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Impact of the central frequency 
of environment on non‑Markovian 
dynamics in piezoelectric 
optomechanical devices
Quanzhen Ding1, Peng Zhao2,3, Yonghong Ma4* & Yusui Chen2*

The piezoelectric optomechanical devices supply a promising experimental platform to realize 
the coherent and effective control and measurement of optical circuits working in Terahertz (THz) 
frequencies via superconducting electron devices typically working in Radio (MHz) frequencies. 
However, quantum fluctuations are unavoidable when the size of mechanical oscillators enter into 
the nanoscale. The consequences of the noisy environment are still challenging due to the lack of 
analytical tools. In this paper, a semi‑classical and full‑quantum model of piezoelectric optomechanical 
systems coupled to a noisy bosonic quantum environment are introduced and solved in terms of 
quantum‑state diffusion (QSD) trajectories in the non‑Markovian regime. We show that the noisy 
environment, particularly the central frequency of the environment, can enhance the entanglement 
generation between optical cavities and LC circuits in some parameter regimes. Moreover, we observe 
the critical points in the coefficient functions, which can lead the different behaviors in the system. 
Besides, we also witness the entanglement transfers between macroscopic objects due to the memory 
effect of the environment. Our work can be applied in the fields of electric/ optical switches, and long‑
distance distribution in a large‑scale quantum network.

Optomechanical systems have received substantial interests as a promising experimental platform to improve the 
resolution and precision of measurement to beat the standard quantum limit, to observe macroscopic quantum 
phenomena, and to realize sideband cooling and parametric  amplification1–17. Its applications, ranging from 
quantum information to quantum sensing, have been thoroughly studied. Recently, conventional optomechani-
cal systems consisting of the coupled mechanical mode and cavity field have been extended to piezoelectric 
optomechanical devices in which radio frequency (RF) and cavity field are parametrically coupled through the 
coupling with the mechanical  oscillator18–47. Such hybrid systems supply an experimental platform in which the 
THz optical field and GHz acoustic waves are combined. In addition, the mechanical oscillator can be driven by 
RF signals and be measured precisely by interferometers in the optical domain, which raises significant interests 
for classical signal processing.

However, it remains a tremendous challenge to suppress the impacts of the noisy  environment48,49. Various 
schemes have been investigated to address these challenges, including eliminating the back-action noise by 
using the coherent quantum noise cancellation (CQNC) scheme and reducing the shot noise by lowering the 
input field  power1,10,50–52. Thermal noise is another source of noise, and in general, exceeds quantum noises in 
optomechanical devices unless the mechanical frequency is very high or the thermodynamic temperature is very 
 low53. It has been proven that realizing the passive cooling into the ground state and measuring with optical 
wavelengths are difficult, as heating from optical  absorption54,55. Recently, Ramp et al.56 successfully eliminated 
thermo-mechanical noises and they obtained a nearly zero average thermal occupancy of the mechanical mode. 
Therefore, quantum fluctuations can exceed the thermal noise and become dominant under specific conditions. 
This paper addresses the evolution of POM systems in the presence of quantum noise starting from a complete 
microscopic Hamiltonian. Our proposed model consists of a mechanical oscillator coupled to an optical cavity 
and an LC circuit simultaneously, as shown in Fig. 1.
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Traditional methods to deal with our proposed model are limited in Markovian  regime49,57,58, assuming that 
the environment is too large to back-act on the system and the relaxation time of the system is much shorter 
comparing to the operational time. However, many future applications require high-frequency operation, for 
example the quantum network and quantum computing. Without loss of generalization, we need to initiate our 
discussion in non-Markovian regime. Moreover, the non-Markovian environment can parametrically tune the 
dynamics of the system and enhance the entanglement in some particular regime, unlike the Markovian environ-
ment in which only an exponential decay can be observed.

In this paper, we investigate the POM model that a mechanical oscillator, coupled to an optical cavity and 
an LC circuit simultaneously and embedded in a non-Markovian environment. The aim of the paper is twofold. 
Firstly, we derive a non-Markovian stochastic Schrödinger equation (SSE) to characterize the dynamics of the 
system by using the fully quantized  Hamiltonian59,60. Each numerical solution of the SSE is so-called a trajec-
tory and the reduced density operator of the system can be reproduced by taking average of all trajectories. 
Moreover, the corresponding master equation can be obtained  formally50,61,62. Secondly, we investigate how the 
entanglement is influenced by various non-Markovian  environment51,52. By adjusting the frequencies of both 
optical and mechanical mode, coupling strength and central frequency of the environment, we carefully study 
the entanglement transfer inside the POM system. We discuss the physical mechanism in the model and the 
experimental feasibility of our proposed model.

Background
In this section, we briefly review the relevant background of non-Markovian dynamics, particularly using the 
quantum-state diffusion (QSD) approach and the corresponding master equation (MEQ)  approach50,61,63.

General non‑Markovian dynamics of open quantum systems. A general open quantum system can 
be studied in the system-environment framework and the formal Hamiltonian is expressed as

The quantized bosonic environment Hamiltonian, and the interaction Hamiltonian can be expressed as

where ωk is the eigen frequency of the kth mode in the environment. The coupling between system and environ-
ment is characterized by the Lindblad operator L. Under some conditions, e.g. the environment is too large to 
allow the existence of back flows, and the system-environment coupling is relatively weak, the state of the system 
can be solely depended on the state at the last time instant. Due to the so-called Born-Markov approximation, 
the dynamics of the system can be described by using Lindblad master equations, Redfield master equations, 
quantum jump, Heisenberg approach etc. However, generalizing a non-Markovian quantum dynamics is difficult.

The QSD approach is a method to describe the non-Markovian dynamics of the system by tuning it into a 
set of continuous time stochastic processes. Each of the stochastic evolution of the state is called a trajectory. 
And the reduced density operator of the system can be regenerated numerically as the ensemble average of all 
trajectories. In the interaction picture, the QSD equation is given as

where ψt = �z|�tot� is the continuous time stochastic trajectory of the state of the system. z∗t = −i
∑

k gkz
∗
k e

−iωkt 
is a complex Gaussian stochastic process. |z� = ⊗k|zk� is the collective basis of all modes in the environment, 

Htot = Hsys +Hint +Henv .

Henv =
∑

k

ωkd
†
kdk ,

Hint =
∑

k

(gkLd
†
k + g∗k L

†dk).

(1)∂tψt = (−iHsys + Lz∗t − L†
∫ t

0

ds α(t, s)
δ

δz∗s
)ψt ,

Figure 1.  A schematic of our model, consisting of a piezo-mechanical resonator coupled with an optical cavity 
and a LC circuit simultaneously.
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where the |zk� is the Bargamann coherent state of the kth mode, defined as dk|zk� = zk|zk� . With the completeness 
identity I =

∫

d2z
π
e−|z|2 |z��z| , the reduced density operator can formally expressed as

where the symbol M[·] represents the ensemble average. Moreover, Gaussian stochastic processes satisfy that 
M[zt ] = 0 , and are characterized by the correlation functions: M[ztzs] = 0 , and M[z∗t zs] = α(t, s) . In particular, 
α(t, s) is defined as

and depends solely on the spectral function J(ω) =
∑

k |gk|2δ(ω − ωk) , which describes how the system-envi-
ronment coupling strength is frequency depended. For instance, the correlation function α(t, s) will take a form 
of Dirac delta function when the distribution of J(ω) is flat. By considering different coupling spectral functions 
and the corresponding correlation functions, the QSD approach can be applied to study a variety of types of 
environments.

After replacing the functional derivative δψt
δz∗s

 by the product of an operator O(t, s, z∗) in the system’s Hilbert 
space and the stochastic wave function, δψt

δz∗s
= O(t, s, z∗)ψt , the time-local QSD equation (1) can be transformed 

to

where the O operator can be determined by an evolution equation that

together with its initial condition that O(t, s = t) = L , where Ō =
∫ t
0
dsα(t, s)O(t, s).

With the QSD equation, the corresponding non-Markovian master equations can be derived as

Macroscopic entanglement. To study the entanglement dynamics between components in the system, 
we employ the negativity to measure the scale of entanglement,

where ρŴA is the partial transpose of ρ with respect to the subsystem A. || · ||1 represents the trace norm. And 
{�i} are all negative eigenvalues of ρŴA . The quantity N (ρ) is monotonic to the upper boundary of the distillable 
entanglement. Though it is hard to detect the entanglement directly in experiments, there are several schemes to 
detect the entanglement  indirectly41,64. In the simulation, the negativity is numerically generated. However, in the 
experiments, the negativity can be extracted from the measurement of several correlations of quadratures, e.g. 
position and momentum of mechanical mode, and charge and flux of the microwave mode, the via homodyne 
detection of the quadratures of the mechanical, the optical and the microwave modes.

The model
The model we proposed is illustrated in Fig. 1. An optomechanical system, consisting of an optical cavity and a 
movable mirror, is coupled to a high-frequency piezo-mechanical resonator. As a result, the mechanical oscil-
lator is coupled to the optical cavity and the capacitor of the superconducting LC resonator simultaneously, and 
achieves the coupling between the optical field and the microwave field. Moreover, a quantum environment 
coupled to the mechanical oscillator may be introduced by a variety of imperfections, e.g., due to diffraction, 
external fields, lattice vibrations etc. Thus, the system Hamiltonian can be expressed as (setting � = 1)

where a(a†) , b(b†) , and c(c†) are the annihilation (creation) operators of the optical field, the mechanical mode, 
and the L-C resonator respectively, with the eigen frequency of ωo , ωm and ωe . The displacement operator 
x̂ = xZPF(b+ b†) , where xZPF = √

1/2mωm is the zero point frequency of the mechanical mode. The optom-
echanical interaction Hamiltonian gomx̂a†a is nonlinear for the displacement of the movable mirror x̂ , which 
only is valid when the mechanical oscillation frequency is relatively smaller than the free spectral range of the 
cavity. The piezoelectric interaction Hamiltonian gmex̂(c + c†) describes a linear coupling, where the coupling 
strength depends on the coupling between the strain and the electric field.

It is difficult to analytically solve the dynamics of the system, particularly when the optomechanical coupling 
is nonlinear. However, in the semi-classical limit, the optical mode operator a can be linearized and expended as 
the sum of the average amplitude α and the fluctuation δa , that a = α + δa . As a result,the nonlinear interaction 

(2)ρsys = M[|ψt��ψt |] =
∫ t

0

d2z

π
e−|z|2 |ψt��ψt |,

(3)α(t − s) =
∫

dω J(ω)e−iω(t−s),

(4)∂tψt = (−iHsys + Lz∗t − L†
∫ t

0

ds α(t, s)O(t, s))ψt ,

(5)∂tO =
[

−iHsys + Lz∗t − L†Ō,O
]

− L†
δŌ

δz∗s
,

(6)∂tρsys = −i[Hsys, ρsys] + [L, M(|ψt��ψt |Ō†)] − [L†, M(Ō|ψt��ψt |)].

N (ρ) = ||ρŴA ||1 − 1

2
=

∑

i

|�i| − �i

2
,

(7)Hsys = −ωoa
†a+ ωmb

†b+ ωec
†c − goma

†ax̂ − gmex̂
(

c + c†
)
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x̂a†a can be rewritten as x̂
(

α∗ + δa†
)

(α + δa) . Assuming that the fluctuation δa is much smaller than the 
average amplitude α , and rewrite δa(δa†) as a(a†) , the final linearization of the interaction Hamiltonian can be 
expressed  as10

System‑environment couplings. To consider a dissipative environment, the interaction Hamiltonian is 
given

There are some typical spectral functions such as Lorentzian, Ohmic, sub-Ohmic, and super-Ohmic for the 
structure of the environment. In order to observe how the dynamics of the system gradually transits from the 
Markovian regime to the non-Markovian regime, we consider the Lorentzian spectral density as

where � is the central frequency of the environment. The parameter γ defines the spectral width of the coupling 
and 1/γ indicates the memory time of the environment. Ŵ is the global coupling strength. By substituting J(ω) 
into Eq. (3), the correlation function α(t, s) can be determined analytically, in the form of the Ornstein–Uhlen-
beck (O − U) correlation function,

The analytical solution of the dissipative dynamics of the system depends on the system Hamiltonian and the 
spectral density of the environment simultaneously. In this section, we introduce two classes of coupling in 
the system, and in each case, we study the non-Markovian effects influenced by the central frequency of the 
environment.

Case I: Weak coupling. For the piezoelectric interaction, if the coupling strength gme is weak, comparing to 
the eigen frequencies of the mechanical mode and the LC resonator ωm and ωe , then it is reasonable to use the 
rotating-wave approximation (RWA) to simplify

And consequently, the interaction of the optical field and the mechanical oscillator can approximate to

From Eq. (5), the ansatz of O operator must take the form of

with three to-be determined coefficient functions f1(t, s) , f2(t, s) , and f3(t, s) . For different models, with the sys-
tem Hamiltonian and the Lindblad operator L, there exists a set of operators that makes the ansatz of O operator 
satisfies its consistency condition Eq. (5). Substituting the ansatz into Eq. (5), the three coefficient functions can 
be determined by a group of partial differential equations

with the intial conditions

Due to the exponential O − U style correlation function α(t, s) = Ŵγ
2
e−γ |t−s|−i�(t−s) , we can continue to analyti-

cally derive the evolution function of the operator Ō = F1(t)b+ F2(t)a+ F3(t)c , where Fj(t) =
∫ t
0
dsα(t, s)fj(t, s) . 

Hence the Ō operator can be numerically found by the following group of expressions,

In Fig. 2, the dynamics of the coefficient F1(t) in the Ō operator is illustrated when the central frequency of 
environment � equals 0, 1 and 1.6. We only plot F1 as it is one order of magnitude larger than F2 and F3 , and 

Hom = gomx̂(a
† + a).

Hint = b
∑

k

gkd
†
k + b†

∑

k

g∗k dk .

J(ω) = 1

2π

Ŵγ 2

(ω −�)2 + γ 2
,

α(t, s) = Ŵγ

2
e−γ |t−s|−i�(t−s).

Hme = gme(b+ b†)(c + c†) ≈ gme(bc
† + b†c).

gom
(

a+ a†
)(

b+ b†
)

≈ gom
(

ab† + a†b
)

.

O(t, s) = f1(t, s)b+ f2(t, s)a+ f3(t, s)c,

∂t f1 = iωmf1 − igomf2 − igmef3 + F1f1,

∂t f2 = −i�of2 − igomf1 + F2f1,

∂t f3 = iωef1 − igmef1 + F3f1,

f1(t, t) = 1,

f2(t, t) = f3(t, t) = 0.

∂tF1 =
Ŵγ

2
− (γ + i�− iωm)F1 − igomF2 − igmeF3 + F21 ,

∂tF2 = −(γ + i�+ i�o)F2 − igomF1 + F1F2,

∂tF3 = −(γ + i�− iωe)F3 − igmeF1 + F1F3.
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takes the dominant role in the Ō operator. In Fig. 2a,c, F1 ’s real and imaginary values oscillate in the short time 
interval and gradually approach to a stable value in the long-time limit for � = 0 (blue dashed line), 1.8 (green 
dash-dotted line). When � ≈ 1 (red solid line), singularities emerge in the real and imaginary parts of F1(t) , 
which also show a periodic behavior. In Fig. 2b,d, when the decay factor γ = 5 , F1 approaches to the stable value 
Ŵ
2
 quickly. In addition, since the Ō operator is noise free, thus M[|ψt��ψt |Ō†] = ρsysŌ

† and consequently the 
formal master equation can be explicitly written as

Case II: Strong coupling. In this section, we will consider a more general coupling that the mechanical oscillator 
is strongly coupled to the optical cavity and the LC circuit, therefore the system Hamiltonian is

The anstz of O operator satisfying Eq. (5) may be found

where O0(t, s) and O1(t, s, s
′) represent the noise-free and first order noise terms in the O operator respectively. 

Similarly, by substituting the anstz of the O operator into Eq. (5), all coefficient functions can be numerically 
found from the following expressions

with the initial and boundary conditions

∂tρsys = −i
[

Hsys, ρsys
]

+
[

L, ρsysŌ
†
]

−
[

L†, Ōρsys
]

= −i
[

−ωoa
†a+ ωmb

†b+ ωec
†c − gom

(

ab† + a†b
)

− gme

(

bc† + b†c
)

, ρsys
]

+
[

b, ρ
(

F∗1 b
† + F∗2 a

† + F∗3 c
†
)]

+
[

(F1b+ F2a+ F3c)ρsys, b
†
]

.

Hsys = −ωoa
†a+ ωmb

†b+ ωec
†c − gom

(

a† + a
)

x̂ − gmex̂
(

c + c†
)

.

O(t, s) = O0(t, s)+
∫ t

0

ds′O1(t, s, s
′)zs′ ,

O0(t, s) = f1(t, s)b+ f2(t, s)b
† + f3(t, s)a+ f4(t, s)a

† + f5(t, s)c + f6(t, s)c
†,

O1

(

t, s, s′
)

= f7
(

t, s, s′
)

I ,

∂t f1 = iωmf1 − igomf3 + igomf4 − igmef5 + igmef6 + F1f1,

∂t f2 = −iωmf2 − igomf3 + igomf4 − igmef5 + igmef6 + 2F2f1 − F1f2 + F4f3 − f3F4 + F6f5 − F5f6 − F7(t, s),

∂t f3 = −i�of3 − igomf1 + igomf2 + F3f1,

∂t f4 = i�of4 − igomf1 + igomf2 + F4f1,

∂t f5 = iωef5 − igmef1 + igmef2 + F5f1,

∂t f6 = −iωef6 − igmef1 + igmef2 + F6f1,

∂t f7 = F7
(

t, s′
)

f1,
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Figure 2.  Evolution of the real (a,b) and imaginary (c,d) value of the complex coefficient function F1(t) in the 
Ō operator for Case I. In (a,c), γ = 0.5 . In (b) and (d), γ = 5.0 . Other parameters are chosen as: ωo = ωe = ωm , 
gom = gme = 0.1ωm , Ŵ = 1.
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Consequently, the Ō may be determined by

and

where F̃7(t) =
∫ t
0
dsα(t, s)F7(t, s) . Numerical estimations for F1(t) and F2(t) are illustrated in Fig. 3. Singulari-

ties are observed in Fig. 3a,c, the non-Markovian evolution of both F1 and F2 , when � is close to 1.18. Although 
the exact O operator is obtained, the master equation is still hard to derive, as the O operator consists of the first 
order noise. According to a systematic method that derives master  equations61, the ensemble average M

[

PtŌ
†
]

 
can be derived analytically as,

in the time-convolutionless form. As a result, the exact master equation can be given by

In Fig. 3, the dynamics of the real and imaginary parts of F1 are similar to that in the case I, when γ = 0.5 . They 
all approach to fixed values in the long time limit, for � = 0 (Blue dashed line), 1.8 (Green dash-dotted line). But 
singularities in F1 real part are observed when � ≈ 1 (Red solid line). But the imaginary part of F1 stays at zero. 
In (b) and (d), When γ = 5 , the dynamics of F1 is Markovian and no correlated with the central frequency �.

Result
In this section, we look in the two classes of couplings that we have considered, and illustrate the entanglement 
dynamics between the electric-, optical- and mechanical- component in the system. However, for different 
parameters, we observe that the non-Markovian dynamics transfers from one type to another. In order to do so, 
we plot the entanglement dynamics versus the central frequency of environment � for different types of coupling. 

f1(t, t) = 1,

f2(t, t) = f3(t, t) = f4(t, t) = f5(t, t) = f6(t, t) = 0,

f7
(

t, s, s′ = t
)

= f2(t, s),

f7(t, s = t, s) = 0.

∂tF1 =
Ŵγ

2
− (γ + i�− iωm)F1 − igomF3 + igomF4 − igmeF5 + igmeF6 + F21 ,

∂tF2 = −(γ + i�+ iωm)F2 − igomF3 + igomF4 − igmeF5 + igmeF6 + F1F2 − F̃7,

∂tF3 = −(γ + i�+ i�o)F3 − igomF1 + igomF2 + F1F3,

∂tF4 = −(γ + i�− i�o)F4 − igomF1 + igomF2 + F1F4,

∂tF5 = −(γ + i�− iωe)F5 − igmeF1 + igmeF2 + F1F5,

∂tF6 = −(γ + i�+ iωe)F6 − igmeF1 + igmeF2 + F1F6,

∂t F̃7 =
Ŵγ

2
F2 − 2(γ + i�)F̃7 + F1F̃7,

R(t) = M
[

PtŌ
†
]

= ρt Ō
†
0 +

∫∫ t

0

ds1ds2α(s1, s2)O0(t, s2)ρt Ō
†
1(t, s1),

∂tρ = −i
[

Hsys, ρ
]

+ [L,R(t)]+
[

R†(t), L†
]

.

Figure 3.  Evolution of the real and imaginary value of the complex coefficient function F1(t) . In (a,c), γ = 0.5 , 
non-Markovian regime. In (b,d), γ = 5.0 , Markovian regime. Parameters are chosen as: ωo = ωe = ωm , 
gom = gme = 0.1ωm , Ŵ = 1.
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We provide a summary of all the results obtained in this section and connect the results with the singularities 
observed in the coefficient functions of the O operator.

Case I. First of all, for this exciton hopping model, we choose the initial state that there are two excitons 
existed in the optical cavity and the LC resonator, ψsys(t = 0) = |1�O ⊗ |0�M ⊗ |1�E , to mimic the process that 
a photon and a phonon couple to each other via the interactions with the mechanical oscillator. Then, we inves-
tigate how does the memory time modify the entanglement dynamics. From the numerical analysis of the coef-
ficient functions in the Ō operator (Fig. 2), the memory factor 1/γ is dominant when it is close to the Markovian 
limit. We plot the dynamics of entanglement between optical cavity and mechanical oscillator ( Nom ) in Fig. 4a, 
and the entanglement between mechanical oscillator and LC circuit ( Nme ) is displayed in Fig. 4b respectively. 
For the dissipative coupling described in case I, both Nom and Nme decay exponentially to zero when γ = 5 
and in the Markov limit. When γ = 0.1 and 0.2, the entanglement dynamics shows the periodic behavior. And 
we notice that the maximal Nom happens when the Nme achieves its minimum value. This phenomena clearly 
display how the entanglement transfers between different components in the system and offers a potential appli-
cation in realizing quantum non-demolition measurements.

In Fig. 5, we focus on the impact of the central frequency of the environment on the entanglement dynamics. 
We choose γ = 1 , and adjust � from 0 to 5. In the short time interval, the generation of entanglement Nom is 
caused by the linear coupling, so it is independent of the value of � . After that, two diametrically different classes 
of non-Markovian dynamics are observed. The boundary of the two classes of non-Markovian dynamics locates 
at � ≈ 1 . When 0 ≤ � < 1 , Nom decay non-monotonically, and after sufficient time, it decays to zero. When 
� > 1 , the behavior of entanglement is periodic and approaching to a non-zero value. From the above discussion, 
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Figure 4.  Dynamics of entanglement between OM and ME components for different decay factor γ . Other 
parameters are chosen as ωo = ωe = ωm , gom = gme = 0.1ωm , Ŵ = 1.

Figure 5.  Dynamics of entanglement between OM for different central frequencies of the environment � . 
Other parameters are chosen as ωo = ωe = ωm , gom = gme = 0.1ωm , Ŵ = 1.
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the two types of non-Markovian dynamics can be categorized by the scale of the long-time entanglement, due 
to the different range of central frequency of the environment � . In Fig. 6, the entanglement Nme achieve the 
maximal value and decay to zero quickly after for different � values. However, we noticed that the ω value can 
modify the maximal value of the negativity Nme.

Case II. In this subsection, we consider the strong coupling model. Since the number of exciton is no longer 
conserved as in case I, we choose the initial state of the system as |ψsys(t = 0)� = |000� , in which the OM and 
ME are initially separated. And we will focus on the generation of entanglement in OM and ME of the system. 
There are two fundamental mechanisms that can generate the entanglement in OM and ME: 1, the coupling of 
OM and ME; 2, the coupling between system and environment. Interestingly, we find that the dynamics of Nom 
and Nme are very different, which can be seen in Fig. 7. For Nom in Fig. 7a, the maximal generated entanglement 
is positively correlated to the memory factor 1/γ . While Nme , in Fig. 7b, entanglement sudden death (ESD) is 
observed for all γ values. Moreover, the time that the ESD happens is shorter when the environment is further 
from the Markovian limit. At ωmt > 60 , Nom and Nme decay to zero and indicate that the three components of 
the system are disentangled with each other at that instant. This feature can be used to synchronize the remote 
quantum network by tuning the coupling strength with the mechanical oscillator.

In Fig. 8, impact of the central frequency of the environment on the entanglement dynamics is that � can 
restrain the maximal generated entanglement between OM. But the long-time limit entanglement approaches to 
zero. In Fig. 9, the generation of entanglement Nme achieves its maximal value in short-time due to the coupling 
between ME and then decay to zero in the long-time limit due to the coupling between system and environment. 
But we notice that the non-Markovian behavior can be categorized in two types again: (1), � < 1 , Nme oscillates 

Figure 6.  Dynamics of entanglement between ME for different central frequencies of the environment � . Other 
parameters are chosen as ωo = ωe = ωm , gom = gme = 0.1ωm , Ŵ = 1.
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Figure 7.  Dynamics of entanglement between (a) OM and (b) ME, for different γ values. Other parameters are 
chosen as ωo = ωe = ωm , gom = gme = 0.1ωm , Ŵ = 1.
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and approaches toward a fixed value in the short-time regime and quickly decay to zero right after; (2), � > 1 , 
Nme oscillates and decays to zero gradually. In addition, we study the time when ESD happens ( tESD ) and find 
out that the time and the central frequency of the environment � have a quantitative relationship,

which supplies a quantitatively method to estimate ESD and design the control and measurement schemes, 
where β is the proportional factor and its value depends on the parameters chosen in the numerical simulations.

Conclusions
In this paper, we study the entanglement dynamics and transfer between OM and ME components in the piezo-
electric optomechanical system. The non-Markovian effects from the environment are discussed in weak coupling 
and strong coupling respectively. In particular, the effects of the central frequency of the environment on the 
entanglement dynamics are discussed. By using the quantum-state diffusion approach and the corresponding 
master equation, We analyze the coefficient functions evolution and discover that singularities emerge when the 
central frequency of the environment is around a special value. As a result, the non-Markovian dynamics of the 
system can be categorized in two types: (1) the entanglement gradually decays to zero; (2) the entanglement shows 
periodic behavior and approaches to a fixed value. This categorization can help prepare the quantum system 
and its coupled environment toward steady states and realize quantum teleportation in the quantum network. 
Moreover, the entanglement generation is studied. An quantitative conclusion is that the time to observe ESD 
tESD is proportional to � , which offers a robust and simple method to estimate the entanglement in the quantum 

tESD ≈ β�,

Figure 8.  Dynamics of entanglement between OM , for different � values. Other parameters are chosen as 
ωo = ωe = ωm , gom = gme = 0.1ωm , Ŵ = 1.

Figure 9.  Dynamics of entanglement between ME, for different � values. The dashed line marks the time that 
entanglement sudden death happens. It shows that the time to observe ESD has a linear relationship with the 
central frequency of the environment � . Other parameters are chosen as ωo = ωe = ωm , gom = gme = 0.1ωm , 
Ŵ = 1.
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network. Our work can be extended to study the non-equilibrium dynamics in a full quantum framework when 
the environment temperature is close to zero Kelvin.
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