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Estimating null and potent modes 
of feedforward communication 
in a computational model 
of cortical activity
Jean‑Philippe Thivierge1,2* & Artem Pilzak1

Communication across anatomical areas of the brain is key to both sensory and motor processes. 
Dimensionality reduction approaches have shown that the covariation of activity across cortical 
areas follows well‑delimited patterns. Some of these patterns fall within the "potent space" of neural 
interactions and generate downstream responses; other patterns fall within the "null space" and 
prevent the feedforward propagation of synaptic inputs. Despite growing evidence for the role of null 
space activity in visual processing as well as preparatory motor control, a mechanistic understanding 
of its neural origins is lacking. Here, we developed a mean‑rate model that allowed for the systematic 
control of feedforward propagation by potent and null modes of interaction. In this model, altering 
the number of null modes led to no systematic changes in firing rates, pairwise correlations, or mean 
synaptic strengths across areas, making it difficult to characterize feedforward communication 
with common measures of functional connectivity. A novel measure termed the null ratio captured 
the proportion of null modes relayed from one area to another. Applied to simultaneous recordings 
of primate cortical areas V1 and V2 during image viewing, the null ratio revealed that feedforward 
interactions have a broad null space that may reflect properties of visual stimuli.

Understanding how distinct areas of the brain communicate with each other is at the heart of neuroscience. 
Neurons in different areas of cortex receive synaptic afferents from thousands of upstream cells, and it remains 
unclear how this vast information is integrated to generate sensory, cognitive, and behavioral outcomes.

Several measures aim to capture the interactions between neurons across brain areas, including functional 
 connectivity1,2, Granger  causality3,4, and information-theoretic measures such as transfer  entropy5–7. With some 
notable exceptions including population  coding8, these measures typically produce estimates over all pairs of ele-
ments, resulting in prohibitively large matrices of interactions. With recent developments allowing for simultane-
ous recordings on the order of 10,000  neurons9, these interactions would involve ~ 1,000,000 paired comparisons.

Several approaches have been proposed to reduce the sheer volume of neural data and summarize neuronal 
population activity using a handful of dimensions that reflect broad interactions within local  circuits10–15. These 
analyses suggest that reliable patterns of covariation amongst cells, termed "neural modes", emerge from the 
collective behavior of large neuronal groups. These neural modes are reported in early visual cortex (V1), where 
the activity of large groups of cells is captured by linear models with only a few  dimensions15,16.

Furthermore, feedforward communication between V1 neurons and downstream extrastriate area V2 is 
described by a limited "neural space" whereby several of the activity patterns in V1 do not activate V2  targets17. 
The presence of such neural space is not restricted to visual cortex and is also reported in areas responsible for 
motor  control18–23 and is linked to movement  preparation18,  learning22, and working  memory24. In the context 
of hand reaching tasks, the challenge is that cortical regions involved in the preparation of a movement are also 
involved in controlling the muscles responsible for initiating motor commands. A solution is that cortical activity 
related to the preparation of a movement occupies a null space where it does not generate a motor command. 
Upon movement initiation, neural activity switches to a potent space that communicates to the muscles involved 
in hand  reaching18. In both visual and motor domains, neural activity can be described by "potent modes" that 
propagate their activity to downstream sites and "null modes" that yield no marked response.

Despite the ubiquity of null and potent modes across cortical areas, few computational models exist to capture 
how neuronal circuits control modes of neural activity to gate feedforward communication. Some models work 
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by generating random vectors that are rotated along different axes to create null and potent  modes16,18. Unfor-
tunately, these models offer no description of the underlying neural activity required to generate these modes. 
Other models are hard-wired to perform feedforward gating of neural  activity25 but offer no systematic way to 
control the transmission of null and potent modes. Finally, some models learn to generate low-dimensional 
representations of a  signal26,27 but focus on activity within a single brain area.

Here, we developed a simplified mean-rate model that allowed us to systematically control the feedforward 
transmission of neural modes. The model revealed that different subsets of modes can be activated without nota-
ble changes in firing rates, pairwise correlations, or the mean strength of synapses, raising concerns for studies 
that aim to infer information transfer between brain areas via functional connectivity.

Going further, we created an unbiased measure, termed the null ratio, that captured the proportion of null 
modes relayed from one area to another. This measure improved upon previous estimates of null and potent 
 modes18 that yield an underestimation of effect sizes. We applied this measure to simultaneous multielectrode 
recordings in areas V1 and V2 of primate visual cortex. During a passive image viewing task, interareal com-
munication was dominated by a high proportion of null modes and a comparatively smaller number of potent 
modes, potentially capturing the statistics of sensory input presented during the task.

Results
Mean‑rate model of null and potent neuronal interactions. We began with simulations where a 
mean-rate "sender" network received a frozen Gaussian signal and selectively propagated its activity in a feed-
forward fashion to a "receiver" area (Fig. 1a). Synaptic weights W0 between the two areas were adjusted such 
that a specific set of neural modes were set to null. This was achieved by solving a linear equation that projects 
the activity from the sender network to the receiver network (see Materials and Methods, Eqs. (6–16)). Unless 
otherwise stated, 10 s of simulated activity were generated for each run of the model.
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Figure 1.  A model of feedforward communication between two neuronal circuits. (a) Simplified model where a 
recurrently-connected sender area receives an input signal and projects to a receiver area via a set of connection 
weights (W0) where potent neural modes are transmitted forward while null modes are not. (b) Percentage of 
variance explained by neural modes (N = 10). (c) Across different simulations that altered the number and origin 
of transmitted neural modes, potent modes yielded a higher correlation between sender and receiver areas than 
null modes (N = 10). Results shown were obtained from a receiver area with lateral connectivity (solid lines) and 
without (vertical bars).
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The presence of mode-specific interactions between the sender and receiver areas was readily observed by 
extracting neural modes of each area, respectively (see Materials and Methods, Eqs. (7–8)). Modes were sorted 
by rank such that the first mode explained the highest proportion of variance (Fig. 1b). Three examples with dif-
ferent sets of null modes are shown in Fig. 1c. Given a full-rank singular value decomposition, the total number 
of modes is equal to N (the number of neurons in each area of the model). Similar results were obtained regard-
less of the inclusion of lateral connections between the receiver neurons (Eq. (16)). Even though correlations 
between modes of the two areas were low, stronger positive correlations emerged between potent modes, and 
weaker correlations between null modes. In fact, in a noiseless scenario, correlations between null modes would 
reach zero. The ability of the model to turn off specific null modes was possible for modes that explained a low 
proportion of variance (Fig. 1c, left panel) as well as modes that explained a higher proportion (Fig. 1c, middle 
and right panels).

To illustrate the impact of null and potent modes on the receiver area, a simulation was performed where 
either a single null or potent mode was activated. A simple example with three neurons in each of the sender and 
receiver areas is shown in Fig. 2a. The mode capturing the largest proportion of variance was set to null, while 
the remaining modes were potent. Activating only the null mode resulted in activity in the sender but not the 
receiver area. Conversely, activating a potent mode resulted in a response across both areas. Importantly, the 
overall distribution of activity in the sender area remained similar for both null and potent modes (Fig. 2b), show-
ing that results were not due to a trivial attenuation of activity when generating null activity in the sender area.

In a larger simulation, the outgoing connectivity of N = 100 sender units was configured to propagate N/2 
potent modes in a feedforward fashion. Mean pairwise correlations between modes of the sender and receiver 
areas reflected null and potent modes (Fig. 3a, left panel). A similar result was obtained when increasing the size 
of the population (N = 500 with 400 potent modes and N = 800 with 700 potent modes) (Fig. 3a, middle and right 
panels). In turn, synaptic weights between the sender and receiver areas yielded a Gaussian-like distribution 
centered near zero, with no clear structure (Fig. 3b).

Thus, the propagation of potent and null modes was not apparent from basic features of synaptic connectiv-
ity. Further, configuring a network with a combination of null and potent modes did not yield a trivially sparse 
matrix where null modes were readily identifiable.

Across each percentage of null modes (from 1 to 100%), 100 independent runs of the model were performed 
and averaged together. In these simulations, the proportion of null modes showed no relation to either mean 
absolute pairwise correlations across the two areas (r = − 0.0888, p = 0.3812, Spearman correlation, n = 100) 
(Fig. 3c), mean absolute synaptic weights (r = 0.0974, p = 0.3346, n = 100) (Fig. 3d), or combined mean firing 
rates of the sender and receiver areas (r = − 0.0182, p = 0.8574, n = 100) (Fig. 3e).

A measure termed the Gini  index28 was employed to assess the impact of null modes on network sparsity. 
First, synaptic weights were converted to a binary adjacency matrix by a threshold that retained the highest 30%, 
50%, or 70% of weights. Then, the Gini index was calculated across a range of null modes (Fig. 3f). When plot-
ted in log coordinates, the Gini index was directly proportional to null modes: a larger number of null modes 
resulted in increased network sparsity.

Hence, while null modes were reflected in the global sparsity of global connectivity, it was difficult to observe 
them from basic features of neural activity or functional connectivity in the model, including pairwise correla-
tions, mean weights, and firing rates. While the correlation between individual modes of the sender and receiver 
areas was modulated by setting specific modes to null, the overall correlation between the activity of the two 
areas remained largely unaffected.

Results of the rate-based model were extended to a scenario where the sender network was comprised of 
N = 500 spiking neurons (see Materials and Methods, Eqs. (17–19)) (Fig. 4a). Ten seconds of activity were gener-
ated with a set proportion of null modes. The receiver network followed a bistable regime with sharp transitions 
between a low and higher state of activity. The correlation between modes of the sender and receiver areas was 
low for null modes, and higher for potent modes (Fig. 4b). Thus, the proposed model allowed for a systematic 
control of null and potent modes propagated from one area to another.
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Figure 2.  Toy example of a network with three sender and receiver neurons. (a) Activating a null mode led to 
no response in the receiver area. Conversely, activating a potent mode generated a response in both the sender 
and receiver areas. (b) Distribution of activity from the sender area when activating either a null or potent mode.
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Measuring null space communication. To measure the null space of communication between two neu-
ral areas, we began by describing the propagation of activity from a sender area X to a receiver area Y as a 
weighted sum, Y = W0X + c , where c is a constant term and W0X is a projection of activity X onto a set of 
weights W0 that reflect the influence of the sender region on the receiver network (see Materials and Methods). 
Potent and null modes of propagation were obtained by the row-space ( WT

potent ) and null space ( WT
null ) of W0 , 

 respectively18. The transmission of potent and null modes from the sender to the receiver network was described 
by projecting the eigenvectors of X (denoted V ) onto the row-space and null space of W0,

where � · �2F is the Frobenius norm. This norm was employed for ease of interpretation, as it is closely related to 
the variance of the expression inside the brackets. That is, subtracting the mean of each row before taking the 
norm yields the variance. The resulting expressions ϕpotent and ϕnull reflect the influence of the sender area along 
the potent and null space, respectively. Crucially, these measures require that the sender and receiver networks 
have the same number of neurons (N) to be meaningful. Otherwise, “funnelling” or “expanding” activity from 
the sender to the receiver areas would cause a spurious number of null or potent modes to emerge.

(1)ϕpotent = �WT
potentV

T�2
F
,

(2)ϕnull = �WT
nullV

T�2F ,

Figure 3.  Null modes were not straightforwardly reflected in synaptic weight distribution, firing rates, pairwise 
correlations, or mean synaptic weights. (a) Correlation between modes of the sender and receiver areas with 
N = 100, 500, or 800 units and 50, 400, and 700 potent modes, respectively. (b) Connection weights between 
sender and receiver areas. Inset shows a portion of the figure. (c) Absolute mean pairwise correlation in different 
runs of the model where the percentage of null modes was altered. Vertical bars are standard error of the mean 
across 100 independent runs of the model. (d) Absolute mean synaptic weight in relation to the percentage 
of null modes. (e) Mean activity of the sender area versus null modes. (f) Gini index of the feedforward 
connectivity matrix. A threshold was applied to convert real-valued weights to a binary adjancency matrix 
where a given percentage of strongest connections was preserved.
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Equations (1–2) were computed across 10 simulations where the proportion of null modes was varied between 
0–100%. In these simulations, the potent and null space of W0 crossed at a point where half of the neural modes 
(N/2) were null (Fig. 5a). A ratio of null and potent spaces was computed to obtain the proportion of null modes,

This measure, however, featured a non-linearity that overestimated the null modes (Fig. 5b)18. This non-
linearity can be corrected by adding a term to Eq. (3),
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ϕnull
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Figure 4.  Propagating null and potent modes of neural activity in a spiking network. (a) Top: spike raster from 
a sender network (N = 500 units) where a subset of modes (250 to 350 in rank) was set to null. Bottom: sum of 
population activity over time. (b) Correlation between modes of the sender and receiver areas.
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Figure 5.  Estimating the null and potent space of neural communication. (a) The Frobenius norm of the null 
and potent space of connections W0 intersected at a location where approximately half of all modes are null 
(N = 100). (b) The ratio of null and potent neural modes (Eq. (3)) provided an estimation of the proportion 
of null modes in the model, but also generated unwanted nonlinearity. (c) Correcting nonlinearity by adding 
a term to the ratio (Eq. (4)) led to an overshoot in prediction. (d) The overshoot in prediction was corrected 
by scaling the estimation with a factor inversely proportional to the square root of N (Eq. (5)). (e) Root mean 
square difference (RMSD) between actual and estimated null ratios across different durations of simulation. 
Vertical dashed line: one second of activity.
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This new estimator was linearly related to the null modes but was still prone to a large overestimation bias 
(Fig. 5c). This bias was corrected by scaling Eq. (4) by 1√

N
 , canceling out the squared norm of Eqs. (1–2),

This final estimator correctly reported the proportion of null modes independently of N (Fig. 5d). To deter-
mine how many data points were required to perform an adequate estimate of the null ratio, different runs of 
the model were performed where the number of simulated time-steps was altered. With 10 s of activity and 
N = 100 neurons, the root mean squared difference (RMSD) between the actual and estimated null ratios was 
low. However, this difference increased when the time segment of activity was shortened (Fig. 5e). Thus, the 
estimated null ratio improved with longer segments of data. A low number of neurons (N = 10) yielded a high 
error regardless of the time segment. With N = 100, at least one second of activity (Fig. 5e, dashed vertical line) 
was required to provide a reliable estimate of null ratio.

In practice, the estimation of null modes may be applied to experimental data where the activity of a sender 
and receiver area is recorded simultaneously. An example is shown in the next section, based on cortical activity 
from visual areas V1 and V2.

Null and potent modes of cortical activity. Single-trial activity was analyzed where anesthetized pri-
mates viewed sinusoidal gratings and activity was recorded simultaneously in V1 and V2 areas (see Materials 
and Methods). These data focused on neurons from the superficial layers of V1 that project to middle layers in 
 V216. These local projections constitute ~ 95% of afferents to  V229, ruling out a strong influence of surrounding 
areas. V1 activity was split into two groups of an equal number of neurons matching the number in V2. More 
precisely, a total of 111 neurons were recorded from V1 and 37 from V2. Two random samples of 37 neurons 
each were extracted from V1. The first sample was compared to V2, yielding “V1-V2” comparisons, while “V1-
V1” comparisons were obtained by comparing the two V1 samples (Fig. 6a). The same approach was employed 
in related  work16. The peri-stimulus time histogram of single-trial activity was regressed using the Matlab func-
tion regress, which performs multiple linear regression using the least-squares  method30 and returns the residu-
als. The activity of individual neurons was smoothed by averaging their firing rate over time using a sliding 
window of 100 ms.

Single-trial activity was characterized by the activation of a large subset of V1 neurons with a rapid rise time 
(~ 50 ms) and slower decay (~ 150 ms) (Fig. 6b). A similar, albeit sparser, response profile was observed in V2. 
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Figure 6.  Analysis of feedforward interactions in cortical areas V1 and V2. (a) Simultaneously recorded 
V1 neurons were split into two even groups whose size matched the number of units recorded in V2. This 
arrangement of the data allowed for analyses of both V1-V1 and V1-V2 interactions. (b) Example of single-
trial activity in simultaneous recordings of V1 and V2 neurons in response to oriented stimuli. Top: spike 
raster across all neurons. Bottom: summed population activity smoothed using a 100 ms rolling window. (c) 
Distribution of pairwise correlations within cells of V1 and V2, respectively. (d) Variance explained by neural 
modes of V1 and V2 activity across all trials.
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Intra-areal pairwise correlations were comparable between V1 and  V216 (p = 0.28658, one-sided Wilcoxon rank 
sum test, n = 28,800) (Fig. 6c).

Singular value decomposition was employed to examine the dimensionality of V1 and V2 activity (Materials 
and Methods, Eqs. (7–8)). The variance explained by this analysis increased rapidly with the number of modes 
considered (Fig. 6d). The cumulative distribution of both V1 and V2 modes reached 100% of explained variance 
as the singular value decomposition approached full rank. A Wilcoxon rank sum test compared the cumulative 
distributions of V1 and V2 modes. For this analysis, the rank-sorted variance of V1 and V2 was entered in the 
ranksum function in Matlab. This analysis revealed that the variance explained by V2 modes was lower than V1 
(p = 4.0535 ×  10–9, one-sided Wilcoxon rank sum test, n = 148). Hence, V2 activity was characterized by higher 
dimensionality than V1, in line with previous  work16.

Next, a linear mapping of activity from the sender area (V1) to the receiver area (V1 or V2) was obtained by 
ridge regression (see Materials and Methods). An example of V2 approximation based on smoothed V1 activity 
from a single trial is shown in Fig. 7a. The fit between observed and approximated activity was high (Fig. 7b): 
over all trials, the mean variance explained by ridge regression was 87.56% for V1-V1 interactions and 96.21% 
for V1-V2. Thus, while cortical neurons likely perform non-linear operations on their  inputs31, most of the vari-
ance in the receiver area was explained by a linearly weighted fit of V1 activity.

Regression weights from V1-V1 and V1-V2 interactions were decomposed into null and potent modes by 
applying Eqs. (1–2) across single trials. While the potent space was similar between V1-V1 and V1-V2 (p = 0.999, 
one-sided Wilcoxon rank sum test, n = 1600), the null space of V1-V2 was markedly larger (p = 4.4655e−06, one-
sided Wilcoxon rank sum test, n = 1600) (Fig. 7c). These results are in line with recent work showing that V1-V2 
communication requires far fewer modes than the total available neural  space16.

To further compare null and potent modes, a bootstrap procedure was applied as follows. For each of 100 
bootstrap steps, a random subset of neurons was extracted from V1 (matching the number of neurons in V2). 
Across 100% of these steps, the mean Frobenius norm (Eqs. (1–2)) of the null space exceeded the potent space. 
Hence, V1-V2 modes were robustly characterized by a large null space.

Applying the null ratio (Eq. (5)) revealed that greater than half of V1-V2 modes fell within the null space (null 
ratio > 0.5) (Fig. 7d). By comparison, V1-V1 interactions yielded a bimodal distribution where a large proportion 
of modes fell in the potent space (null ratio < 0.5). The larger null space of V1-V2 interactions is consistent with 
findings of "private" V1 modes that have little predictive value on V2  activity16. This result cannot be accounted 
for by the number of neurons analysed (which was kept constant between V1 and V2) or pairwise correlations 
(Fig. 6c). Further, V2 dimensionality was greater than V1 (Fig. 6d), running counter to an explanation whereby 
a larger number of null modes may be due to a lower number of V2 dimensions. Finally, independent simula-
tions of the mean-rate model were performed where the proportion of null modes was altered. These simulations 
showed that the null space could be manipulated without altering pairwise correlations (Fig. 3c), mean synaptic 
weights (Fig. 3d), or firing rates (Fig. 3e), suggesting that these factors may not have a substantial impact on 
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Figure 7.  Null and potent modes estimated from simultaneous recordings of V1 and V2 activity. (a) Example 
of a single trial where V2 population activity was predicted by ridge regression of smoothed V1 activity 
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regression. Individual circles are mean firing rates taken over 100 ms windows. Dashed line: unity. (c) Null and 
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estimating null and potent modes. Below, we discuss alternative explanations to the vast null space of V1-V2 
interactions.

Discussion
This work described a mean-rate model of neuronal activity that enabled the control of null and potent feedfor-
ward modes of interaction between two brain areas. Based on this model, a novel, unbiased measure was devel-
oped to estimate the proportion of null modes. This measure was applied to simultaneous recordings of V1-V2 
activity during stimulus viewing and revealed that most dimensions fell within the null space of feedforward 
communication between the two areas. The proposed measure of null ratio is model-independent and may be 
broadly applicable to other brain areas including motor  cortex18, hippocampal-entorhinal  cortex32, cortico-basal-
ganglia  circuits33, and thalamocortical  connections34 under the condition that enough neurons and time-steps 
are available to generate a reliable estimate (Fig. 5e).

Functional roles of null and potent modes. The ability of neural circuits to route feedforward activ-
ity through null and potent modes has implications that extend to sensory, motor, and cognitive domains. In 
sensory regions, dynamically activating specific modes may allow information to be flexibly routed from pri-
mary areas to higher cortical centers that perform multimodal  integration35. In this way, neural circuits that 
control the propagation of null and potent modes may shape the integration and segregation of activity across 
 regions36. Integration across regions may be achieved by the activation of potent modes, while segregation would 
arise through null modes. Speculatively, potent modes may also provide a neural basis for selective  attention37, 
whereas unattended sensory input may reside in the null space.

In brain regions responsible for motor control, null and potent modes mediate the preparation and execution 
of task-related  movements18. During the preparation stages of a motor command, motor cortex activity resides 
in the null space, thus preventing movement execution. At the offset of the preparation stage, activity switches 
to potent modes that drive movement in accord with an appropriate motor plan. Thus, the rapid coordination 
of null and potent modes allows motor actions to be adequately planned and carried out in cortex.

Origins of the large null ratio in V1‑V2 communication. What may explain the large null space of 
V1-V2 interactions (Fig. 7d)? One contributing factor may be the brain state of animals during experimental 
recordings. The use of anesthesia induces global, low-dimensional fluctuations across cortical  regions38. These 
fluctuations may contribute to the scope of null space interactions across visual areas. However, a limitation of 
this explanation is that anesthesia-induced fluctuations are typically one-dimensional15. By comparison, our 
results suggest the presence of several modes in the null space of V1-V2 communication (Fig. 7d). Hence, the 
low-dimensional null space induced by anesthesia would not be adequate to explain the large null space found 
between V1 and V2.

Alternatively, the large null space of V1-V2 communication may be explained by the few dimensions required 
to encode artificial stimuli. Indeed, only a few PCA dimensions would be required to encode oriented grat-
ings compared to natural images, which typically require a dozen or more dimensions to capture most of their 
 variance39. Because subjects were presented with gratings that required only a few modes to encode, the neural 
space of V1-V2 communication may encompass a broad null space without affecting sensory processing. Con-
sistent with this explanation, Semedo et al.16 found that when subjects were presented with natural movies of 
increasing duration, a greater number of neural dimensions was required to account for V1–V2 interactions, 
thus reflecting increased coding requirements. Further experiments that directly compare simpler and more 
complex stimuli will be required to further validate this proposal.

Implications of the model. Our results challenge two fundamental assumptions about neuronal com-
munication between brain areas. Firstly, a widespread assumption concerns the neural origin of sensory gating. 
Broadly speaking, gating is defined as the selective modulation of cortical inputs. Gating is generally assumed 
to be performed at the target site, for instance at the output of the cortical motor  system40. However, our model 
suggests that gating may be controlled by the pattern of synaptic connections between sender and receiver areas 
of cortex. This opens the possibility that gating may be dynamically controlled and subject to short- and long-
term synaptic  plasticity14.

A second assumption regarding neural communication that is called into question by our results is that the 
propagation of null and potent modes emerges from a balance of excitation and  inhibition25,41. According to 
this explanation, null modes correspond to states of detailed balance where excitatory and inhibitory inputs 
cancel out at the target site. Conversely, balance-breaking activity would form potent modes of transmission. 
In contrast with this explanation, the mean-rate model showed that null modes can emerge without requiring 
presynaptic activity to cancel out (Fig. 2a). In the model, null modes were not caused by anti-correlated activity 
in the sender area. Rather, null modes were controlled by the precise configuration of synaptic weights between 
sender and receiver areas.

A key contribution of the mean-rate model is that it highlights limitations of functional and structural con-
nectivity in probing the interactions between brain areas. Specifically, simulations showed that pairwise correla-
tions are a poor predictor of null space. Drastically altering the size of the null space had no systematic impact 
on mean pairwise correlations between the two neural areas (Fig. 3c). The implication of this finding is that it 
may be possible for neural activity to yield large correlations despite most modes falling within the null space. 
Conversely, low correlations could be obtained from activity where most modes are potent. Hence, functional 
connectivity may offer misleading indications of the communication bandwidth between brain areas.



9

Vol.:(0123456789)

Scientific Reports |          (2022) 12:742  | https://doi.org/10.1038/s41598-021-04684-9

www.nature.com/scientificreports/

Furthermore, synaptic connectivity (Fig. 3d) and mean firing rates (Fig. 3e) were poor indicators of the breath 
of null space interactions. Thus, the need for adequate measures of null modes (Eq. (5)) may not be circumvented 
by common network  statistics1 apart from global network sparsity (Fig. 3f).

Future work and conclusions. One factor not examined here in the mean-rate model is the dimensional-
ity of neural modes within the recurrent network formed by sender neurons. While this consideration has been 
the subject of extensive theoretical  work26,41–44, the focus of the current work was the feedforward propagation of 
neural modes, and not their origin within recurrent circuits. Further work that examines both aspects of com-
munication in a unified framework would provide an increased understanding of how interactions both within 
and across brain areas give rise to sensory perception and motor planning.

Another question not considered here is why null and potent modes seem to vary across individual tri-
als (Fig. 7c). One possibility is that single trials possess limited data to estimate modes accurately; however, 
simulations suggest this is not the case (Fig. 5e). Alternatively, variations in modes across trials may be due to 
fluctuations in population activity. For instance, Arandia-Romero et al.51 show that trial-to-trial variations in 
population activity impact decoding of visual input. The possibility that these fluctuations expand or compress 
neural modes across visual areas will need to be investigated in future studies.

In conclusion, this work combined computational modeling and experimental analyses to describe avenues 
by which neural circuits may control feedforward communication across brain areas. A novel measure termed 
the null ratio was provided to account for null features of neural activity that do not propagate across areas. 
Applied to neural interactions in early visual cortex, this measure revealed that a large portion of V1-V2 activity 
fell within the null space. These results open the door to further applications of the null ratio across sensory and 
motor systems, linking inter-areal interactions to both cognitive and behavioral processes.

Materials and methods
Mean‑rate model. The model considered two brain areas of N=100 neurons each (unless otherwise stated), 
communicating via feedforward synaptic connections (Fig. 1a). Focusing on linear dynamics, activity X ∈ R

N×T 
for time-steps t, . . . ,T in the sender area was modeled by a neural  integrator34–36,

where internal connection weights WIN were drawn from a Gaussian distribution N (0, 1/N) without self-con-
nections, ξ is a frozen Gaussian input signal drawn from N (0, 0.1) , t  is a time-step, a is a tonic input set to 10 Hz, 
and τ=10 ms is an integration time constant. The activity of each unit was smoothed using a rolling window of 
100 ms to mimic the processing of experimental data as detailed below.

Next, we obtained the singular value decomposition of X,

and computed neural modes by projecting the neural activity onto eigenvectors V,

These modes reflect time-dependent signals along individual dimensions of X48. Activity from the sender 
area was assumed to propagate to the receiver area ( Y ) via a set of weighted feedforward connections Z ∈ R

N×N , 
defined as a random matrix with independent Gaussian elements N (0, 1) . The resulting activity of the receiver 
area was thus

where c=10 Hz is a constant bias. However, instead of Y being impacted by X directly, we sought for Y to be 
influenced by neural modes M (Eq. (8)), hence

By expanding M,

Going further, we would like Y to be influenced by some, but not all, of the neural modes. For this purpose, 
Eq. (11) was rewritten as

where Y0 describes the activity of the receiver area in response to null and potent modes transmitted by the sender 
area. The matrix V0 is the same as V (Eq. (7)), but with certain columns, corresponding to null modes, set to zero. 
We assumed a set of weights W0 that project activity from the sender to the receiver area. These weights should 
be distinguished from V0 , the matrix containing eigenvectors of the sender area. Activity from the sender area 
Y0 can be substituted for W0X + c in Eq. (12). Then, W0 is sought such that

This is found by

(6)τ
dX

dt
= −X +WINX + a + ξ,

(7)X = U�V
T,

(8)M = XVV
T.

(9)Y = ZX + c,

(10)Y = ZM+ c.

(11)Y = ZXVV
T + c.

(12)Y0 = ZXV0V
T
0 + c,

(13)W0X + c = ZXV0V
T
0 + c.
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where "*" is the Moore–Penrose matrix inverse, employed here because X is not a square matrix given that there 
are typically more time points than neurons. Finally, the activity of the receiver area when receiving null and 
potent modes from W0 is obtained by

In a scenario that included lateral connectivity amongst receiver neurons, the above equation became

where Ylat is the activity of the receiver units and Wlat are lateral connections between these units. These connec-
tions were i.i.d. elements drawn from a Gaussian distribution and matched the range of values in W0 (Fig. 3b).

Importantly, Eq. (14) should not be interpreted as a biological learning rule, but rather as a way of compu-
tationally generating feedforward connection weights whose structure allows for the systematic control of null 
and potent modes.

Spiking network model. Simulations were performed where the sender network was composed of 
N = 500 recurrently-connected spiking  neurons39,49. The membrane potential of individual neurons evolved 
according to

where g=0.01 pS is a leak conductance, E=− 65 mV is a reversal potential, R =10 � · cm is the membrane resist-
ance, ITONIC=0.5 nA is a constant current, ISTIM is a current induced by the stimulus (modeled by frozen Gaussian 
noise with N (0, 0.1) ), and c = 0.01 µF

cm2  is the membrane capacitance. The intrinsic current IINi (t) ∈ I
IN,

describes the contribution of the surrounding network activity to an individual unit i at time t, where wE
i,j is the 

outgoing connection strength from one excitatory (E) neuron i to a neuron j, wI
i,j is the outgoing strength from 

an inhibitory (I) neuron, NE and NI are the total numbers of excitatory and inhibitory neurons, and

is the postsynaptic potential of a neuron j, where X represents either excitatory or inhibitory neurons (E or I), 
t
spike
j,s  is the time of a spike s ∈ SX where SX denotes all spikes emitted up to time t  , τ riseX  and τ fallX  are the time 

constants of the rise and fall of postsynaptic potential, with amplitude factors UE=0.4 nA and UI=0.6 nA. We set 
τ riseE =3 ms, τ fallE =40 ms, τ riseI =1 ms, and τ fallI =5 ms.

Spikes were triggered when the membrane potential (Eq. (17)) of a neuron reached − 15 mV from a value 
below the threshold. At that time, the potential was set to 100 mV for 1 ms, then reset to − 65 mV for a 3 ms 
absolute refractory period. Connection weights ( wE

i,j and wI
i,j ) were set such that 30% of neurons were inhibitory. 

The out-degree connectivity was set to N5  for individual E cells and N2  for I cells. Connection weights were struc-
tured at random following a uniform distribution with N

(

100/
√
N , 1

)

 while ensuring that all outgoing con-
nections of E cells were positive and all outgoing connections of I cells were negative, in line with Dale’s law. 
Simulations employed a forward Euler method with a time resolution of 0.1 ms. Null and potent modes of W0 
were set according to Eq. (14) after replacing the activity of the mean-rate model ( X ) with temporally smoothed 
spikes (100 ms rolling window).

Experimental data. Data analysed in this study were obtained from a public repository (crcns.org) and 
described in detail in related  work16. These data were composed of simultaneous extracellular recordings from 
neuronal populations in output layers (2/3–4B) of V1 as well as their primary target in middle layers of V2. 
Recordings were performed in 3 macaca fascicularis under sufentanil anesthesia using a Utah array (V1) and 
tetrodes (V2). During these recordings, subjects were shown oriented gratings for a brief duration (1.28 s) fol-
lowed by a blank screen (1.5 s). A range of 88–159 V1 neurons (mean: 112.8) and 24–37 V2 neurons (mean: 
29.4), including both well-isolated single units and multi-unit clusters, were analysed. A total of 400 trials were 
examined for each of 8 stimulus orientations. The receptive fields of V1 and V2 neurons were aligned retinotopi-
cally, thus promoting feedforward interactions.

All data analyses were performed using custom scripts in the Matlab language (MathWorks, Natick MA). Sta-
tistical analyses were performed with a one-sided non-parametric Wilcoxon rank sum test for non-normal data.

Ridge regression. Ridge regression aimed to minimize a loss  function50,

(14)W0 = ZXV0V
T
0X

∗
,

(15)Y0 = W0X + c.

(16)Ylat = W0X +WlatY0 + c,

(17)c
dV

dt
= −g(V − E)+ R

(

I
IN + I

STIM + ITONIC
)

+ ξ ,

(18)IINi (t) =
∑

j∈NE

(

KE
j (t) · w

E
i,j

)

+
∑

j∈NI

(

KI
j (t) · w

I
i,j

)

,

(19)KX
j (t) = UX ·

�

s∈SX

exp





t
spike
j,s − t

τ
fall
X



− exp





t
spike
j,s − t

τ riseX
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where Xi is the activity of i ∈ N sender neurons, Yi is the activity of receiver neurons, W are regression weights, 
and � is a regularization term. By expansion,

Taking the derivative with respect to W,

Setting the derivative to zero and solving yielded

The least-squares approximation of receiver activity was obtained by ̂Y = XW . The regularization term � was 
chosen such that the loss function (Eq. (20)) was no more than 5% lower than the corresponding unregularized 
( � =0) value on a given trial.

Data availability
Custom Matlab code is available from the corresponding author upon request.
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