been married. The 
prison inmates and controls were matched demographically [all males and no statistical differences with respect 
to age (p = 0.177), district of origin (p = 0.456), socio-economic status (p = 0.677) and education (p = 0.296).

The primary information (polymorphism, region, type, observed minor allele frequencies, HWE statistics and 
percentage of samples typed) for serotonergic genes polymorphisms are described in Supplementary Table S2. 
The allele and genotype frequencies for all studied serotonergic genes polymorphisms did not deviate from 
Hardy–Weinberg equilibrium in the control group (Supplementary Table S2).

A comparative analysis of allelic and genotypic frequencies in prison inmates and controls for serotoner-
gic gene polymorphisms was done (Table 1). The higher expressing L allele and  LA/LA genotype of bi-allelic 
5-HTTLPR polymorphism and tri-allelic locus of rs25531 in 5-HTTLPR, respectively, were more frequent in 
prison inmates compared with controls [L vs. S: OR = 1.30, p = 0.017 and  LA/LA: OR = 1.88, p = 0.023 (Table 1)], 
however, the difference became insignificant after correction for multiple testing. No significant group differ-
ences were observed for the allele and genotype distributions of the other serotonergic gene polymorphisms in 
prison inmates and controls.

The association between polymorphisms in serotonergic genes and history of homicidal behavior was also 
tested assuming different genetic models (Table 2). There was an association of the bi-allelic and tri-allelic 
(rs25531) 5-HTTLPR polymorphisms with homicide (OR = 1.29, p = 0.016 and OR = 1.32, p = 0.015) in a log-
additive model. However, no association was apparent for other polymorphisms of serotonin-related genes 
and homicidal behavior under all genetic models analyzed. In addition, pair-wise linkage disequilibrium (LD) 
and haplotype plot structure analysis for serotonergic polymorphisms demonstrated no significant D ́ measures 
between each pair of serotonergic loci analyzed except for bi-allelic and tri-allelic 5-HTTLPR polymorphisms 
in SLC6A4 gene (Supplementary Figure S1). The lack of a broader association of serotonergic polymorphisms 
with criminal aggression was confirmed by a combined genotype analysis considering all the serotonergic poly-
morphisms analyzed in SLC6A4, HTR2A and HTR2B genes. However, when haplotype association analysis was 
performed considering the strong LD between bi-allelic and tri-allelic 5-HTTLPR polymorphisms in SLC6A4 
gene only according to LD block structure, the L-LA haplotype of bi-allelic and tri-allelic 5-HTTLPR polymor-
phisms was found to be associated with 1.35 fold increased risk of homicidal behavior (OR = 1.35; p = 0.011) 
(Supplementary Table S3).

The serotonergic gene polymorphisms were also analyzed by stratification of the prison inmates’ data into sub-
groups manifesting self-reported aggression and histories such as childhood history of abuse, history of parental 
aggression, parental marital problems, any minor psychiatric problems and substance use disorder (Table 3 and 
Supplementary Tables S4 A–E). The L/L genotype of 5-HTTLPR was more prevalent in prison inmates reporting 
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more susceptibility to provocation by verbal abuse (OR = 2.11, p = 0.015) (Table 3). Also, tri-allelic rs25531 in 
5-HTTLPR polymorphism was associated with history of any minor psychiatric problems (OR = 0.26, p = 0.045) 
and HTR2B rs17440378 polymorphism with parental marital problems (OR = 1.76, p = 0.037) (Supplementary 
Tables S4D and E). However, no associations were found for other serotonergic polymorphisms in the stratified 
data analyses. The prison inmate group was further analyzed for potential moderation of genetic susceptibility 
of criminal behavior by environmental risk factors including current age, age at time of committing murder, 
region, socio-economic, educational and marital status, and ethnic subgroup or caste. However, no effect of 
these factors was apparent for any of the serotonergic polymorphisms analyzed (Supplementary Tables S5 A–F).

State anger score was also determined for prison inmates sentenced for murder (using STAXI subscale, fifteen 
items) and was correlated with different genotypes of serotonin system genes (Table 4). Prison inmates carrying 
L and  LA alleles of 5-HTTLPR and tri-allelic rs25531 5-HTTLPR polymorphisms, had higher aggression scores 
compared with inmates with other (S and  LG) alleles (p = 0.0005 for both polymorphisms). However, mean 
aggression scores did not differ significantly between genotypes for other serotonergic gene polymorphisms.

A gene–gene interaction analysis was also run using the MDR method for the five polymorphisms of three 
serotonergic system genes analyzed including the tri-allelic rs25531 in 5-HTTLPR, 3′UTR rs1042173 and STin2 
polymorphisms from the SLC6A4 gene, rs6311 and rs17440378 SNPs from the HTR2A and HTR2B genes, 
respectively, with murderer/ normal control status as response. Permutation tests failed to validate any significant 
2nd, 3rd or 4th order interactions among these five serotonergic system genetic polymorphisms (all p > 0.15), 
suggesting no significant G x G interaction effects for SLC6A4, HTR2A and HTR2B genes in the present study.

Table 1.  Allele and genotype distribution for 5-HTTLPR, rs25531 in 5-HTTLPR, STin2, 3ʹUTR (SLC6A4 
gene), rs6311 (HTR2A gene) and rs17440378 (HTR2B gene) polymorphisms and their association with 
homicide history. OR, odds ratio; CI, confidence interval; n (%), frequency. 1 Bonferroni correction for multiple 
testing was applied (p-value threshold 0.0083). Statistically significant p-values (< 0.01) and associated OR 
values are highlighted in bold.

Polymorphisms Genotype/Allele Prison inmates, n (%) Normal controls, n (%) OR (95% CI) p-value1

5-HTTLPR

S/S 111 (30.7%) 128 (36.9%) Referent

0.046S/L 172 (47.5%) 166 (47.8%) 1.19 (0.86–1.66)

L/L 79 (21.8%) 53 (15.3%) 1.72 (1.12–2.64)

S 394 (54.4%) 422 (60.8%) Referent
0.017

L 330 (45.6%) 272 (39.2%) 1.30 (1.05–1.60)

rs25531 in 5-HTTLPR

S/S 111 (30.7%) 128 (36.9%) Referent -

S/LG 38 (10.5%) 41 (11.8%) 1.07 (0.64–1.78) 0.789

S/LA 134 (37.0%) 125 (36.0%) 1.24 (0.87–1.76) 0.238

LG/LG 8 (2.2%) 8 (2.3%) 1.15 (0.42–3.17) 0.783

LA/LG 27 (7.5%) 18 (5.2%) 1.73 (0.91–3.31) 0.098

LA/LA 44 (12.2%) 27 (7.8%) 1.88 (1.01–3.23) 0.023

rs25531 in 5-HTTLPR (genotypes grouped 
based on relative SLC6A4 expression)

S/S, S/LG,  LG/LG (Low SLC6A4 expression) 157 (43.4%) 177 (51.0%) Referent –

LA/S,  LA/LG (Intermediate SLC6A4 expression) 161 (44.5%) 143 (41.2%) 1.27 (0.93–1.73) 0.133

LA/LA (High SLC6A4 expression) 44 (12.2%) 27 (4.8%) 1.84 (1.09–3.11) 0.023

SLC6A4 STin2

12R/12R 164 (45.7%) 173 (48.7%) Referent

0.54012R/10R 156 (43.5%) 151 (42.5%) 1.09 (0.80–1.48)

10R/10R 39 (10.9%) 31 (8.7%) 1.33 (0.79–2.23)

12R 497 (70.0%) 484 (67.4%) Referent
0.291

10R 213 (30.0%) 234 (32.6%) 1.13 (0.90–1.41)

SLC6A4 3ʹ UTR (rs1042173)

G/G 120 (35.1%) 115 (34.2%) Referent

0.440G/T 138 (40.4%) 150 (44.6%) 0.88 (0.62–1.24)

T/T 84 (24.6%) 71 (21.1%) 1.13 (0.76–1.70)

G 378 (55.2%) 380 (56.5%) Referent
0.634

T 306 (44.8%) 292 (43.5%) 0.95 (0.77–1.18)

HTR2A (rs6311)

C/C 123 (33.9%) 122 (34.0%) Referent

0.530C/T 183 (50.4%) 170 (47.4%) 1.07 (0.77–1.48)

T/T 57 (15.7%) 67 (18.7%) 0.84 (0.55–1.30)

C 414 (57.7%) 429 (59.1%) Referent
0.581

T 304 (42.3%) 297 (40.9%) 0.94 (0.76–1.16)

HTR2B (rs17440378)

C/C 257 (71%) 256 (75.5%) Referent

0.15C/T 96 (26.5%) 80 (23.6%) 1.20 (0.85–1.69)

T/T 09 (2.5%) 3 (0.9%) 2.99 (0.80–11.17)

C 610 (84%) 592 (87%) Referent
0.12

T 114 (16%) 86 (13%) 1.29 (0.95–1.74)
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To further investigate the role of studied serotonergic system genetic markers in criminal aggression, we 
sought to identify any genotype-gene expression based evidence of functional significance of analyzed SNPs by 
querying the eQTL data available from the Braineac and GTEx databases. We identified significant eQTLs for ser-
otonin system genes analyzed across different brain regions from the Braineac dataset including SLC6A4*rs25531 
in hippocampus (p = 6.6 ×  10–4), SLC6A4*rs1042173 in temporal cortex region (p = 1.4 ×  10–3), HTR2A*rs6311 in 
cerebellar cortex (p = 3.7 ×  10–3), and HTR2B*rs17440378 in substantia nigra region of the normal human brain 
(p = 5.0 ×  10–4) as presented in Supplementary Figure S2.

Using the GTEx database, we observed that no eQTL data was available for the tri-allelic rs25531 in 
5-HTTLPR polymorphism while rs1042173, rs6311 and rs17440378 SNPs were significantly associated with 
expression of SLC6A4, HTR2A and HTR2B genes, respectively, in some peripheral human tissues but not in dif-
ferent regions of the brain except for few suggestive associations that included HTR2A*rs6311 in caudate/basal 
ganglia region (p = 0.05) and HTR2B*rs17440378 in cerebellum (p = 2.9 ×  10–3) as well as in spinal cord/cervical 
c-1 (p = 0.03) regions (Supplementary Tables S6 to S8).

Discussion
In this study, we investigated genetic association of common polymorphic variants in three serotonin system 
genes (SLC6A4, HTR2A and HTR2B) with homicidal behavior and self-reported aggression in Pakistani prison 
inmates sentenced for violent murder(s). We found: (1) A genetic association of the bi-allelic and tri-allelic 
5-HTTLPR polymorphisms in the SLC6A4 gene with homicidal behavior and criminal aggression but not for 
other polymorphisms of the three serotonin system genes analyzed; (2) Other measures of self-reported aggres-
sion and histories (including childhood history of abuse, history of parental aggression, parental marital prob-
lems, and substance abuse/dependence) and environmental risk factors (including current age, age at time 

Table 2.  Association of the studied polymorphisms in serotonergic system genes with criminal delinquency 
assuming different genetic models. OR, odds ratio; CI, confidence interval; n (%), frequency. 1 Bonferroni 
correction for multiple testing was applied (p-value threshold 0.0166). Statistically significant p-values 
(< 0.0166) and associated OR values are highlighted in bold.

Polymorphisms Model Genotypes Prison inmates, n (%) Normal controls, n (%) OR (95% CI) p-value1

5-HTTLPR

Dominant
S/S 111 (30.7%) 128 (36.9%) Referent

0.08
S/L-L/L 251 (69.3%) 219 (63.1%) 1.32 (0.97–1.81)

Recessive
S/S–S/L 283 (78.2%) 294 (84.7%) Referent

0.025
L/L 79 (21.8%) 53 (15.3%) 1.55 (1.05–2.27)

Log-additive – – – 1.29 (1.05–1.59) 0.016

rs25531 in 5-HTTLPR (genotypes 
grouped based on relative SLC6A4 
expression)

Dominant

S/S, S/LG,  LG/LG (Low SLC6A4 expres-
sion) 157 (43.4%) 177 (51%) Referent

0.042
LA/S,  LA/LG,  LA/LA (High SLC6A4 
expression) 205 (56.6%) 170 (49%) 1.36 (1.01–1.83)

Recessive
S/S, S/LG,  LG/LG,  LA/S,  LA/LG (Low 
SLC6A4 expression) 318 (87.8%) 320 (92.2%) Referent

0.051
LA/LA (High SLC6A4 expression) 44 (12.2%) 27 (7.8%) 1.64 (0.99–2.71)

Log-additive – – – 1.32 (1.05–1.66) 0.015

SLC6A4 STin2

Dominant
12R/12R 164 (45.7%) 173 (48.7%) 1.00 (Referent)

0.410
12R/10R-10R/10R 195 (54.3%) 182 (51.3%) 1.13 (0.84–1.52)

Recessive
12R/12R-12R/10R 320 (89.1%) 324 (91.3%) 1.00 (Referent)

0.340
10R/10R 39 (10.9%) 31 (8.7%) 1.27 (0.78–2.09)

Log-additive – – – 1.13 (0.90–1.41) 0.290

SLC6A4 3ʹ UTR (rs1042173)

Dominant
G/G 120 (35.1%) 115 (34.2%) 1.00 (Referent)

0.810
G/T-T/T 222 (64.9%) 221 (65.8%) 0.96 (0.70–1.32)

Recessive
G/G-G/T 258 (75.4%) 265 (78.9%) 1.00 (Referent)

0.290
T/T 84 (24.6%) 71 (21.1%) 1.22 (0.85–1.74)

Log-additive – – – 1.05 (0.86–1.28) 0.660

HTR2A (rs6311)

Dominant
C/C 123 (33.9%) 122 (34%) 1.00 (Referent)

0.980
C/T-T/T 240 (66.1%) 237 (66%) 1.00 (0.74–1.37)

Recessive
C/C–C/T 306 (84.3%) 292 (81.3%) 1.00 (Referent)

0.290
T/T 57 (15.7%) 67 (18.7%) 0.81 (0.55–1.20)

Log-additive – – – 0.94 (0.76–1.16) 0.580

HTR2B (rs17440378)

Dominant
C/C 257 (71%) 256 (75.5%) 1.00 (Referent)

0.18
C/T-T/T 105 (29%) 83 (24.5%) 1.26 (0.90–1.76)

Recessive
C/C–C/T 353 (97.5%) 336 (99.1%) 1.00 (Referent)

0.094
T/T 09 (2.5%) 03 (0.9%) 2.86 (077–10.64)

Log-additive – – – 1.30 (0.95–1.76) 0.096
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of committing murder, region, socio-economic, educational and marital status and ethnic subgroup) had no 
significant role in moderating association of serotonin system polymorphisms and homicidal behavior/criminal 
aggression in the present sample set (except for described associations); (3) L and  LA alleles of the 5-HTTLPR 
polymorphism had a dose dependent relationship with greater aggression score in sentenced murderers; (4) no 
significant G × G interaction effects for SLC6A4, HTR2A and HTR2B genes in the MDR analysis following the 
hypothesis that these genes may have a synergistic effect in the development of homicidal behavior/criminal 
aggression since it is a complex trait, and (5) tri-allelic 5-HTTLPR and other serotonergic polymorphisms as 
functional eQTLs influencing gene expression in different regions of normal human brain and peripheral tissues 
as determined by the Braineac and GTEx databases.

Table 3.  Association of 5-HTTLPRpolymorphisms with self-reported aggression, emotional reactivity, related 
psychopathologies and childhood adversities in sentenced murderers. OR, odds ratio; CI, confidence interval. 
Boldface indicates p < 0.05 was considered as statistically significant.

Response to measure

5-HTTLPR genotypes 
(recessive model)

OR (95% CI) p-valueS/S–S/L, n (%) L/L, n (%)

Self-reported aggression (Lifetime)

Yes 180 (65.7%) 59 (76.6%)
1.71 (0.96–3.07) 0.071

No 94 (34.3%) 18 (23.4%)

Provoked by verbal abuse

Yes 149 (60.6%) 55 (76.4%)
2.11 (1.16–3.84) 0.015

No 97 (39.4%) 17 (23.6%)

Provoked by physical abuse

Yes 148 (59.9%) 51 (70.8%)
1.63 (0.92–2.87) 0.094

No 99 (40.1%) 21 (29.2%)

Childhood history of abuse

Yes 175 (63.4%) 53 (68.8%)
1.28 (0.74–2.19) 0.379

No 101 (36.6%) 24 (31.2%)

History of parental aggression towards future aggressor (murderer)

Yes 139 (50.4%) 42 (54.5%)
1.18 (0.71–1.96) 0.516

No 137 (49.6%) 35 (45.5%)

Parental marital problems (including divorced and separated with step parents)

Yes 72 (25.6%) 20 (26.0%)
1.02 (0.57–1.81) 0.950

No 209 (74.4%) 57 (74.0%)

Any minor psychiatric problem

Yes 13 (5.3%) 02 (2.9%)
0.53 (0.12–2.38) 0.404

No 232 (94.7%) 68 (97.1%)

Substance use disorder

Yes 55 (20.7%) 13 (20.7%)
0.83 (0.43–1.62) 0.588

No 211 (79.3%) 60 (82.2%)

Table 4.  Association of SLC6A4 5-HTTLPR, STin2, 5-HTT 3ʹ UTR, rs25331 in 5-HTTLPR and HTR2A 
rs6311 polymorphism with aggression score in sentenced murderers. M, major allele; m, minor allele. 
1 Bonferroni correction for multiple testing was applied (p-value threshold 0.0125). Statistically significant 
p-values (< 0.01) are highlighted in bold. 2 Recessive model for all the polymorphisms (MM and Mm vs. mm). 
3 S/S, S/LG,  LG/LG vs.  LA/S,  LA/LG. 4 S/S, S/LG,  LG/LG vs.  LA/LA. 5 LA/S,  LA/LG vs.  LA/LA.

Polymorphism

Aggression Score(Mean ± SD)

p-value1,2MM Mm mm

5-HTTLPR 30.68 ± 13.1 39.19 ± 14.8 42.90 ± 14.7  < 0.0005

SLC6A4 STin2 35.34 ± 14.9 38.26 ± 14.7 41.36 ± 15.6 0.071

SLC6A4 3ʹ UTR 36.40 ± 15.4 38.30 ± 15.1 37.63 ± 14.3 0.910

HTR2A rs6311 35.86 ± 14.4 37.70 ± 15.4 37.63 ± 14.6 0.756

HTR2B rs17440378 37.77 ± 15.2 36.63 ± 14.44 36.44 ± 15.82 0.802

S/S, S/LG,  LG/LG (low SLC6A4 expres-
sion genotypes)

LA/S,  LA/LG (Intermediate SLC6A4 
expression genotypes)

LA/LA (High SLC6A4 expression 
genotype)

rs25531 in 5-HTTLPR 30.35 ± 12.6 41.62 ± 14.6 47.02 ± 13.01  < 0.00053, < 0.00054, 0.0525
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We also genotyped our samples for the newer tri-allelic variant of 5-HTTLPR polymorphism where L allele 
is further divided into  LA (higher transcriptional efficiency of serotonin transporter gene) and  LG (lower tran-
scriptional efficiency of serotonin transporter gene comparable to the S allele) variants based on rs25531 SNP 
within 5-HTTLPR polymorphism. This tri-allelic variant of 5-HTTLPR polymorphism is a better indicator of 
expression differences due to the 5-HTTLPR polymorphism and thereby superior study  power48. Therefore, the 
main hypothesis was based on tri-allelic HTLPR variant in the present study and the statistical analysis reported 
above for bi-allelic HTLPR polymorphism was included only for comparison with other reports as most previous 
studies have only analyzed bi-allelic version of 5-HTTLPR polymorphism.

Efforts were made to analyze those polymorphisms of serotonin system genes that were reported to have 
functional relevance to serotonin homeostasis. A critical review of the influence of 5-HTTLPR genotypes on 
SLC6A4 promoter efficiency and  expression49, reported that apart from a couple of  studies50,51, most studies find 
that the longer repeat (L and  LA) variants functionally mediate higher basal and induced transcriptional activity 
of SLC6A4 promoter resulting in greater gene expression, higher levels of serotonin transporter and an increased 
serotonin reuptake activity as compared to  LG or S  variants24–28,52–61. In further support of these findings, less 
in vivo serotonin transporter mRNA levels are associated with S allele of 5-HTTLPR  polymorphism62–64. STin2 
VNTR polymorphism mediates transcriptional regulation of SLC6A4 gene expression as shown in transgenic 
mice and in vitro functional data from embryonic stem  cells32,65, where the 12 repeat allele (12R) displayed 
higher enhancer-like activity and greater expression of serotonin transporter mRNA as compared to 10 repeat 
allele (10R)54,66. However, data regarding the functional relevance of SLC6A4 3′UTR (rs1042173)  variant34,67 and 
HTR2A rs6311  polymorphism68,69 are somewhat conflicting.

With the availability of modern genetic variant-gene expression databases such as the Brainneac and GTEx, 
it is possible to evaluate the link between genetic polymorphisms and altered gene expression which may help in 
more precise understating of connection between GWAS/CGAS reported genetic polymorphisms and molecular 
pathogenesis of different diseases. Therefore, as an alternative validation strategy, we performed a follow-up func-
tional annotation analysis of different serotonergic system polymorphisms analyzed. We identified a significant 
eQTL pair for SLC6A4*rs25531 in hippocampus region of normal human brain providing further evidence of 
its functionality and candidacy as potential genetic determinant of pathological aggression.

We also observed that rs1042173, rs6311 and rs17440378 SNPs were also significant eQTLs of SLC6A4, 
HTR2A and HTR2B genes, respectively, modulating their expression in some human brain and peripheral tis-
sues, although no association with criminal aggression was apparent for these polymorphisms in our study. 
It is important to note here that differences in methylation and transcriptome regulation patterns in different 
brain regions may result in distinct gene expression  profiles70. Moreover, previously it has been reported that 
risk effects of HTR2B rs17440378 polymorphism on aggressive behavior appear to be cannabis use dependent 
rather than driven by aggression alone or aggression under the influence of other  drugs46, which may explain no 
association observed with criminal aggression in the present study using violent murders sample set and a similar 
explanation may be extendable to other serotonergic polymorphisms analyzed for which no genetic association 
was observed in the present study. Overall, a functional regulatory role for rs25531 in SLC6A4 gene is suggested 
that may influence the gene expression and risk of criminal behavior. These data also stress the need of direct 
genetic variant mediated functional studies in target tissues to confirm any potential effects of serotonergic system 
polymorphisms on relevant protein function and/or regulation.

Some previous studies have examined serotonergic polymorphisms in prison inmates, however, studies exam-
ining extreme violence phenotype such as sentenced murderers are scarce especially from Indo-Pak subcontinent. 
Previously, Cherepkova and colleagues reported significant over-presentation of 5-HTTLPR and STin2 risk alleles 
and haplotype in convicted subjects and MMA fighters (including those convicted of grave crimes or murder) 
as compared to control  group71. In agreement with our results, the L allele was more frequent in aggressive 
adolescent prisoners of Korean origin as compared to normal non impulsive population controls in an earlier 
 study72. L/L genotype of 5-HTTLPR was found to be associated with aggressive and violent  behavior73, borderline 
personality  disorders74 and suicidal  behavior75. Low heart rate and 5-HTTLPR L/L genotype were associated 
with higher arrest rates for violence in an incarcerated sample of American  men76. Other psychopathologies 
in a violent population, such as depression, were also reported to be associated with both the L allele and L/L 
genotype of 5-HTTLPR polymorphism in Russian criminal  offenders21.

Some studies report different results such as an association of the lower expressing serotonin transporter S 
allele or S/S genotype of 5-HTTLPR polymorphism with extreme criminal behavior in Chinese male  prisoners77 
and violent behavior in adult German criminal offenders with history of childhood  ADHD78. Other studies also 
reported association of S allele or S/S genotype with antisocial  alcoholism79, concussion history and personality 
traits in rugby  players80, suicidal ideation in acute coronary syndrome  patients81, higher impulsivity, hostility 
and neuroticism in anxiety  phenotype82, hyperactivity-impulsivity in children moderated by peer problems 
earlier in  childhood83 and increased exposure to life stressors moderated by ADHD symptoms early in  life84. 
Some meta-analyses also describe association of low expression allele/genotype of 5-HTTLPR polymorphism 
with anti-social  behavior85, violent suicide  attempts86 and bipolar  disorder87.

Like current study, fewer studies analyzed the tri-allelic variant of rs25531 in5-HTTLPR polymorphism and 
differentiated between  LA and  LG alleles while determining association with anti-social behaviors and aggression. 
The S and  LG (low SLC6A4 expression) variants of tri-allelic rs25531 in5-HTTLPR polymorphism were found 
associated with higher scores on aggression, and total behavior problems in Mongolian  children88 and higher 
neuroticism in healthy Chinese  men89.A few studies also reported no association between 5-HTTLPR polymor-
phism and anti-social phenotypes including antisocial alcoholic  behavior90 and aggressive  traits91.

The lack of agreement regarding the association of 5-HTTLPR polymorphism with aggressive behavior may 
be explained by several reasons, including but not limited to: small sample sizes; differences in measures or types 
of homicidal/criminal behavior and aggression (for example reactive aggression vs. pro-active or pre-meditated 
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aggression); differences in genetic background or in allele/genotype frequencies based on ethnic origin; and 
differences in study design and robustness of data analysis (for example demonstrated conformance to HWE). 
Also, analysis of limited number of polymorphisms in serotonergic genes has its own limitations as expression 
of a particular gene can be modulated by numerous such genetic variants which may or may not exhibit linkage 
disequilibrium. Moreover, which allele of the 5-HTTLPR or tri-allelic rs25531 in 5-HTTLPR polymorphism 
confers the risk of homicidal behavior and aggression is not  clear29. Two hypotheses have been proposed in this 
regard; the L and  LA variants of 5-HTTLPR polymorphism (mediating a higher functional expression of serotonin 
transporter gene) result in greater serotonin reuptake and reduced availability of synaptic serotonin, which may 
increase susceptibility to proactive aggression and anti-social  phenotypes29,85,92. In contrast, S and  LG alleles of 
5-HTTLPR polymorphism (that mediate relatively lower transcriptional efficiency of serotonin transporter gene), 
due to lower serotonin uptake and higher synaptic serotonin, may result in heightened psychotic or paranoid 
features and thereby a predisposition towards paranoid reactive aggression  phenotypes29,92.

Genome Wide Association Studies (GWASs) of aggression and criminal aggression are few. Despite some 
interesting leads highlighting novel loci and pathways in nervous, neuroendocrine and immune systems, GWASs 
of aggression and related phenotypes (antisocial behavior, anger, conduct problems and callous, uncaring and 
unemotional aggressive traits) failed to replicate any  findings93–95. A GWAS study of violent prisoners in Finland 
(n = 5,983), the most relevant phenotype to the current study, found suggestive association with a polymorphism 
(rs11649622) in the CDH13 gene that codes for a neural adhesion  protein96. One of the largest aggression GWAS 
studies (n = 18,988) investigating aggressive behavior in children (the EAGLE consortium) reported significant 
association with the rs11126630 polymorphism located near the excitatory synapse development gene LRRTM4, 
and using a subsequent “classical candidate gene association analysis” also with AVPR1A (arginine-vasopressin 
receptor 1A)  gene97. Other GWASs report associations with: (a) HTR2B serotonin receptor in cannabis-related 
 aggression98; (b) 13 different SNPs associated with violence in  schizophrenia99; and (c) dopaminergic, gluta-
matergic and neuroendocrine polygenic risk score (PRS) associated with callous-unemotional  traits100. We also 
analyzed the GWAS reported HTR2B rs17440378 SNP in our homicidal prison inmate sample set but failed 
to detect any significant association with criminal aggression. Finally, a meta-analysis of GWAS data from 
five different population studies did not find any significant markers for anti-social  behavior101. As in many 
other conditions, GWASs of aggression and criminal behavior largely failed to detect associations for candidate 
genes, including serotonin neurotransmission, that are mostly being investigated in candidate gene association 
 studies94. Perhaps with increasing sample sizes and more homogenous and in-depth definition of the aggression 
and criminal aggression, we may find such associations, like other complex traits for which GWAS has been a 
successful  approach95.

Study limitations include small sample size due the rare population being studied because we sought a group 
with an extremely severe phenotype, limited time allowed for interview to obtain all clinical phenotypic data, and 
analysis of a limited number of serotonergic polymorphisms in a limited number of genes instead of conducting 
an unbiased GWAS study. Another limitation of our study is the lack of any direct functional assessment of the 
effects of analyzed serotonin system polymorphisms on relevant protein function, including regulation. Inclu-
sion of information about epigenetic marks and expression profile would have enriched the data set. Therefore, 
replication studies are needed in larger well characterized samples using a GWAS approach, genome-wide DNA 
methylation and RNAseq data on the transcriptome combined with additional data on developmental history 
that would permit estimation of G × G and G × E interactions in relation to extreme aggressive behavior and 
related endophenotypes.

In conclusion, the L and  LA variants of 5-HTTLPR VNTR polymorphism with demonstrated eQTL based 
functional significance are associated with homicidal behavior and self-reported aggression in this rare sample 
set of Pakistani prison inmates sentenced for murder(s). Analysis of genetic risk factors in extreme criminal vio-
lence may increase understanding of the neurobiological basis of less severe aggression. Further studies should 
also determine whether these findings extend to less severe aggression and related anti-social endophenotypes.

Subjects and methods
Ethical approvals, consent and study subjects. The details of consent, subject recruitment and study 
sample set have been described  previously47. Briefly, the present study was conducted after obtaining permission 
and approval from higher police authorities and Institutional Ethics Committee at University of the Punjab, 
Lahore and all experiments were performed in accordance with latest version of Declaration of Helsinki guide-
lines. All the study subjects gave written informed consent after the nature of the research procedures had been 
fully explained to them.

This study comprised 729 subjects, including 370 men in three major district prisons of Punjab, Pakistan that 
were sentenced for first-degree murder(s), and 359 age and ethnicity matched control men randomly selected 
from the general population and found to be without any personal or family history of criminal aggressive 
behavior. Only those prison inmates who had been sentenced for first-degree homicide(s) by a court of law and/
or self-confession of the said crime with alleged/convicted/condemned status, were enrolled in the study. A ran-
dom sampling procedure was ensured by randomly selecting murderers from different barracks within a prison 
and recruiting murderers from three different major district prisons (and their sub-jails) in Punjab province of 
Pakistan. It should be noted that prison inmates, as well as normal controls, who had a DSM-IV diagnosis or 
family history of any major psychiatric disorder, were excluded from the study. Prison inmates were interviewed 
to record self-reported aggression and histories based on State Trait Anger Expression Inventory (STAXI), with 
a cut-off value of > 20 as high aggression score, followed by collection of blood samples for genetic analysis.
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Genotyping of SLC6A4, HTR2A and HTR2B polymorphisms. A modification of standard phenol–
chloroform extraction method was used for the isolation of genomic DNA from blood  samples102. All the sub-
jects were genotyped for fourSLC6A4 and one HTR2A polymorphisms as described in Supplementary Table S9. 
Briefly, specific primers were used to amplify the target region containing the polymorphism of interest in a 
standard PCR reaction. Amplified DNA fragments were resolved on 2% agarose gels and genotypes were directly 
scored for polymorphisms with PCR based genotyping approach (5-HTTLPR and STin2 polymorphisms). The 
HTR2B rs17440378 SNP was genotyped using a custom iPLEX SNP genotyping assay and the MassARRAY 
system according to the standard  protocol103. The remaining polymorphisms (tri-allelic rs25531 in 5-HTTLPR 
and, 3′UTR rs1042173 in SLC6A4 and rs6311 inHTR2A) were genotyped using a PCR–RFLP based method 
where PCR amplification products were subjected to restriction digestion by relevant restriction enzyme and 
restriction digestion products were run on 3% agarose gels to determine respective genotypes in each sample. 
The representative gel electropherograms for each of PCR or PCR–RFLP based genotyping assays have been 
provided in the Supplementary Figures S3 to S6. The genotypes of all polymorphisms analyzed were scored by 
two independent researchers to minimize bias.

Statistical analysis. The study data were coded and analyzed using the Statistical Package for Social Sci-
ences (SPSS) version 20 for Windows and the SNPstats  program104. Hardy–Weinberg equilibrium (HWE) analy-
sis was performed in the control group by means of a chi-square test using the SNPstats program. Minor allele 
frequencies in the present sample for polymorphisms analyzed were all 5% or above. Allele and genotype fre-
quencies were compared between prison inmates and controls using chi-square tests. Odds ratios (ORs) with 
95% confidence intervals (CIs) and associated p-value were calculated as a measure of association. SNPstats 
was also used to determine genetic associations assuming the dominant, recessive and log-additive models by 
unconditional logistic regression analysis. Combined genotype and haplotype frequencies for SLC6A4, HTR2A 
and HTR2B polymorphisms were also analyzed and compared. The pairwise linkage disequilibrium analysis for 
serotonergic gene polymorphisms was conducted using the Haploview  program105. Bonferroni correction for 
multiple testing was performed when determining genotype, combined genotype and haplotype associations 
with murderer phenotype and aggression scores. A p-value (two tailed) of less than 0.05 was considered signifi-
cant unless otherwise stated.

Gene–gene interactions were also tested using the Multifactor Dimensionality Reduction (MDR)  method106. 
Briefly, this method aims to reduce the number of cells in 2nd and higher order interactions by grouping them 
based on their level of risk. In case such as this study where there is a binary outcome, multi-loci genotypes are 
grouped into low and high risk genotypes, then each is separately tested against other genotype combinations 
using a Wald test. Significant Wald statistics are then validated using permutation tests. We used the “mbmdr” 
library in  R107, with a liberal p = 0.10 cutoff for the risk classification selecting the low and high risk genotype 
combinations, and p = 0.05 for the permutation test. Five polymorphisms were entered into the analysis: the 
tri-allelic rs25531 in 5-HTTLPR, 3′UTR rs1042173 and STin2 polymorphisms from the SLC6A4 gene, rs6311 
SNP from the HTR2A gene, and rs17440378 polymorphism from the HTR2B gene, and 2nd, 3rd and 4th order 
interactions were tested. Only subjects with data for all five of the above polymorphisms were included in the 
analysis (370 sentenced murderers and 359 normal controls).

Expression quantitative trait loci (e‑QTL) analysis. To evaluate the association between SNP based 
genetic markers of serotonin system genes and their relative gene expression, cis-eQTL data were extracted using 
two modern databases including the Braineac database from the UK Brain Expression Consortium (UKBEC) 
available at www. brain eac. org, and Genotype-Tissue Expression (GTEx) project dataset version 8 (https:// www. 
gtexp ortal. org/). The Braineac dataset harbors eQTL data of 10 brain regions from 134 postmortem neuropatho-
logically normal individuals of European origin. While the GTEx database is a comprehensive public resource 
that contains genotypic and tissue specific gene expression data of samples collected from 54 non-diseased tissue 
types (including brain tissue) across almost 1000 individuals of primarily Caucasian ancestry.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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