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A model for cascading failures 
with the probability of failure 
described as a logistic function
Minjung Kim* & Jun Soo Kim

In most cascading failure models in networks, overloaded nodes are assumed to fail and are removed 
from the network. However, this is not always the case due to network mitigation measures. 
Considering the effects of these mitigating measures, we propose a new cascading failure model that 
describes the probability that an overloaded node fails as a logistic function. By performing numerical 
simulations of cascading failures on Barabási and Albert (BA) scale-free networks and a real airport 
network, we compare the results of our model and the established model describing the probability of 
failure as a linear function. The simulation results show that the difference in the robustness of the two 
models depends on the initial load distribution and the redistribution of load. We further investigate 
the conditions of our new model under which the network exhibits the strongest robustness in terms 
of the load distribution and the network topology. We find the optimal value for the parameter of the 
load distribution and demonstrate that the robustness of the network improves as the average degree 
increases. The results regarding the optimal load distribution are verified by theoretical analysis. This 
work can be used to develop effective mitigation measures and design networks that are robust to 
cascading failure phenomena.

Many networks, including infrastructure networks such as electrical power grids, communications systems, and 
transportation networks, function through strong interactions between components. This interconnectedness 
suggests that any malfunction of one or several nodes due to random failures or targeted attacks can propagate 
through the entire system and thus cause system failures. Examples of the widespread impact of these cascading 
failures include the Western North American blackouts in 19961, collapse of the internet by congestion2,3, and 
systemic risk in financial systems4–6. Therefore, given the increasing complexity of the networks that our daily 
lives largely depend on, the exploration of cascading failures in network context is fundamental to understand-
ing and controlling them. To this end, developing a universal model that can characterize cascading failures in 
complex networks is essential.

Various approaches have been proposed to describe cascading failures in complex networks7, including 
betweeness centrality model8–10, Motter-Lai model11,12, and effective efficiency model13. In addition, many studies 
have been conducted focusing on defense strategies against cascading failures14–16 and improving the robustness 
of networks17–19. In most cascading failure models, the node of a network is assumed to fail when its load exceeds 
its capacity. In other words, the probability that a node fails is 0 when the load is smaller than the capacity and 1 
when the load is larger than the capacity. If we plot this probability as a function of load, we obtain a Heaviside 
step function translated by the value of the capacity in the positive load direction. The overloaded node, however, 
does not necessarily fail and cease to function because most networks have some mitigation measures that allow 
overloaded nodes to continue functioning. For instance, it has been argued that overloaded power lines do not 
immediately break down20.

In this direction, a recent study introduced the concept of the removal threshold to model the effects of miti-
gation measures21. Subsequently, a modified model based on the removal threshold has also been proposed22. 
According to the study by Wang et al21, the breakdown probability, which is the probability that a node fails 
(referred to as the probability of failure, hereafter), is as follows: 0 for the range where the load is less than the 
capacity, 1 for the range where the load is greater than the removal threshold, and between 0 and 1 when the 
load is greater than the capacity and less than the removal threshold. They further assumed that the probability 
of failure is linearly proportional to its load when the load is in the range between the capacity and the removal 
threshold (Fig. 1a). However, the relationship between the probability of failure and the load is likely to be nonlin-
ear rather than linear in most real networks. If the load of a node is slightly larger than its capacity, the mitigation 
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measures generally work well and it is unlikely that the overloaded node would simply collapse. However, as 
the load increases, the measures become more strained with load handling, and thus the probability of failure 
increases rapidly. Since the probability cannot be greater than 1, the probability of failure cannot continue to 
increase as the load increases; the probability must gradually converge to 1. Therefore, in this study, we introduce 
a logistic function to describe this nonlinear behavior of the probability of failure (Fig. 1b).

Here, using numerical simulations of cascading failures with the probability of failure expressed as a logistic 
function, we investigate cascading behaviors taking place on scale-free BA networks proposed by Barabási and 
Albert23 and the US airport network24. The introduction of the assumption that not all overloaded nodes are 
removed from the network will increase the robustness of the network; instead the overloaded nodes break 
down according to the probability of failure. To examine how efficiently our model improves the robustness 
of the network, we compare our simulation results with those from the simulations of the model with a linear 
probability of failure21 carried out under the same cost. The difference in the robustness of the two models is 
shown to be highly dependent on the parameter of the initial load distribution and the redistribution of load. 
In addition, we investigate the optimal value for the parameter of the load distribution where the network is the 
most robust against cascading failures in our model. The numerical results about the optimal load distribution 
are verified by theoretical analysis. The topology of the network is a major factor in determining the robustness 
of the network; thus, the effects of the average degree on the robustness of the network are also investigated.

The rest of the present paper proceeds as follows. In the next section, the cascading failure model with the 
probability of failure described as a logistic function is introduced. After that, we present our simulation results 
and analyze those results in terms of the robustness of the network. The optimal load distribution and the topol-
ogy of the network attaining the most robust network against cascading failures is discussed. We also compare 
our results with those of the existing model that describes the probability of failure as a linear function. In addi-
tion, the simulation results regarding optimal load distribution are verified by theoretical analysis of cascading 
behaviors. In the last section, we summarize the present work and discuss applications of our findings to improve 
the robustness of networks.

Cascading failure model with the probability of failure
Our cascading failure model is defined on a simple undirected and unweighted network. A network consists of 
nodes and the interconnections between them, called links. For instance, if the network is an electrical power 
grid, nodes represent generators and links correspond to transmission lines. Since the status of each node is 
determined by that of its neighboring nodes along the links in a network, the failure of a node can propagate 
through the entire network by sequentially collapsing the neighboring nodes.

To model cascading failures in a network, two quantities are assigned on each node, i.e., the load and the 
capacity. The load on a node is the total amount of work that has to be handled by the node. The capacity rep-
resents the maximum load that a node can handle. In our model, we adopt the initial load distribution where 
the load on node i is defined as

where ki is the degree of node i and α > 0 is a tunable parameter that governs the size of the initial load15,16. We 
assume that the capacity of node i, Ci , is proportional to its initial load, Li11, and thus it is expressed as

where β ≥ 1 is a tolerance parameter determining the tolerance of the network against cascading failures.

(1)Li ≡ kαi ,

(2)Ci ≡ βLi ,

a b

Figure 1.   The probability of failure of node j, Pj as a function of its load Lj for (a) the linear model and (b) the 
logistic model. The value of Pj is 0 when the load of node j, Lj , is smaller than its capacity Cj , and it is 1 when the 
load Lj exceeds its removal threshold γCj . For Cj < Lj ≤ γCj , Pj is described as Lj−Cj

γCj−Cj
 for the linear model and 

as the logistic curve in Eq. (4) for the logistic model.
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The simulation for our model goes as follows. At the start of the simulation, we attack and break down one 
node, triggering a cascading event. Then the load assigned on the collapsed node will be redistributed to its con-
nected nodes along the links. The amount of load that the neighboring node will inherit from the failed node is 
assumed to be proportional to the initial load of the neighboring node25–28. Therefore, if node i fails initially, the 
load transferred to one of its neighboring nodes j from node i is given by

where �i is the set of nodes directly connected to node i.
If the load of node j exceeds its capacity by additional load �Lji , node j is generally considered to collapse and 

is removed from the network. However, in real networks, the load exceeding the capacity does not necessarily 
lead to the failure of the node because the network generally has the ability to alleviate the additional load and 
thus to keep the node functioning. For instance, in traffic networks, when sudden traffic congestion is created, 
we can take effective measures to ease the traffic, maintaining the function of the node in the traffic network21.

As mentioned above, we introduce a logistic function as the probability that a node fails when its load is 
between its capacity and its removal threshold to model the effect of these mitigation measures. Thus, we write 
the probability of failure of node j as

where γCj is the removal threshold of node j ( γ ≥ 1 ). If the load of node j, Lj , gets larger than γCj , the probability 
that node j fails, Pj , becomes 121. This is because the mitigation measures of the network can no longer function 
when the load is much larger than the capacity. We set this critical value of load at which the probability of failure 
becomes 1 as the removal threshold.

For Cj < Lj ≤ γCj , Pj in Eq. (4) represents the logistic function with the Lj value of the sigmoid’s midpoint 
being Cj+γCj

2
 (Fig. 1b). A logistic curve is a type of an S-shaped sigmoid function, whose slope increases from a 

small value to a maximum value and then decreases again29. The logistic curve describes how the probability of 
failure increases as the load grows. The probability of failure increases as the effectiveness of mitigation measures 
decreases. When the load is slightly larger than the capacity, the mitigation measures are generally effective, but 
as the load further increases, the mitigation measures become increasingly strained with handling the load and 
the probability of failure increases rapidly. After the probability of failure increases significantly, it gradually 
converges to the maximum value of 1. There are two additional advantages to using the logistic function as the 
probability of failure. First, its function value is in between 0 and 1, which is one of the axioms of probability30. 
Second, the logistic curve converges to 0 as its argument gets smaller, and to 1 for larger argument. This property 
is in accordance with our model where the probability of failure is 0 when the load is less than the capacity, and 
1 when the load is greater than the removal threshold, as can be seen in Eq. (4).

At every time step of the simulation, the node is considered for removal according to the probability of 
failure in Eq. (4). The load of the failed node is then redistributed to its connected nodes by the load portioning 
described in Eq. (3). If the node whose load exceeds its capacity does not fail because the value of the probability 
of failure is smaller than 1, the load of that node is decreased to its capacity value. The process is repeated until 
there are no nodes to fail. At the end of the cascading failure trajectory initiated by removing node i, we count the 
total number of failed nodes Si and divide it by N − 1 to normalize. We repeat the trajectory by removing each 
node in a network and obtain N normalized number of failed nodes. Then the fragility of the whole network is 
measured by the order parameter SN:

where V is the set of nodes in a given network and the summation is over all i in V such that 1 � i � N.

Results
Numerical analysis of cascading behaviors.  Numerical simulations of cascading failures were per-
formed with the probability of failure described by logistic function to investigate the robustness of the network. 
In this study, the scale-free BA network by Barabási and Albert23 is used as a model network since many natural 
and man-made systems can be described as scale-free networks31. The parameter m of the Barabási and Albert 
model23 is set to 3, obtaining the average degree �k� = 2m = 6 . The network size N, the total number of nodes 
in the network, is set to 1000.

To illustrate the effect of the tolerance parameter β in Eq. (2) on the robustness of the network, we display 
SN as a function of β in Fig. 2. We first measure SN varying the tolerance parameter β without introducing the 
removal threshold ( γ = 1 in Eq. (4)) as shown in Fig. 2a. Each data point in Fig. 2a represents an average over 
20 independent network realizations. When β is close to 1, the probability that cascading failures occur is high 
because the capacity Ci is similar to the load Li . On the other hand, in the limit of β → ∞ , the load of each 
node Li cannot be greater than its capacity Ci , so there will be no cascades of node failures. Thus, the value of SN 
decreases with increasing β , as shown in Fig. 2a. The parameter α in Eq. (1) also affects the variation of SN . We 

(3)�Lji ≡ Li
kαj

∑

l∈�i
kαl

,

(4)Pj =











0, Lj ≤ Cj ,
1

1+e
−(Lj−

Cj+γCj
2

)

, Cj < Lj ≤ γCj ,

1, Lj > γCj ,

(5)SN ≡

∑

i∈V Si

N(N − 1)
,
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a b

c d

e f

Figure 2.   Dependence of the order parameter SN on the tolerance parameter β in Eq. (2) with (a) γ = 1.0 , (c) 
linear model with γ = 1.5 , and (e) logistic model with γ = 1.5 and the critical threshold βc as a function of the 
parameter α in Eq. (1) with (b) γ = 1.0 , (d) linear model with γ = 1.5 , and (f) logistic model with γ = 1.5 . The 
value of γ = 1.5 is chosen in such a way that the lowest curve of SN in (c) and (e) is close to zero at β = 1.0 . 
We use the network size N=1000 and the average degree 〈k〉=6, and each data point is the averaged value 
for 20 independent runs. Error bars in (a), (c), and (e) are smaller than the symbol size and thus are almost 
unrecognizable.
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can see that SN decreases more quickly as α gets bigger, implying that the way the initial load is assigned on the 
node and the redistribution of load influence the robustness of the network.

The value of γ greater than 1 indicates that mitigation measures are applied to the network, and thus SN 
decreases more rapidly when γ = 1.5 than when γ = 1.0 as shown in Figs. 2a,e. To evaluate the efficiency of our 
cascading failure model in improving the robustness of the network, we compare our logistic probability of failure 
model (logistic model) with the linear probability of failure model (linear model) proposed in a recent study by 
Wang et al.21. They assume that Pj in Eq. (4) is Lj−Cj

γCj−Cj
 for Cj < Lj ≤ γCj (Fig. 1a). Previously, Wang et al.32 sug-

gested that the cost w of preventing cascading failures in a network can be defined as

where γ is the constant in the removal threshold γCj in Eq. (4). Eq. (6) implies that the cost depends only on 
the value of γ . To compare the logistic and linear probabilities of failure under the same cost, we compare them 
with the same value of γ . Figures 2c,e display the dependence of SN on the tolerance parameter β in Eq. (2) with 
the different probabilities of failure, linear and logistic, respectively. It is noted that the results of a comparison 
between logistic and linear models depend on the parameter α of the load distribution. The linear model gives 
rise to stronger robustness (i.e., the smaller value of SN ) than the logistic model does when α < 1.0 . On the other 
hand, the logistic model performs better in improving the robustness of networks than the linear model when 
α > 1.0 . Although we do not show here, for the logistic model with γ ≥ 2.5 , values of SN become almost 0 for 
all values of β when α ≥ 0.6.

From the SN vs. β curves, we can find that there exists a critical threshold βc dividing the range of β into two 
phases. For β larger than βc , we do not have any cascading failures. However, once β becomes less than βc , an 
initial node failure can trigger a cascading failure. As βc gets smaller, the network is robust over a broader range 
of the tolerance parameter β . Accordingly, βc can be used as the measure of the robustness of the network against 
cascading failures. The value of βc is estimated by finding the point where SN declined to 0.1% . i.e., when the value 
of SN becomes 0.001. In Figs. 2b,d,f, we present the dependence of βc on the parameter α for different types of 
probabilities of failure. Since the smaller βc suggests the stronger robustness of the network, we can see that βc is 
smaller for γ = 1.5 than for γ = 1 in the figure. In the case of Fig. 2b with γ = 1.0 , the network is most robust 
against cascading failures when α = 1.0 , 1.2, and 1.4. This is consistent with the results of Wang et al28 where 
βc has a minimum value when α = 1.0 . For a linear model with γ = 1.5 , the optimal value of α that makes the 
network the most robust is 1.0 as seen in Fig. 2d. However, for a logistic model with γ = 1.5 , the network attains 
the strongest robustness against cascading failures when α = 1.6 , which can be seen in Fig. 2f. These findings 
about the optimal value of α in our logistic model will be analyzed theoretically in the following section.

As can be seen in Figs. 2d,f, for α > 1.0 , the values of βc from the logistic model are smaller than those from 
the linear model, indicating that the logistic model improves the robustness of networks. However, for α < 1.0 , 
the values of βc of the logistic model are larger than those of the linear model, suggesting that the linear model 
enhances the robustness of networks. For α = 1.0 , the logistic and linear models have similar βc values. These 
results suggests that the logistic model is an effective means of mitigating cascading failures only when the values 
of α > 1.0 . The curves in Figs. 2c,e also show that the performance comparison results of the logistic and linear 
models are highly dependent on the load distribution. However, the difference between the values of SN of the 
two models at each value of α is not clearly shown in the figure. Therefore, in Fig. 3, we present SN vs. β curves 
for two models at three different parameters of the load distribution with α = 0.8 , α = 1.0 , and α = 1.2 . Fig. 3 
reveals that the performance of the linear model is better than the logistic model for α < 1.0 (Fig. 3a) whereas 
the logistic model is more effective at mitigating cascading failures than the linear model for α > 1.0 (Fig. 3c). 
For α = 1.0 , logistic and linear models have similar SN values, indicating that they have the same level of ability 
to prevent cascading failures (Fig. 3b).

To examine the effect of network topology on the robustness of networks in our logistic model, we also ran 
the simulations in scale-free networks with diverse average degrees. In Fig. 4, we present βc when α = 1 as a 
function of the average degree 〈k〉 at three different levels of mitigation measures with γ = 1.0 , γ = 1.5 , and 
γ = 2.0 . The value of α was fixed at 1 to exclude the influence of the load distribution. Figure 4 clearly reveals 
that the critical threshold βc and the average degree 〈k〉 are inversely proportional to each other for all values of 
γ . For γ = 2.0 , βc decreases and then becomes constant at 1.0 as 〈k〉 gets larger because the minimum value of 
βc is 1.0. The value of βc also has a negative correlation with the value of γ , indicating that the bigger the value 
of γ , the more robust the network.

To apply our model to real networks, we also simulated cascading failures in the US airport network as of 1997 
where nodes represent airports, and a link connects between two airports when there is a direct flight between 
them 24. Figure 5 presents SN as a function of β and the dependence of the critical threshold βc on the parameter 
α . In Figs. 5b,d, we can see that the data points for the linear model lie lower than those for the logistic model for 
α ≤ 1.2 , while the behavior is reversed for α > 1.2 . These results suggest that the logistic model is more efficient 
than the linear model for large values of α , while the linear model is a better mitigation measure for small values 
of α , consistent with the results based on BA network presented in Fig. 2. However, a difference was observed in 
the value of α at which the behavior of βc is reversed between BA network and the US airport network: α = 1.0 
for BA network and α = 1.2 for the US airport network.

Theoretical analysis of cascading behaviors.  To validate the numerical results from the previous sec-
tion, we examine our cascading failure model theoretically. Our purpose of theoretical analysis is to find the 
value of α in Eq. (1) when βc is the minimum. To this end, we consider the condition where the cascading process 
initiated by removing node i is terminated. The conditions that the neighboring node j of node i should satisfy 
for γ = 1 and γ > 1 are given by

(6)w = γ − 1,
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where p is the random number between 0 and 1. If we substitute Eq. (1) for Lj and Eq. (3) for �Lji into Eq. (7), 
we obtain

(7)

{

Lj +�Lji < Cj , γ = 1,
1

1+e
−(Lj+�Lji−

Cj+γCj
2

)

< p, γ > 1,

a

b

c

Figure 3.   The order parameter SN as a function of the tolerance parameter β in Eq. (2) for different cascading 
failure models with three different parameters of the load distribution: (a) α = 0.8 , (b) α = 1.0 , and (c) α = 1.2 . 
The network size N=1000 and the average degree 〈k〉 =6 are used, and each data point is obtained by averaging 
over 20 independent runs.
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Figure 4.   The tolerance parameter βc as a function of the average degree 〈k〉 for γ = 1.0 , γ = 1.5 , and γ = 2.0 . 
The parameter α in Eq. (1) is set to 1.0 and βc is obtained from the averaged SN vs. β curve for 20 independent 
runs.

a b

c d

Figure 5.   The robustness of airport network based on the linear and the logistic models. Dependence of the 
order parameter SN on the tolerance parameter β in Eq. (2) with (a) linear model with γ = 1.5 , and (c) logistic 
model with γ = 1.5 and the critical threshold βc as a function of the parameter α in Eq. (1) with (b) linear model 
with γ = 1.5 , and (d) logistic model with γ = 1.5 are displayed.
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The conditions of Eq. (8) can be rewritten in a simpler form as

Here we approximate 
∑

l∈�i
kαl  in Eq. (9) by its expectation value as

where P(k′|ki) is the conditional probability that node i with the degree ki is directly connected to the node with 
the degree k′, and kmin and kmax are the minimum and maximum degrees of nodes in a network, respectively. 
There is no degree-degree correlation in BA networks, so we have P(k′|ki) = k′P(k′)

�k�  . Thus, Eq. (10) can be 
expressed as

Based on Eqs. (10) and (11), the inequalities of Eq. (9) are given as

From Eq. (12), we can see that the critical threshold βc depends on α and p, thus, we calculate βc in three ranges 
of α < 1 , α = 1 , and α > 1 and two ranges of p > 1

2
 and p < 1

2
 as

   Here we make another approximation that sets the random number p in Eq. (13) to its expectation value. Since 
p is the random number between 0 and 1, its expectation value is 0.5. Replacing p in Eq. (13) by 0.5, we can obtain

We can see that there is a difference only in the constant factor between the two cases, γ = 1 and γ > 1 in Eq. (14).
To find the value of α when βc is the minimum, we compare k

α−1
min �k�

�kα+1�
 in the case of α < 1 and 〈k〉

〈k2〉
 in the case of 

α = 1 for γ = 1 , γ > 1 in Eq. (14) as

(8)
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
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2
,
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
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Hence, we have βc(α = 1) < βc(α < 1) from Eq. (14) and the inequality of Eq. (15). The comparison between 
kα−1
max �k�

�kα+1�
 in the case of α > 1 and 〈k〉

〈k2〉
 in the case of α = 1 for γ = 1 , γ > 1 in Eq. (14) can be made in a similar way 

as

This inequality along with Eq.  (14) indicates that βc(α = 1) < βc(α > 1) . Combining these two results, 
βc(α = 1) < βc(α < 1) and βc(α = 1) < βc(α > 1) , we can conclude that βc has a minimum value when α = 1 
for γ = 1 , γ > 1 . This analytical results are in good agreement with the simulations results for γ = 1 as can be 
seen in Fig. 2b. For γ > 1 , however, the theoretical prediction deviates slightly from the simulation results. For 
γ = 1.5 , a network reaches the strongest level of robustness when α = 1.6 as shown in Fig. 2f. The reason for 
this deviation is that we approximated 

∑

l∈�i
kαl  and the random number p by their expectation values, ki�k

α+1�

�k�  
and 0.5, respectively.

Discussion
We have presented a new cascading failure model by modeling the probability of failure of an overloaded node 
as a logistic function. The probability of failure is adopted to consider the effects of mitigation measures of the 
network. Then we focus on the nonlinear relationship between the probability of failure and the load on the 
node and introduce a logistic function to characterize it. We have performed numerical simulations of cascading 
failures on BA networks and a real airport network to investigate the cascading behaviors of our model.

The proposed probability of failure improves the robustness of the network compared to the case where the 
probability of failure is not adopted as expected. To assess the efficiency of our cascading failure model in improv-
ing the robustness of the network, we compare the results of our logistic model with those of the linear model. 
We have found that the comparison results of the robustness using the two models depend on the way the load is 
initially assigned on the node and redistributed between nodes. The conditions that enhance a network’s robust-
ness were also examined regarding the load distribution and the topology of the network. The optimal value for 
the parameter of the load distribution has been found, and is also investigated by theoretical analysis. In terms of 
the topology of the network, the network becomes more robust as the average degree of the network increases.

The main objective of our study is to introduce a new cascading failure model and to investigate its behavior 
and efficiency in improving the robustness of the network. We used BA network as a model system since BA 
networks can represent many natural and artificial systems. Therefore, the results of this study can be used to 
analyze cascading failure events in real systems. The main findings of our study is that the results of comparison 
between logistic and linear probabilities of failure depend on the initial load distribution and the redistribution 
of load. This can be used to devise effective anti-impact strategies against cascading failures in complex networks.
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