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A stable spin‑structure found 
in a 3‑body system with spin‑3 
cold atoms and its role in N‑body 
condensates
Y. M. Liu1,3, Y. Z. He2 & C. G. Bao2*

We have found a stable spin‑structure of N = 3 system in which three spin‑3 atoms are trapped and 
coupled to total spin S = 3. We have proved that a pair of this structure is nearly an exact solution 
for N = 6 systems in a very broad district in the parameter‑space. Comparing with the well‑known 
singlet pairs, this pair is a more promising candidate to serve as a building block for large N systems 
with spin‑3 atoms. This is because the spin‑structure of the latter can be modified depending on the 
interactions to reduce the energy while the singlet pairs can not. In fact, we have proved that, for a 
specific set of strengths (a point in the parameter‑space) the product state based on this pair is an 
exact solution of the N‑body Hamiltonian. Thus, in the neighborhood of this point, the product state 
will appear as an approximate solution. However, how broad this neighborhood would be remains to 
be clarified.

It is well known that the study of the Bose–Einstein condensates as an artificial matter is important in the aca-
demic sense and for practical applications. In particular, since the realization of optical  trapping1–9, the study of 
the spinor condensates has become a hot topic. When the temperature is very low, the spatial degrees of freedom 
are nearly frozen and the spin-degrees of freedom play essential roles. For this case, the understanding of the 
spin-structures is crucial. Various structures (phases) have already been found. For condensates with spin-1 
atoms, the ground state (g.s.) may have the ferro-phase (f-phase, where all the spins are aligned along the same 
direction) and polar-phase (p-phase, where all the spins are two-by-two couples to zero and form the singlet-
pairs). For spin-2 condensates, the f-phase, p-phase, together with the cyclic-phase (c-phase, where the g.s. is 
nearly a product-state of the triplets, in each triplet the three spin-2 atoms are coupled to zero) are  found8,10–17. 
There are also studies for spin-3 condensates, where the structures appear to be  complicated18–24.

Due to the progress in technology, it is possible to put only a few atoms in a trap. In the theoretical aspect, 
instead of using mean-field theory, exact solutions for few-body systems can be obtained. The knowledge 
extracted from few-body systems would be a complement to those from many-body theories. Furthermore, 
these few-body cold systems might be more suitable for realistic applications because they can be more precisely 
controlled.

The present paper is dedicated to the study of spin-3 cold atoms. The main purpose is to find out some stable 
constituents from few-body systems and to evaluate their potential for serving as a building block for large N 
systems.

Exact solutions of the 3‑body Schrödinger equation
Let three spin-3 atoms (say, Cr, Mo, Sn, Pu) be confined in an optical trap. It is assumed that the temperature 
is so low and the binding is so strong that all the particles have condensed to the same spatial state φ(r) with 
zero orbital angular momentum. The state φ(r) is most favorable for binding, the excitation of this state is not 
considered. When all the spatial degrees of freedom have been frozen, only the spin-degrees of freedom are 
necessary to be considered. Then, the Hamiltonian can be written as
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where i (j) denotes the particle 1 to partical 3. �=0, 2, 4, and 6 is the coupled spin of two particles, Pij
�

 is the 
projector to the �-channel. g� is the weighted strength where a factor 

∫

φ4dr is contained. This factor embodies 
the effect of the spatial wave function φ on the spin-structures. Since φ has orbital angular momentum zero, the 
orbital-spin coupling is suppressed and therefore is neglected. The dipole-dipole (d-d) coupling between a pair 
of atoms is relatively weak (for 52 Cr as an example, the strength of the d-d coupling cdd = 0.004g6 ), therefore it 
is also neglected. In fact, the calculation  in19 demonstrates that the g.s. of 52 Cr does not seem to depend on the 
d–d coupling.

An important feature of H is the conservation of the total spin S. Due to symmetry constraint, S is allowed to 
be equal to 1, 3, 4 to 7, and 9. The corresponding total spin-states ψS are studied and given below.

The case S  = 3. In this case the multiplicity of ψS is one. It can be written as ψS = P((χχ)�χ)S , where χ 
denotes the spin-state of a spin-3 atom, the first two spin-states are coupled to � , then the three are coupled to S. 
P is the operator for symmetrization and normalization. � is an even number and |3− S| ≤ � ≤ 3+ S . Since the 
multiplicity of ψS is one, � can be arbitrary chosen (i.e., different choices of � lead to the same ψS).

By re-coupling the three spins, ψS can be rewritten as

where η should be even,

where the W coefficient of Racah has been introduced, the constant N is introduced to assure 
∑

η(C
S
�η)

2 = 1 . In 
Eq. (3) particles 1 and 2 have been extracted. Note that, due to the symmetry, the labels 1, 2, and 3 at the right 
side of Eq. (3) can be replaced by any other permutations of the three numbers. Making use of this feature and 
the multiplicity of ψS we can prove

Note that ψS as an eigen-state of H does not depend on {gη} but simply on symmetry. Since the choice of � is 
irrelevant, CS

�η
 can be rewritten as CS

η in short.
Inserting Eq. (3) into the equation �ψS|ψS� = 1 , we can deduce that the probability of an atom lying at the µ

-component ( −3 ≤ µ ≤ 3 ) is

The probability that two atoms are lying at µ and ν , respectively, are

Furthermore, from Eq. (3), (CS
η)

2 is the probability of a pair of particles being coupled to η , This explains the 
origin of ES as given in Eq. (6).

The case S = 3. When S = 3 the multiplicity is two. The two spin-eigen-states are denoted as ψ3k ( k = 1 for 
the lower and 2 for the higher). They can be expanded as

where C3k
η  depends on {gη} . ψ3k can also be analytically obtained as shown in Suppl. Appendix 1. The associated 

eigen-energy E3k = 3
∑

η gη(C
3k
η )2.

Up to now, with the freezing of the spatial degrees of freedom, all the eigen-states and eigen energies of the 
N = 3 system have been found. each specifies a kind of spin-structure. It is evident that the multiplicity is very 
important to the spin-structures of few-body systems. When the multiplicity is one, the structure is irrelevant 
to dynamics but completely determined by symmetry. Whereas for those spin-states with multiplicity ≥ 2 , they 
can be modified by adjusting the strengths of interaction. These states are noticeable.

(1)H =
∑

i<j

Vij ,

(2)Vij =
∑

�

g�P
ij
�
,

(3)ψS =
∑

η

CS
�η((χ(1)χ(2))ηχ(3))SM ,

(4)CS
�η = (δ�η − 2(−1)S

√

(2�+ 1)(2η + 1)W(33S3; �η))/N,

(5)HψS = ESψS ,

(6)ES = 3
∑

η

gη(C
S
�η)

2
.

(7)PSMµ =
∑

η

(CSM
η,M−µ;3,µC

S
η)

2
,

(8)PSMµν =
∑

η

(CSM
η,M−µ;3,µC

η,M−µ
3,ν;3,M−µ−νC

S
η)

2
.

(9)ψ3k =
∑

η

C3k
η ((χ(1)χ(2))ηχ(3))3,
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Phase‑diagrams for N = 3 systems
We will neglect the higher state ψ3,2 , then ψ3,1 is rewritten as ψ3 . Among the seven ψS ( S = 1 to 9, except 2 and 
8), the one having the lowest energy is the g.s. The phase of the g.s. can be specified by S. The phase-diagram is 
plotted in Fig.1 where the variation of the phase against {gη} is shown. For any sets of {gη} , we find out the two, 
say, ga and gb , having the smallest |ga − gb| . Then, as an approximation, ga = gb =

ga+gb
2

 is assumed. Note that: 
(i) If all the gη are shifted by a common value, then the total energy will shift accordingly but the spin-structures 
will remain unchanged. (ii) If the unit of energy is changed, the spin-structures will remain unchanged. Thus, 
we adopt a shift so that ga+gb

2
 is shifted to zero, and we adopt a new unit so that the scope −1 → 1 is sufficient. 

Then, the 4-dimensional complicated phase-diagram can be replaced by six 2-dimensional diagrams. They are 
sufficient to reveal the qualitative features. In order to understand the stability of the g.s., the energy gap Egap (the 
energy difference between the first excited state and the g.s.) has been calculated. The districts with Egap ≥ 0.8 are 
marked, in which the g.s. is relatively more stable (the choice 0.8 is quite arbitrary, it is so chosen that a smaller 
part of the whole zone appears as a relatively more stable zone.).

The feature of a spin-structure is inherent in the coefficients {CS
η} which arises from symmetry constraint. 

Their squares are listed in Table 1. It is Noted that these coefficients does not depend on {gη} except those for 
S = 3 states. In the latter case four sets of {gη} are chosen as examples, they are associated with the points A to 
D marked in Fig. 1b.

From this table we see that

• Since ψ9 has C9
6 = 1 , the contribution from g6 is maximized. Therefore, when g6 is the smallest (most nega-

tive), S = 9 is the best choice. This leads to the f-phase. The appearance of this phase in large N systems has 
been well known.

• When g0 is the smallest, due to all CS
0 = 0 if S  = 3 , the S = 3 is the best choice.

• When g4 and g6 both are smaller (this happens in the up-right corner of Fig. 1c and the down-left corner of 
Fig. 1f), the states with a larger (CS

4)
2 and (CS

6)
2 will be lower. Therefore the candidates of the g.s. are those with 

S = 6 , 7, and 9. For them and from Eq. (6), we have ES = g6 + (CS
4)

2(g4 − g6) , where (CS
4)

2 = 0.727 , 0.515, 
and 0, respectively, for S = 6 , 7, and 9. Therefore, when g4 < g6 , the best choice is S = 6 because (C6

4)
2 is the 

Figure 1.  The phase-diagram of a 3-body trapped system with spin-3 cold atoms. In each panel two gη are 
chosen to serve as the ordinate and abscissa. The values of the other two gη are given at zero. The phase of the 
g.s. is specified by the total spin S marked inside the related zone. The district bound by the dotted lines has 
Egap ≥ 0.8.
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largest. Whereas when g4 > g6 , the best choice is S = 9 because (C9
4)

2=0. In Fig. 1f the boundary separating 
the S = 6 and 9 zones has E6 − E9 = 0 . This leads to g4 − g6 = 0 . In fact, once g4 = g6 , the three states with 
S = 6 , 7, and 9 are degenerate as shown in Fig. 1c.

• When g2 and g6 are smaller (the up-right corner of Fig. 1b and the down-left corner of Fig. 1d), the unfavora-
ble contribution from g0 and g4 would be minimized in ψ4 and ψ9 because (CS

0)
2 and (CS

4)
2 are zero or much 

smaller if S = 4 and 9. In Fig. 1b, the up-right corner has E4 − E9 = 0.061g4 > 0 . Thus, the zone has S = 9 . 
In Fig.1d, the down-left corner has E4 − E9 = 0.611g2 − 0.672g6 . Therefore, the zone will have S = 4(9) if 
g2 < (>)1.1g6 . The boundary separating the S=4 and 9 zones has g2 = 1.1g6.

Similarly, all the boundaries can be analytically explained. It is reminded that all the spin-structures with S  = 3 
are fixed by symmetry constraint. However, ψ3 will change against {gη} . For examples, when the point A in Fig. 1b 
is shifted to B, the g.s. is changed from ψ3A to ψ3B (refer to the second and third rows of Table 1). The shift implies 
a decrease of g0 and accordingly an increase of (CS

0)
2 . In this way, the g.s. energy is reduced. Similarly, the shift 

B →C→ D implies an increase of g4 and accordingly a decrease in (CS
4)

2 , etc..
For 52Cr, when the strength of g6 is used as an energy unit, then g6 = 1 , g4 = 0.517 , g2 = −0.063 . By an exact 

numerical calculation on this N = 3 system, we found a critical value gcrit = −0.3 . When g0 < ggrit the g.s. has 
S = 3 , whereas when g0 > ggrit , S = 1 . This information would be helpful for identifying g0 . This realistic case is 
qualitatively similar to the upper part of Fig. 1a. Where, when g0 increases from -1→ 1 along the upper boundary, 
S transits from 3 → 1 at the critical value gcrit = 0.

We found that the more stable districts (bound by the dot line) either have S = 9 or S = 3 . In the former all 
the spins are lying along the same direction. In the latter the spin-structure depends on {gη} . We found from 
Fig. 1a–c that once g2 = g4 = g6 = 0 and g0 = −1 , Egap of ψ3 will arrive at its maximum 1.2857 (say, at the point 
C of Fig. 1b). At the maximum the probabilities extracted from ψ3 (refer to Eqs. (7) and 8)) are P3,33 = 0.481 , 
P3,3−3 = 0.148 , while all the other P3,3µ = 0.074 . It implies that, when M = S is chosen and therefore S is essentially 
lying along the Z-axis, the spins are mostly lying along the ±Z-axis. When one spin is given at µ = 3 , we have 
P3,33,ν/P

3,3
3 = 0.308 (if ν = ±3 ) or 0.077 (if ν  = ±3 ). This leads to an intuitive picture, namely, two spins are mostly 

lying along S while the third lying reversely. It is interesting to ask whether this relatively more stable structure ψ3 , 
in addition to ψ9 , would play a role as a building block in large N systems. To reply, we first go to N = 6 system.

Phase‑diagrams for N = 6 systems
When N = 6 , we do not have analytical solutions. Instead, the solutions are obtained via a diagonalization of the 
Hamiltonian against the Fock-states as basis-states. The resultant phase-diagrams are given in Fig. 2.

We found that the zones with S = 18 in Fig. 2 and those with S = 9 in Fig. 1 overlap nearly. It implies that 
the f-phase would emerge in both systems under similar condition of {gη} , i.e., g6 alone is the smallest one (most 
negative), or g6 and gx ( x = 0 , 2, or 4) are both smaller. In the latter case there is a competition, say, in the 
down-left corner of Fig. 1d, g6 < g2/1.1 is required to assure the f-phase. while in Fig. 2d a similar condition is 
found. Therefore, it is expected that the f-phase would emerge in large N systems under similar conditions. But 
this remains to be checked.

Let the S = 0 exact eigen-states be denoted as �0 , its multiplicity is 3. Thus, �0 has three kinds of spin-struc-
tures. It turns out that the zones with S = 0 in Fig.2 are larger but include those with S = 3 in Fig. 1. It implies 
that at least a kind of �0 might contain ψ3 as a constituent. To clarify, we calculate the overlap ��0|P(ψ3ψ3)0� 
(where the two ψ3 states are coupled to zero) as shown in Fig. 3. Let (χχ)0 denote a singlet-pair (two atoms are 
coupled to zero). The overlap ��0|P(χχ)30� has also been given in Fig. 3 for a comparison.

Figure 3 demonstrates that, in a rather broad scope of the parameters, the overlap ��0|P(ψ3ψ3)0� is ≥ 0.995 . 
In this case the g.s. can be nearly exactly described by P(ψ3ψ3)0 . Whereas ��0|P(χχ)30� is in general not close 
to 1 except in a very narrow district around the point with g0 = −1 and g2 = g4 = g6 = 0 . At the point both 
overlaps are equal to 1. In this particular case both P(ψ3ψ3)0 and P(χχ)30 are identical to the exact solution. 
A distinguished feature of P(ψ3ψ3)0 is its flexibility against the strengths, i.e., it can be adjusted to reduce the 

Table 1.  The squares of the coefficients (CS
η)

2 for the eigen-spin-states of the 3-body system. 3A to 3D are for 
the S = 3 states with the parameters given at the points A to D marked in Fig. 1b.

S (CS

0
)2 (CS

2
)2 (CS

4
)2 (CS

6
)2

1 0 0.524 0.476 0

3A 0.108 0.136 0.753 0.003

3B 0.234 0.031 0.687 0.049

3C 0.429 0.106 0.190 0.275

3D 0.380 0.263 0.025 0.331

4 0 0.611 0.061 0.328

5 0 0.413 0.234 0.353

6 0 0 0.727 0.273

7 0 0 0.515 0.485

9 0 0 0 1
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energy while P(χχ)30 cannot. This explains why the former surpasses the latter. Thus the former would be a 
better candidate of building block.

Large N systems and final remarks
At the point in the parameter-space with g0 < g2 = g4 = g6 (this set is equivalent to g2 = g4 = g6 = 0 and g0 is 
negative), we can prove P(ψ3ψ3)

K
0 = P(χχ)3K0  (if N = 6K ) or P(ψ3ψ3)

K
0 ψ3 = P(χχ)3K+1

0 χ (if N = 6K + 3 ). 
In particular, all of them are exact solutions of the Hamiltonian. The proof is given in Suppl. Appendix 2. This 
fact implies that these product states of the building blocks would be good approximate solutions for the g.s. at 
least in the neighboring district around the point. Due to the flexibility of the building block (ψ3ψ3)0 , the prod-
uct state based on (ψ3ψ3)0 is expected to be valid in a much broader district than that based on (χχ)0 as shown 
in Fig. 3 . Thus the pair (ψ3ψ3)0 is superior than the singlet pair to serve as a building block for large N system.

In conclusion, we have studied the features of the spin-states of the N = 3 system. We found that, in addition 
to the f-phase, where all the three spins are lying along the same direction, ψ3 is also very stable, where two spins 
are essentially lying along the same direction while the third lying reversely. In particular, the (ψ3ψ3)0 pair has 
been proved to be a nearly exact eigen-states for N = 6 systems in a rather broad sub-space in the parameter 
space. The (ψ3ψ3)0 pair is a promising candidate, superior to the singlet pair (χχ)0 , for serving as a building 
block for N-body systems. Although the product state based on (ψ3ψ3)0 has been proved to be an exact solution 
at the point with g0 < g2 = g4 = g6 , how broad is the district around the point in which the product state could 
be considered as a good approximation remains to be clarified.

In this paper a stable sub-structure has been extracted from N = 3 system. It is likely that stable spin struc-
tures might also exist in N ≥ 4 systems. For an example, the S = 4 state of N = 4 system with spin-3 atoms has 
multiplicity 3, thus this state has a better flexibility (the ability to modify its structure to reduce the energy). 
Therefore, it might serve as a building block for large N systems when the strengths are given in a specific region. 
Nonetheless, this is only a presumption. The role of the stable sub-structures from N ≥ 4 systems remains to 
be clarified.

Figure 2.  The phase diagrams for N = 6 systems (refer to Fig. 1). Only the zones with S = 0 and 18 are marked.
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