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The gut microbiota of chickens 
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The microbiota in broiler chicken intestines affects the animals’ health, metabolism, and immunity 
both positively and negatively. Accordingly, it has a significant impact on animal productivity. 
Phages, host‑specific parasites of bacterial cells, are a promising antimicrobial alternative that 
selectively target pathogens without disturbing the microbiota. The purpose of this study is to further 
characterize the commensal microbial community at production scale in broiler chickens treated with 
a Salmonella phage treatment. We evaluated the cecal microbiota of broilers reared in a commercial 
farming system where a phage cocktail against Salmonella, SalmoFree was supplied to animals. To 
do so, two field trials were conducted, incorporating three doses of phages in the broilers’ drinking 
water. Our results showed that the core microbiome (taxa that were present in more than 50% of 
samples) contained species that are key to microbiota adaptation in the last stage of the production 
cycle. Among these, there are some important degraders of complex polysaccharides and producers 
of short chain fatty acids (SCFA) such as Eisenbergiella and Lachnoclostridium. The phage cocktail did 
not affect the normal development of the microbiota’s structure. The addition of the phage cocktail 
resulted in a significant reduction in Campylobacter and an increase in Butyricimonas, Helicobacter 
and Rikenellaceae, which are common inhabitants in chicken gut with known negative and positive 
effects on their health and metabolism. Altogether, we consider that these results contribute valuable 
information to the implementation of large‑scale phage therapy technologies.

Abbreviations
ASV  Amplicon sequence variants
PCR  Polymerase chain reaction

Microbiota is defined as the complete microbial community, including commensal, symbiotic and pathogenic 
microorganisms that reside on or within a complex multicellular organism (plants, animals and humans). This 
microbiota includes bacteria, archaea, fungi, protists and  viruses1. Knowledge about the importance of the micro-
biota in human and animal health has grown steadily in the past decade. Early studies focused on cataloguing 
the microbial species that comprises the human microbiota and its correlation with the health or disease of the 
 host2–4. Currently, studies are going beyond the examination of correlations to uncover interconnected relation-
ships between the microbiota, the host and pathogenic  bacteria5–7. These later studies have clearly established 
that microbiota and their products are essential not only for gut development, but also for shaping the host’s 
innate immune system, thereby performing multifactorial impacts on the host’s  health2–4.

In poultry, the microbiota in broiler chickens’ gastrointestinal tract (GIT) has demonstrated its importance 
for the host’s health, as it has a positive impact on the immune system, the physiology of the GIT, and the ani-
mal’s  productivity8. Likewise, the microbiota of broilers is involved in reducing and preventing colonization by 
enteric pathogens by competitive exclusion and the production of bacteriostatic and bactericidal  substances9. 
Unbalanced microbiota can therefore induce inflammation, leaky gut, or other gut-related  disorders10,11. In this 
context, managing gut health is a key aspect to ensuring optimal development and health in poultry.
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The composition of broilers’ microbiota is affected by different factors such as age, diet, genetics, and espe-
cially the use of  antimicrobials12. The fact that the most commonly used antibiotics are broad-spectrum implies 
that antibiotic therapy causes substantial collateral damage to the host’s microbiota by killing non-targeted 
and usually beneficial bacteria. This side effect can often lead to dysbiosis, further promoting the emergence of 
antibiotic resistant bacteria and potentially leading to the horizontal transfer of the corresponding resistance 
 genes13. Poultry production systems have used antibiotics extensively, not only for therapeutic purposes, but also 
as growth promoters. Different studies have shown that indiscriminate use of antibiotics reduces the stability 
of the microbiota in broilers along with the Lactobacillus population in their  intestines14–16. In a recent study, 
Danzeisen and colleagues discovered that chickens that did not receive antibiotic supplements had a higher 
diversity of gene families involved in the degradation of starch, cellulose and hemicellulose, potentially leading 
to a healthier and more adaptive microbial community. This supports the hypothesis that antibiotic overuse 
can lead to negative effects on chickens’  health17. The observations described above has given rise to a growing 
interest in the management of infections caused by antibiotic resistant pathogens by selectively targeting the 
disease-causing bacteria, without disturbing the commensal microbiota of the GIT.

Among the different bacterial pathogens in poultry, Salmonella is considered one of the most important food 
safety problems. This bacterium is a gram-negative, foodborne pathogen that is one of the most common causes 
of acute gastroenteritis in humans worldwide and is becoming an important public health concern that has a 
significant economic impact. The main source of human Salmonella infections is via consumption of poultry 
 products18. Furthermore, although a broad-host-range of Salmonella serovars do not produce clinical disease 
in older birds, some of them can cause gastroenteritis in young  chicks19. Thus, as well as being a public health 
threat, Salmonella also constitutes an economic problem for producers as it can contribute to a reduced feed 
intake and, therefore, a reduced growth rate. Indeed, it has been estimated that the broilers’ growth rate can be 
reduced by as much as 29%20.

Controlling Salmonella outbreaks is thus a priority given the health impacts and large economic losses it 
can cause. The pre-harvest stage in poultry is a relevant control point, when it is possible to prevent the intro-
duction of the pathogen into the food chain and consequently reduce the possibility of food poisoning among 
 consumers21. However, to date, the most common practice to control the pathogen at this stage is performed 
with antibiotics, risking the appearance of the aforementioned undesirable side effects.

Phages, as host-specific parasites of bacterial cells, are a promising antimicrobial alternative. Particularly, the 
use of lytic bacteriophages is an alternative that selectively targets a particular pathogen without disturbing the 
 microbiota22. Phage therapy has been reported to have additional advantages such as the modulation of the hosts’ 
immune system and microbiota, potentially improving host  health23. Furthermore, phages have been evaluated 
for animal therapy, prophylaxis and reduction of pathogen loads in food products of animal  origin24, thus serving 
as a good alternative for the control of Salmonella contamination in poultry. The research on Salmonella phages in 
poultry is not new, with reports including the isolation and characterization of the phages, safety assessment, and 
effectiveness of selected phages in chicken meat and in chickens in laboratory or controlled  environments25–30. 
Although most of these studies have been successful, to date there is only one report on the use of phages target-
ing Salmonella at production  scale31.

We have previously tested a phage cocktail that selectively targets Salmonella strains. The cocktail, called 
SalmoFree, a previously genomically and phenotypically characterized mixture of six Salmonella lytic 
 bacteriophages31, is able to control a broad range of Salmonella serotypes. The phages present in the cocktail have 
also been characterized by host range, infection assays, stability in chlorine, transmission electron microscopy, 
genome sequencing, and a safety assessment in broilers kept in cage  batteries31. We recently demonstrated the 
effectiveness of the cocktail in reducing the presence of Salmonella on a commercial  farm32, without affecting 
the animals or the production parameters, thus demonstrating its innocuity at production scale.

One of the major theoretical advantages of phages over antibiotics is that they do not affect the overall 
structure of the gut microbial community. However, to date there is no report on the effect of phage treatment 
in the GIT microbiota of poultry at a production scale. Hence, it is important to characterize the microbial com-
munities and analyze any potential changes induced by SalmoFree phage cocktail administration. In this study 
the analysis was conducted using 16S rRNA gene amplicon sequencing of the bacterial communities in samples 
stored from a recently published experimental set up in a commercial  farm32. Altogether, this work extends the 
existing knowledge about the microbiota in broiler chickens under farming conditions and will help to reveal 
possible effects of phage therapy in this scenario.

Results
The current study is focused on the description of the cecal microbiota of broilers in a commercial scenario, while 
under the effect of a Salmonella phage cocktail, SalmoFree, incorporated as treatment in the broilers’ drinking 
water. We used previously collected samples from a recently published experimental set-up, in which we assessed 
the effectiveness of the phage cocktail in the reduction of Salmonella by comparing the presence of Salmonella 
and the production parameters of the two treatment groups (with and without SalmoFree)31. The summary of 
those previously published results are presented in Tables 1 and 2. Unfortunately, given the production scale of 
the experimental setup, although the phage cocktail was administered under the best possible conditions, The 
results showed a phage cross-contamination between control and treated houses in the first trial and the presence 
of phages in trial two before administering the treatments in both groups, this issue hinders possible conclusions 
regarding the effect of the phage treatment in the cecal microbiota of commercial chickens.

In summary, two independent trials were performed; each one consisting of two treated and two control 
farmhouses where chickens were followed for the entire growth period up to the slaughterhouse (Fig. 1). Given 
the commercial setup of the experiment, it prevents the possibility of replicating the trials under controlled 
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Table 1.  Salmonella reduction throughout the production cycle of trials 1 and 2 for farmhouses treated with 
and without SalmoFree. Data modified from Clavijo et al.32. *Nomenclature of the sampling point corresponds 
to the number of dose (1–3) followed by a letter indicating whether it was taken a day before (b) or after (a) 
the corresponding dose. **Total number of swaps sampled: n = 5 in Trial 1 and n = 10 in Trial 2. ***Data for 
samples taken after dose 3 (3a) in Trial 2 are not shown due to the accidental loss of the samples.

Farmhouse/sampling point*

No of cloacal swaps Salmonella positive**

Trial I Trial II

1b 1a 2b 2a 3b 3a 1b 1a 2b 2a 3b***

Control farmhouse 1 2 3 3 4 1 3 9 7 5 4 2

Control farmhouse 2 5 5 1 2 1 1 9 10 5 3 1

Phage-treated farmhouse 3 4 2 1 4 0 0 10 10 9 6 3

Phage-treated farmhouse 4 5 3 1 2 0 0 9 8 7 2 0

Table 2.  Phage incidence throughout the production cycle of trials 1 and 2 for farmhouses treated with and 
without SalmoFree. a Nomenclature of the dose day corresponds to the number of the dose followed by a letter 
indicating whether it was taken a day before (b) or after (a) the corresponding dose. b No. of positive samples 
for amplification of the phage tail fiber protein gene of phages from the total samples where total sample size 
per time point is 5.

Farmhouse/dose  daya

No. of samples positive for amplification of phages  geneb

Trial I Trial II

1b 1a 3b 3a 1b 1a 3b 3a

Control house no. 1 0 1 3 0 0 0 0 0

Control house no. 2 0 1 1 1 1 1 0 3

Treated house No. 3 0 2 5 3 0 4 1 4

Treated house no. 4 0 1 3 4 3 2 2 4

Figure 1.  Experimental design and samples taken through the production cycle of trials 1 and 2. The number 
in the colored boxes corresponds to the cycle day. The color of the boxes corresponds to the week of the cycle 
(3rd to 5th). The last day corresponds to the slaughter date. Down-pointing arrows indicate the days where the 
treatment was administered (phage or control). The sampling days are also indicated with colored spheres. The 
nomenclature of the sampling point corresponds to the dose followed by the letter b (before) or a (after) and 
at the slaughterhouse (S). The farmhouse labels are H1 and H2 for controls and H3 and H4 for treatments. (a) 
Total number of individual cloacal swaps sampled were 5 and 10 for Trial 1 and Trial 2 respectively. This figure 
was made using PowerPoint for Mac v 16.5 (https:// www. micro soft. com/ en- ww/ micro soft- 365/ mac/ micro soft- 
365- for- mac).

https://www.microsoft.com/en-ww/microsoft-365/mac/microsoft-365-for-mac
https://www.microsoft.com/en-ww/microsoft-365/mac/microsoft-365-for-mac
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conditions. Furthermore, the cost of performing multiple times the proposed experimental setup prevents us 
from having a statistically significant number of trials. In consequence, the purpose of the two independent trials 
was to compare and contrast, identifying commonalities and differences. The results obtained from the differ-
ent farmhouses are not expected to be considered as replicated since true replicates are impossible to achieve 
in commercial rearing conditions (farmhouses can contain up to 13,400 chickens per house, and the specific 
conditions are almost impossible to control).

Sequencing information. The cecal microbiota was characterized at 8 different points in time during the 
chickens’ growth phase (Fig. 1). The V4 hypervariable region was sequenced using MiSeq v2 2 × 250 pair-end 
reads. Following quality control, 228 samples were retained, with 4,995,664 sequences and a total of 3993 ampli-
con sequence variants (ASVs). The count of reads per sample varied from 3527 to 210,082 with an average of 
21,911 and a median of 18,130 per sample, which is comparable to previous  studies33,34.

An initial quality control analysis on raw reads determined that the sequence variants generated for F2 
(farmhouse two; control farmhouse) in Trial 2 were significantly different in composition and diversity from the 
other samples (Fig. S1), likely reflecting a technical rather than a biological effect. Thus, all samples from that 
farmhouse were excluded from further analysis. Additionally, sequences generated from most of the samples 
taken one day before the beginning of the growth phase (birds at age 15 and 14 days for the first and second trial, 
respectively) had a very low yield of DNA extraction leading to a high frequency of failed amplifications and 
sequencing, likely as a consequence of low biomass due to the animals’ young age. Thus, all the samples from these 
time points were excluded from further analysis (Fig. S1). Finally, 244 samples were kept for the rest of analysis.

Microbial diversity. Rarefaction curves based on rarefied Shannon indices indicated that a sufficient 
sequencing effort was achieved for all samples, as represented by a plateau in the saturation curves (Fig. S2A,B). 
However, the observed OTUs metric showed that new ASVs were detected as more reads were analyzed even at 
a sequencing depth of 11,000 reads per sample, likely indicating transient or a very low abundance of species, as 
they did not have an effect on the Shannon indices (Fig. S2C,D).

Alpha diversity analyses for both trials using Faith’s phylogenetic diversity and number of observed OTUs 
suggested a slight increase over time (Fig. S3). This temporal phenomenon is more prominent in Trial 2. However, 
the variation in diversity between the days of the experiment (17–36) was not high, since Faith indices fall within 
a comparable range of 20 to 33. This small range might occur if the microbial community is reaching a relatively 
stable, yet dynamic, state (Fig. 2). This behavior is consistent with a previous report where the microbiome in 
chickens stabilizes at approximately day  1235. Regarding the maturation of the microbiota, the microbial com-
munities have a similar diversity by day 17 (3rd week), at the beginning of the experiment. Between weeks 4 
and 5, the microbiome increases its variability and stabilizes again on the last day of the trial, while remaining 

Figure 2.  Alpha diversity using Faith phylogenetic diversity metric of samples throughout the experiment 
per farmhouse and trial. Red lines indicate Trial 1, black lines indicate Trial 2. Dotted lines represent control 
farmhouses and solid lines are for SalmoFree treated farmhouses. The x-axis indicates the time points for 
samples taken before (b) and after (a) the delivery of the treatments with their corresponding week of the cycle. 
The results at slaughterhouse are indicated as (S). Positions on the x-axis are proportional to the time intervals 
between sampling. Error bars represent the standard deviation of the mean of five cecum samples. This figure 
was made using Excel for Mac v.16.5 (https:// www. micro soft. com/ en- ww/ micro soft- 365/ mac/ micro soft- 365- 
for- mac).

https://www.microsoft.com/en-ww/microsoft-365/mac/microsoft-365-for-mac
https://www.microsoft.com/en-ww/microsoft-365/mac/microsoft-365-for-mac
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constant at the slaughterhouse (Fig. 2). Comparing trials, higher alpha-diversity index values (Faith, Shannon 
and Observed OTUs) were observed in Trial 1 than in Trial 2 (Fig. 2).

Alpha diversity indices changed significantly (Kruskall Wallis test, P < 0.05) in response to the trial; farmhouse; 
treatment; and, markedly, by the age of the animal. Conversely, the genetic line did not show significant differ-
ences (Kruskall Wallis test, P > 0.05) in microbial diversity. Although the treatment showed significant differences, 
there is no observable pattern that makes it possible to discriminate among treatment groups.

Alpha-diversity results were complemented by the beta-diversity comparison of weeks, treatments, and trials 
(Fig. 3A–D). Principal Coordinates Analysis (PCoA) plots colored by treatment did not reveal any clustering 
pattern (Fig. 3A) while those colored by age and trial showed that microbial communities were driven mainly 
by these two variables (Fig. 3B,C). Interestingly, regardless of the trial, the microbial community showed sig-
nificantly higher similarity at the beginning of the experiment (Fig. 3B,D), and diverged as a function of time, 
becoming more distant for the second dose of treatments. The trial dependency suggests a high contribution of 
the environment in the development of the microbiota, which is expected due to the impossibility of controlling 
all variables in a commercial broiler farm, such as temperature, humidity, feed composition, litter replacement, 
feeding and antibiotic intervention. The observation of complex but highly similar diversity patterns in older 

A B

C D

Figure 3.  Similarity between the structure of bacterial communities found in cecum of broiler chicken based 
on Bray Curtis dissimilarity metric. (A–C) Principal Coordinate Analysis (PCoA) where samples are colored by 
treatment (A) age of the animals (in weeks) (B) and by trial (C). Ellipses were manually overlaid to encompass 
the majority of the sample points of a given feature. (D) UPGMA clustering colored by cycle and sampling week. 
This figure was made using the Qiime2 package version 2018.1156 and its plugins (https:// qiime2. org).

https://qiime2.org
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birds coincides with previous studies where microbial communities exhibit similar patterns in chickens once 
they have reached their marketing  age35.

Taxonomic composition of the bacterial community. We performed a general analysis of the taxo-
nomic composition at phylum level of the bacterial community in order to characterize its behavior in a com-
mercial scenario throughout the last stage of the production cycle. We also analyzed the minimum community 
of microbes that is essential for the host (taxa that were present in more than 50% of samples, will be named “core 
microbiome”) for both trials, at genus level.

First, the taxonomic composition of trials 1 and 2 indicated that Firmicutes is the most predominant phylum 
in the gut of broilers (46.4% abundance), followed by Bacteroidetes (37%). Together, both phyla accounted for 
more than 80% of the relative abundance within the community. A lower proportion of the phylum Epsilonbac-
terota (4.47%), Proteobacteria (3.2%), and Tenericutes (1.21%) was found, while unassigned bacteria at phylum 
level accounted for 6.41% of the abundance.

Regarding phyla dynamics, Firmicutes and Bacteroidetes remained relatively constant throughout the experi-
ment (Fig. 4), only a slight decrease in Firmicutes, with a corresponding increase in Bacteroidetes was observed 
the day after the second dose (Day 28 and 27 for Trial 1 and 2, respectively) suggesting a niche complementa-
tion between these two phyla. Proteobacteria behaves similarly in the two trials, maintaining relatively constant 
numbers over time where the lowest point was found after the second dose as well. The presence of phylum 
Tenericutes bacteria is higher at the beginning of the experiment with a slight reduction over time (Fig. 4). A 
very low abundance of Epsilonbacteria phylum was found at the beginning of the experiment but it increased 
rapidly starting in week 4 of the cycle (before the second dose). It then remained constant until the end of the 
experiment (Fig. 4).

To better understand the shared taxa occurring over time, we analyzed the core microbiome at genus level, 
discriminated by trial and week (Table 3). When comparing the core microbiome (taxons present in more than 
50% of the samples) for both trials over time, it was observed that the genera conforming the broilers’ microbiome 
are, to a great extent, conserved since most genera (78%) were present in both trials (Table 3). This result is inter-
esting because despite being different in terms of (a) alpha and beta diversity; (b) breeds; and (c) antimicrobial 
regime, chickens in both trials shared the core genera.

Likewise, an analysis of the core microbiome over time showed that the microbiota, during the period exam-
ined, was also conserved: 65% of the genera were found in most of the samples during the three weeks (Table 3) 
and the core microbiome found in broilers at the slaughterhouse contained all the genera found during the 
experiment. Thus, the most abundant members of the community were maintained as the broilers were trans-
ported to the slaughterhouse (Table 3).

Taxonomic dynamics at the growth stage of the production cycle. The differential analysis dis-
criminated by week allowed the identification of some key species in the adaptation of the microbiota during the 
broilers’ growth phase. For instance, in both trials, several taxa revealed an increase, over time, in the abundance 
of Alistipes, Rikenellaceae, Phascolarctobacterium, Desulfovibrionaceae and Megamonas, while Bacillales, Copro-
bacter, Barnesiellaceae and Ruminococcaceae presented a decrease in abundance. Another genus with an intrigu-
ing abundance was Odoribacter, which increased between week 3 and 4 and then remained relatively constant 
until the end of the cycle. In contrast, Hydrogenoanaerobacterium is only detected at the beginning of the cycle 
(week 3) and then disappeared (Fig. 5).

Variation in abundance of the microbial taxa. As some of the most important factors affecting the 
structure of the microbiota was the trial (Fig. 2), a differential analysis was carried out separately for each trial in 
order to define the differences between the farmhouses in particular those receiving the phage cocktail treatment 
and those that didn’t. This analysis was an independent PCoA analysis by Trial, whose results revealed a separa-
tion by treatment after the second dose. However, this trend disappeared towards the end of the experiment. This 
separation was clearer for Trial 1 (Fig. 6), although a more compact clustering of all samples can be observed 
towards the final days of the experiment for both trials.

The differential abundance analysis for the different doses revealed four genera as being significantly associ-
ated with the treatment: the taxa Campylobacter, Helicobacter, Rikenellaceae and Butyricimonas (Fig. 7). Campy-
lobacter in the first trial appeared between the first and second dose in both control and treated samples; however, 
the abundance in treated farmhouses increased slowly, in contrast to the abrupt increase in the control groups 
during the second dose with a subsequent decrease, leading to a final convergence (for treatments and controls) 
in abundance at the end of the experiment. Interestingly, in contrast to the under-representation of Campylobacter 
in treated samples, the closely related Helicobacter seemed to increase in abundance. Butyricimonas increased 
significantly with respect to the control after the second and third doses in Trial 1 (ANOVA, P < 0.005). Similarly, 
the abundance of Rikenellaceae increased after the second doses and it is significantly different, compared to the 
control group (Fig. 7A).

Abundance patterns of particular taxa displayed similarities in both trials. In both cases, the abundance of 
Rikenellaceae was greater in treated chickens than it was in the control in the last week of the experiment. Even 
though the tendency of an increased abundance over time is observed for treatment groups in both trials, Trial 2 
presented overall lower abundances than Trial 1, as seen for Campylobacter and Helicobacter (Fig. 7B). In addition 
to these taxa, the Parasutterella genus that was not detected in Trial 1, increased in abundance over time in Trial 2.

Given the differential abundance of Helicobacter seen for the treatment groups and since some species of 
the Helicobacter genus are considered human and animal pathogens, a further characterization of the ASVs 
assigned to Helicobacter was performed. These ASVs were aligned with the collection of Helicobacter 16S rRNA 
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Figure 4.  Relative abundance of dominant phyla identified in the microbiome of cecum of broilers. Results 
are presented discriminated by trial over time, shown as dose days. Sample days are indicated with the 
nomenclature of the dose number followed by the letter a or b for samples taken before and after the delivery 
of the treatments, respectively. The results at slaughterhouse are indicated as (S). Upper and lower panels show 
the range of abundance of Firmicutes and Bacteroidetes compared to other phyla. The color gray indicates 
the standard deviation of the mean abundance. This figure was generated using Phyloseq package in R v 1.2.5 
(https:// www.r- proje ct. org/).

https://www.r-project.org/
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Table 3.  Core microbiome, at genus level, of the last 3 weeks of the broilers’ production cycle and at the 
slaughterhouse, for the two trials. Presence (+) of taxa is shown over time with their respective phylum. A green 
background indicates taxa that behave similarly in both cycles. Patterns with variable behavior for both trials are 
indicated in blue. Brown corresponds to taxa that are part of the core microbiome (> 50% of the samples) only in 
the first or second cycle. S shows the results at the slaughterhouse.
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gene sequences deposited in the NCBI Refseq collection. The bioinformatic analysis identified these ASVs as 
Helicobacter pullorum (Fig. S4).

Enterobacteriaceae abundance analysis. Given that the traditional methods for taxonomic assign-
ment lack the resolution to discriminate among Enterobacteriaceae for the sequenced segment of the 16S rRNA 
gene, we implemented a more detailed analysis allowing the identification of one ASV as Salmonella from the 
32 assigned to Enterobacteriaceae. This ASV was clustered in the clade that grouped Salmonella enterica subsp. 
enterica and separated from the clades that grouped Salmonella bongori and Escherichia coli-Shigella (Fig. S5). 
Thus, we established that this ASV corresponded to Salmonella sp. The other ASVs assigned to the Enterobacte-
riaceae family were grouped in the E. coli-Shigella clade.

The abundance of the Salmonella-related ASV across samples was rather low, in a range of 2.5 ×  10–5 to 6.8 × 
 10–4, and close to our estimated confidence detection limit for the method (1 ×  10–4). The ASV was also detected 
in a small number of samples (n = 22). Thus, further inferences based on its abundance were discarded. In addi-
tion, no correlation was found between the abundance of this ASV and the molecular detection of Salmonella in 
the samples (P > 0.01) (Fig. S6). The information regarding the molecular detection of Salmonella was obtained 
from the previously published  results32. This result indicated that, despite identifying specific regions within 
the sequenced gene fragment to discriminate Salmonella from the other members of the Enterobacteriaceae 
family, due to its very low abundance, a deeper sequencing would be necessary to quantify it within accurate 
detection levels.

Discussion
The purpose of this study was to characterize the cecal microbiota of broiler chickens in a commercial setting 
during a phage therapy treatment, using the Salmonella phage cocktail SalmoFree. Previously published results 
showed the efficacy of the phage cocktail in reducing Salmonella under these  conditions32. However, it also 

Figure 5.  Heatmap built on average abundance values with bacterial taxa found to be significantly associated 
with the week of the production cycle. Results are discriminated by trial over time of the experiments. 
Nomenclature of the sample days as shown in Fig. 1. Horizontal black line divides bacteria that decrease after 
the second week (upper) vs those that increase over time (lower rows). Vertical line marks the end of the 3rd 
week where most of the significant changes in abundance occur. This figure was made using the Qiime2 package 
version 2018.1156 and its plugins (https:// qiime2. org).

https://qiime2.org
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showed a basal level of cross-contamination of the phage cocktail in the control samples, hindering any con-
clusions regarding the effect of phages in the microbial community structure. Regardless, our results suggest a 
process of normal microbiota maturation characterized by a transition towards a higher diverse community. 
This observation was independent of the farmhouse and treatment applied.

Our results also suggest that the behavior of the microbiota between 17 and 36 days of age, when chickens 
are in the grower phase, is similar to what has been previously reported in experimental chickens reared in 
controlled  environments35,36. For instance, our observations support the stabilization dynamic of the microbiota 
at this developmental stage. It was also confirmed that the microbial community in older chickens is similar to 
the one observed at slaughter age (Figs. 2, 3). Also in agreement with previous studies, the age of the animal was 
the variable that had the greatest influence on the variation in the  microbiota35,37. This provides key evidence 
suggesting that microbiota approximations conducted under controlled environments do not differ largely from 
farming conditions. This result has a great impact, as it validates the use of controlled environments as proxies 
to what could be happening under farming conditions since the development of large-scale assays is often more 
expensive and challenging.

Analyses of similarities among communities made it possible to identify two main moments of microbiota 
development in the grower cycle (Fig. 3). First, the 3rd week, which was the first week of the experiment and 
coming right after the change made to the grower diet, is where the community seems to be more uniform and 
with a significantly higher abundance of bacteria such as Ruminococcaceae, Bacillales, Coprobacter, Hydrog-
enoanaerobacterium and Barnesiellaceae (Fig. 5) compared to Parasuterella and Flavobacteriaceae. Second, in 
the 4th and 5th week, there is a higher variation in abundance and diversity, which could be attributed to the 
change in diet. During those weeks, the microbiota becomes populated by Phascolarctobacterium, Desulfovi-
brionaceae, Megamonas, Odoribacter, Rikenellaceae and Alistipes. These bacteria could represent biomarkers of 
microbiota maturation under rearing conditions (altitude: 1230 m.a.s.l.; litter composition: ground; average of 

A

B

Figure 6.  Principal Coordinate Analysis (PCoA) representing the similarity of bacterial communities found in 
the cecum of broiler chicken treated with (phages) and without (controls) the bacteriophage cocktail, measured 
using the Bray Curtis metric. Axes represent the coordinates of the samples in Axis 1 and 2 of the corresponding 
PCoA plots. Blocks of samples are divided by dose day and nomenclature as described in Fig. 1. Upper panel 
display Trial 1 (A) and the lower panel Trial 2 (B). This figure was generated using Phyloseq package in R v 1.2.5 
(https:// www.r- proje ct. org/).

https://www.r-project.org/
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no. of chickens/m2: 13.86; average of area house in  m2: 645.61). Nevertheless, further studies are necessary to 
confirm the generalization of our current results to other farms and conditions.

Analysis of the core microbiome identified members that were reported previously in the literature as being 
part of the most abundant genera in the microbiome of chicken  cecum35. In one previous study, authors per-
formed a comprehensive day-to-day microbiome analysis of the chicken cecum from day 3 to 35 using experi-
mental chickens in a controlled environment. They identified the most abundant genera to be Escherichia, 
Shigella, Eisenbergiella, Ruminiclostridium, Flavonifractor, Anaerotruncus, Faecalibacterium, Lachnoclostridium, 
Megamonas, Intestinimonas, Shuttleworthia, Subdoligranulum, Tyzzerella, Lactobacillus, Blautia and Erysipel-
otrichaceae. We worked in a productive set up and found these genera in our core analysis (Table 3).

These commonly abundant members of the microbiota identified key players in the last stage of the produc-
tion cycle (Fig. 3) (Table 3). These microorganisms may be responsible for important metabolic processes in the 
intestines of broiler chickens. Among these, there are some important degraders of complex polysaccharides 
and producers of short chain fatty acids (SCFA). For instance, Eisenbergiella, Lachnoclostridium of the Lachno-
spiraceae family play an important role in the production of butyrate which is the preferred energy source for 
the gut epithelial  cells38. Another butyrate producer found in the core was Intestinimonas39. Megamonas and 
Bacteroides were detected as well; these bacteria are known to produce propionate as the main end product of 
the degradation of complex plant polysaccharides. Although propionate is a less preferred energy source than 
butyrate, its production might represent an efficient balance between energy acquisition from available nutri-
ents and sustained  growth37. Other bacteria present in the core microbiome involved in producing SCFA were 
Subdoligranulum, Faecalibacterium, Alistipes, Coprobacter, Blautia and Butyricimonas40.

On the other hand, Campylobacter, Helicobacter and Megamonas are bacteria carrying hydrogenases that 
can serve as hydrogen sinks that facilitate succinate  production41. Succinate is an important metabolite in both 
host and microbial  processes42. Meanwhile, the presence of Oscillibacter, a Clostridium cluster IV member, has 
been identified as an anaerobe producer of valerate and associated with diet-induced  obesity43. Surprisingly, 

A

B

Figure 7.  Relative abundance of Bacterial taxa significantly associated with the treatment. Results are 
discriminated by trial over time, shown as sampling point as in Fig. 1. Results are presented by Trial 1 (A) and 
Trial 2 (B). Control groups are depicted in salmon while treated groups are shown in blue. The body of the box 
plot represents the first and third quartiles of the distribution and the median line of abundance of all ASV 
assigned to the corresponding genera. The whiskers extend from the quartiles to the maximum or minimum 
data within 1.5× interquartile range, with outlayers beyond. ANOVA test P < 0.05 shows significant differences 
in microbial abundance of Butyricimonas before and after the dose of phages. This figure was generated using 
Phyloseq package in R v 1.2.5 (https:// www.r- proje ct. org/).
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Bifidobacterium, a butyrate producer, was not detected while it has been reported consistently as a dominant 
member of the chicken  microbiota35–37.

Comparison analyses between treated and control farmhouses must be conducted with caution, because 
of the conditions and characteristics of the current trials (variation of temperature, humidity, feed composi-
tion; the antibiotic intervention; and phage cross-contamination). However, some significant differences were 
observed. Particularly interesting is the evidence showing the reduction of Campylobacter in treated farmhouses. 
Campylobacter is considered an important food-borne pathogen associated with the consumption of poultry 
products and is of great importance in terms of public  health44. However, when this opportunistic pathogen is 
highly abundant in chickens, it has been demonstrated to cause damage to the  gut45. Furthermore, the correlated 
increase in Helicobacter abundance with the decrease in Campylobacter supports the proposal of a competi-
tive dynamic between these two  genera46. It is also important to mention that we showed that the Helicobacter 
present correspond to Helicobacter pullorum and not Helicobacter pylori, the latter of which could constitute an 
important human health risk. The increase of Butyricimonas and Rikenellaceae following treatment is noteworthy. 
These two genera are reported as beneficial bacteria in chickens due to their enrichment in samples treated with 
 probiotics47. The cause of this variation between farmhouses, and whether it is driven as an indirect effect of the 
phage treatment will required further validation.

Conclusion
This study characterized the development of the cecal microbial community in broiler chickens at a production 
scale. It showed a normal microbiota maturation process evolving to a higher diversity in the ceca of broilers. It 
also showed a stabilization of this microbiota at the end of the production cycle. Our analyses revealed that the 
core microbiome in broiler chickens contain key species such as Eisenbergiella and Lachnoclostridium that are 
important for the microbiota adaptation in the last stage of the production cycle. Our study further showed that 
the use of the SalmoFree cocktail didn’t had a significant effect in the maturation of the microbiome. Together, 
this study shows the feasibility of following the cecal microbiome under farming conditions in broiler chickens. 
However, due to the different variables affecting animals at a production scale, it remains challenging to test 
specific effects of further disturbances and treatments such as a phage cocktail.

Methods
Experimental design. This study was approved by the Institutional Committee on the Care and Use of 
Experimental Animals (CICUAL) at Universidad de los Andes, Ref. CICUAL 15-008, in the framework of 
Colombian Law 84/89 and Resolution 8430/93. We confirm that all experiments were performed in accordance 
with relevant guidelines and regulations, as well as in compliance with the ARRIVE guidelines (https:// arriv 
eguid elines. org).

Two field trials under commercial rearing conditions were carried out in a commercial broiler farm in 
 Colombia32. The farm belongs to an integrated poultry company that typically handles the entire poultry produc-
tion and processing cycle (hatching, feed, production, processing, and marketing).

Four production houses (labeled as houses 1, 2, 3 and 4) were selected based on the existing record of Sal-
monella presence detected during two previous production cycles (data not shown). Chickens in houses 1 and 
2 were treated with a control suspension (see below) whereas houses 3 and 4 were treated with the SalmoFree 
bacteriophage cocktail. Chickens from the treated houses were separated from the controls by a distance of 300 m 
approximately. The farmhouses contained an average of 13.86 chickens/m2 with an average area per house of 
645.61  m2. All animals were co-housed on the same day and at the same age. Animals were provided with water 
and feed ad libitum. Additional information about the size of the houses, breed line, sex, number of chickens, 
biosecurity protocols and antimicrobial therapy were previously published in Clavijo et al.32. Houses 1, 2, 3 and 
4 correspond to 4, 8, 9 and 10 in Clavijo et al., respectively.

The broiler production cycle in Colombia is carried out in two stages. The first stage comprises the period 
from which 1-day old chickens are received at the farm (day 1), until day 13–17. Chickens at this stage are fed 
with a starter diet. Following this diet, the grower stage in which the chickens receive a grower diet, spans from 
days 14–18 until day 35–42. Variations in the length of each period depend on several factors (market demand, 
weight of the chickens, schedule at slaughterhouse, among others). At the end of the second stage, chickens are 
sent to the slaughterhouse.

SalmoFree and the control suspensions were delivered to the animals in their drinking water during the 
grower stage in three doses (one a week): at the beginning (day 18 for both trials), in the middle (day 27 and 26 
for the first and second trial, respectively), and one day before slaughter (day 35 and 34 for the first and second 
trial, respectively) (Fig. 1). Between days 15 and 21 of the first trial, treated houses (3 and 4) received an emer-
gency antibiotic intervention (not planned within the experimental design). This intervention was performed 
by the veterinarian in charge due to the high rate of chicken mortality observed in house 4. Despite the fact that 
only house 4 showed high mortality, antibiotic was applied to houses 3 and 4 because the chickens came from 
the same egg batch (Fig. 1).

Phage and control treatment preparation. The methodology used is described in detail in Ref.32. 
Briefly, SalmoFree was prepared following a standard liquid lysate procedure using Salmonella Enteritidis 
 s25pp48. The strain was donated by Dr. Pilar Donado from the Colombian Integrated Program for the Antimi-
crobial Resistance Surveillance (COIPARS–CORPOICA). Salmonella Enteritidis s25pp was grown on nutritive 
agar (Sharlau) media for 18 h at 37 °C. The phage cocktail was prepared individually for each of the six phages in 
nutritive broth (Sharlau), using an MOI of 0.1 following the standard liquid lysate  procedure48. Each lysate was 
centrifuged at 4 °C at 13,000×g for 20 min and the supernatant was filtered through a 0.22-µm filter. Individual 

https://arriveguidelines.org
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phages were mixed to obtain a suspension of  1010 PFU/mL immediately before administering each treatment. 
Approximately 5.5L of each phage was produced per trial and stored at 4 °C. Quality control of the cocktail and 
concentration was verified as previously  reported32.

The suspension for the control treatment was prepared using a fully-grown Salmonella culture that was lysed 
by adding chloroform at a final concentration of 0.1% (v/v). The lysate was centrifuged at 4 °C at 13,000×g for 
20 min and filtered through a 0.22-µm filter. The final suspension was verified to be free of bacteria, by plating 
100 µL of the suspension on nutritive agar (Sharlau) and incubating it at 37 °C for 24 h. The absence of any type 
of growth was verified. This control allowed the estimation of whether the cell residuals found in a normal lysate 
have any effect on the observed results.

Delivery of the treatments to the animals. The drinking water supply was removed 30 min before 
administering the treatments. This is a regular practice in the poultry production applied in order to facilitate 
the uptake of any treatment due to the temporary shortage of hydration; it does not endanger the health of the 
chickens in any way. The water supply tanks from each farmhouse can store up to 1000 L of water. SalmoFree 
and control suspensions were added to these tanks in a 100:1 water to treatment ratio. Thus, the final concentra-
tion of the phage suspension was  108 PFU/mL. Treatments were delivered to the animals for 2.5 h, which is the 
time needed for the animals to drink the full 1000 L water supply. Due to the total number of animals in each 
house, it is impossible to administer the treatment individually or to guarantee that every animal received the 
same dose. However, adding treatments in the drinking water after a short fasting period is a common practice 
used in commercial farms for the application of other products such as vaccines, and probiotics among others.

Sampling methods. Cecum samples were taken 1 day before and one day after delivery of SalmoFree treat-
ments, as shown in Fig. 1. Samples were also collected 1 day before the start of the growing phase (day 15 and 
14 for the first and second trial, respectively) and at the abattoir, after the slaughter. For all sampling points, five 
female chickens from each of the four houses were randomly selected. These chickens were sacrificed and their 
ceca were removed in the most aseptic way possible on the farm. Each cecum was placed into a sterile plastic 
bag (Nasco, USA) and transported in liquid nitrogen to the laboratory where they were stored at − 80 °C until 
processed for DNA extraction. A total of 320 samples were collected corresponding to 160 per trial (5 ceca per 
house, per 4 houses, per 8 sampling days). Since sampling days occurred at different points of the growth cycle 
for Trial 1 and Trial 2 (Fig. 1), we renamed the samples according to each treatment dose, for ease of compari-
son. The sampling point corresponds to the number of doses (1–3) followed by a letter indicating whether it was 
taken one day before (b) or after (a) the corresponding dose.

In addition to the ceca samples, individual cloacal swaps samples were taken in order to detect Salmonella 
using a genus-specific PCR as described in Clavijo et al.32. Each individual swab corresponded to the same indi-
vidual chicken sacrificed for cecum extraction.

DNA extraction and 16S rRNA gene amplification. From ceca samples, 180–200 mg of the cecal con-
tent were aseptically collected in dry ice, making sure that the samples did not thaw. The samples were processed 
immediately using the QIAamp DNA Stool Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s 
instructions. Total DNAs were measured using a Nanodrop ND-1000 spectrophotometer (Thermo Scientific, 
Wilmington, USA) to assess the DNA quality and were quantified using a Qubit fluorometer (Life Technologies, 
Paisley, UK). After DNA quantification, samples were diluted with elution buffer (Qiagen, Hilden, GM) to a 
concentration of 5 ng/µL. The V4 hypervariable region of the 16S rRNA gene was amplified using the following 
primers:

Primer1 5′ TAC ACG ACG CTC TTC CGA TCT GTG CCA GCMGCC GCG GTAA 3′ and;
Primer2 5′ AGA CGT GTG CTC TTC CGA TCTG GAC TAC HVGGG TWT CTAAT 3′.

The bold region of the primers corresponds to the universal 515F and 806R primers. Each PCR reaction was 
set for 20 µL final volume and contained: buffer (1×), dNTPs (10 mM), Primer1 (10 µM), Primer2 (10 µM), Phu-
sion High-Fidelity DNA Polymerase (0.02 U/µL) and 1.5 µL DNA (7.5 ng on average). The temperature profile 
for the reaction was as follows: Initial denaturation 94 °C for 3 min; 30 cycles at 94 °C for 45 s, 56 °C for 30 s and 
72 °C for 30 s; and the final extension at 72 °C for 7 min. The PCR procedure was carried out in triplicate with 
a negative control in which water was added instead of the DNA sample. PCR products were visualized using 
Gelred through 1.5% (w/v) agarose gel electrophoreses. Finally, once amplification was confirmed, the PCR 
triplicates were mixed in one pool and kept at − 20 °C until further processing.

Libraries preparation and sequencing. Following the first amplification, a second PCR was carried out 
using a pair of primers containing the Illumina adapters and indexes, for bioinformatic demultiplexing of the 
samples. The sequences of the primers are as follows:

• Primer3: 5′ AAT GAT ACG GCG ACC ACC GAG ATC TACAC NNNNNNNNNACA CTC TTT CCC TAC ACG A
• Primer4: 5′ CAA GCA GAA GAC GGC ATA CGA GAT NNNNNNNNGTG ACT GGA GTT CAG ACG TGTG 

The underlined region corresponds to the location of a particular index (the sequences for all primers are 
presented in Table S1). Each sample was amplified with a pair of primers with a different sequence in this region 
in order to pool all the samples in the same sequencing run and demultiplexing them afterwards. The second 
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PCR was performed by adding 5 µL of the pooled product from the triplicate per sample of the first PCR to a 
mixture with 4 µL of water, 10 µL of GoTaq Green Master mix (Promega) and 0.5 µL of each Illumina index 
primer (0.25 µM) which was amplified using the following PCR conditions: 3 min at 94 °C, and 12 cycles of 45 s 
at 94 °C, 60 s at 55 °C and 30 s at 72 °C and a final period of 7 min at 72 °C and kept at 4 °C. PCR products were 
purified using 18 µl of AMPure beads (Beckman Coulter) and eluting samples with 15 μL of Tris buffer (10 mM, 
pH 8.5). The concentration of purified amplicons was determined with the Qubit fluorometer (Life Technologies, 
Paisley, UK) followed by pooling all the libraries into equimolar concentrations. Paired-end sequencing (2 × 250) 
of this pool was conducted on an Illumina MiSeq platform at Washington University in Saint Louis, Center for 
Genome Sciences and Systems Biology.

Bioinformatic and statistical analyses. Sequences were pre-processed, quality filtered and analyzed 
using QIIME2 version 2018.1149 (https:// qiime2. org) and its plugins. The input files used were the demulti-
plexed paired-end fastq files generated in Casava format (Illumina) and a mapping file. Raw sequencing data was 
imported and demultiplexed through the Casava 1.8 paired-end demultiplexed fastq protocol. Following this, 
adapters were removed using the cutadapt  plugin50 and subsequently the fastq sequences were merged using 
FLASH  software51. DEBLUR software  package52, included in QIIME2, was used for modelling and correcting 
Illumina sequences. This process integrates chimera removal, truncation of reads and the collapse of reads into 
Amplicon Sequence Variants (ASVs). All parameters were used by defaults except for read truncation: -p-trunc 
214. The method’s detection limit (1 ×  10–4) was established based the maximum number of rarefied reads per 
sample (10,000 per sample) implying that any ASV at an abundance of less than 1/10,000 will not be detected.

ASVs were filtered using QIIME2 q2-feature-table filter features command, keeping only features with a 
frequency higher than 10, in general corresponding to a minimum relative abundance of 0.001 and present in at 
least 2 samples. A second filtration was conducted retaining samples with more than 3000 sequences after ASV 
filtration. Taxonomy assignment to the ASVs was performed using QIIME2 q2-feature-classifier plugin and the 
Naïve Bayes classifier that was trained on the SILVA database (version SSUParc_100)53.

Alpha- and beta-diversity analyses were performed with the q2-diversity plugin at a sampling depth of 10,000. 
Alpha diversity was calculated using Shannon’s diversity index, observed OTUs and Faith’s Phylogenetic diversity. 
Kruskall–Wallis test was used to test for differences in mean alpha-diversity between experimental treatments 
and trial, farmhouse, genetic line, sampling point, and dose variables. Distance matrices for beta-diversity were 
constructed using Bray Curtis and weighted Unifrac metrics. Permutational multivariate analysis of variance 
(PERMANOVA, P < 0.05) using group significance command was used to analyze spatial variation in beta-
diversity and the effects of experimental treatments and the other variables. Unweighted Pair Group Method with 
Arithmetic Mean (UPGMA) clustering analysis based on Bray Curtis and weighted UniFrac distance was also 
used. Significant enrichment of taxa between the groups was assessed with the ANCOM test in QIIME2. Specific 
analyses were carried out by week, collapsing samples between cycle days 15–21 in week 3, days 22–28 in week 
4, and days 29–36 in week 5 (Fig. 1). The phyloseq  package54 in R was used to determine the core microbiome 
and to analyze the abundance of the predominant phyla over time.

Bioinformatic Salmonella analyses. Current taxonomical assignments are based on k-mer frequency or 
percent similarity to reference sequences for assignment; however, for closely related sequences, a conservative 
approach and assignment at a higher taxonomical level were employed for small variations. Given that none of 
the identified ASVs was assigned to the Salmonella genus, but several of them were annotated as Enterobacte-
riaceae family, the next step was to determine whether some of those ASVs in the feature file were closely related 
to Salmonella. For this purpose, a collection of reference Salmonella, Escherichia coli and Shigella 16S rRNA genes 
deposited in the NCBI Refseq collection were retrieved. These sequences (Table S2) were used along with the 
sequences of ASVs assigned to the Enterobacteriaceae family for multiple alignment using  MUSCLE55. Next, 
the alignments were manually inspected and edited using the sequence editor Jalview (version 2)56 to identify 
specific positions that discriminate the Salmonella group. A maximum-likelihood phylogenetic tree was then 
constructed using FastTree version 2.157 and visualized in  Figtree58. Based on this analysis, it was possible to 
identify the ASV that most likely corresponds to Salmonella.

A similar characterization of the ASVs assigned to Helicobacter was performed since some species of the 
Helicobacter genera are considered human or animal pathogens. These ASVs were aligned with the collection 
of Helicobacter 16S rRNA gene sequences deposited in the NCBI Refseq collection (Table S3) and the same 
procedure as above was performed.

Data availability
Sequence files and metadata for all samples used in this study have been deposited at the European Nucleotide 
Archive (ENA) (https:// www. ebi. ac. uk/ ena/) under the study Accession No. PRJEB32104. A record of all statisti-
cal analysis is included as Additional File 3. 
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