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Application of ensemble 
machine learning algorithms 
on lifestyle factors and wearables 
for cardiovascular risk prediction
Weiting Huang1,4*, Tan Wei Ying2,4, Woon Loong Calvin Chin1, Lohendran Baskaran1, 
Ong Eng Hock Marcus3, Khung Keong Yeo1 & Ng See Kiong2

This study looked at novel data sources for cardiovascular risk prediction including detailed lifestyle 
questionnaire and continuous blood pressure monitoring, using ensemble machine learning 
algorithms (MLAs). The reference conventional risk score compared against was the Framingham 
Risk Score (FRS). The outcome variables were low or high risk based on calcium score 0 or calcium 
score 100 and above. Ensemble MLAs were built based on naive bayes, random forest and support 
vector classifier for low risk and generalized linear regression, support vector regressor and stochastic 
gradient descent regressor for high risk categories. MLAs were trained on 600 Southeast Asians aged 
21 to 69 years free of cardiovascular disease. All MLAs outperformed the FRS for low and high-risk 
categories. MLA based on lifestyle questionnaire only achieved AUC of 0.715 (95% CI 0.681, 0.750) 
and 0.710 (95% CI 0.653, 0.766) for low and high risk respectively. Combining all groups of risk factors 
(lifestyle survey questionnaires, clinical blood tests, 24-h ambulatory blood pressure and heart rate 
monitoring) along with feature selection, prediction of low and high CVD risk groups were further 
enhanced to 0.791 (95% CI 0.759, 0.822) and 0.790 (95% CI 0.745, 0.836). Besides conventional 
predictors, self-reported physical activity, average daily heart rate, awake blood pressure variability 
and percentage time in diastolic hypertension were important contributors to CVD risk classification.
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Prevention of cardiovascular disease is based on the tenet that atherosclerotic disease occurs over time; risk 
factors and lifestyle are contributory, and appropriate modification can delay the onset of cardiovascular events. 
Previously established cardiovascular risk assessment models such as Framingham Risk Score (FRS)1, Systematic 
Coronary Risk Evaluation (SCORE)2 and QRISK2  score3 predict future risk based on well-established medical 
risk factors and pay little attention to lifestyle factors.

Recent studies highlighted the potential of lifestyle data in predicting cardiovascular  risk4. The INTERHEART 
study found that nine risk factors including smoking, history of hypertension or diabetes, waist/hip ratio, die-
tary patterns, physical activity, consumption of alcohol, blood apolipoproteins (Apo), and psychosocial factors, 
accounted for 90% of the population attributable risk for myocardial infarction in men and 94% in women. These 
suggest room to improve cardiovascular risk assessment by incorporating new factors such as physical activity 
status, lifestyle and dietary  habits5,6 alongside traditional risk predictors.

Prior studies have shown demonstrated increased cardiovascular risk from elevated blood  pressure7–9; the 
PAMELA study found that combining office, rest and ambulatory blood pressure help predict cardiovascular 
mortality up to an area under curve of 0.81. Risk modelling have also been done of dietary and lifestyle behav-
iour, although the frequency of the studies is lower due to the need to administer detailed, time consuming 
food frequency  questionnaires10. However due to the diverse data sources, and data types including time series, 
an integrated assessment tool combining lifestyle, diet, ambulatory physiological parameters, and clinical risk 
markers have not been performed to our knowledge.

Cardiovascular risk scores derived from traditional biostatistical methods such as logistic regression and Cox 
proportional hazard  models11–13 provide parsimonious interpretation. However, their strict assumptions such as 
homoscedasticity, distribution normality and relationship linearity tend to oversimplify complex relationships 
and limit  applications14. Machine learning algorithms (MLA) in  studies15–17 were able to overcome these statistical 
drawbacks and improve discriminatory performance over traditional models. More recently, ensemble modelling 
techniques have also gained popularity such as in prediction of heart  disease18,19, diabetes and  hypertension20 
cancer diagnosis and  classification21,22. An ensemble model combines the different MLAs into one predictive 
model. Compared to a single model, an ensemble model is more robust and offers higher goodness-of-fit and 
better prediction  accuracy23.

The aim of this paper is to investigate the additive value of four groups of risk factors, based on ease of infor-
mation availability and regular clinical workflow, (lifestyle survey questionnaires, clinical blood tests, 24 h ambu-
latory blood pressure and heart rate monitoring) using ensemble MLA, in cardiovascular risk prediction. Due 
to limitations of the traditional biostatistical models, we used an ensemble MLA technique to learn the complex 
and non-linear interactions amongst the different groups of risk factors. To date, the application of ensemble 
MLA on lifestyle factors and clinical variables for individualised CVD risk assessment remains underexplored.

Methods
Data source and study population. Data used in this study was drawn from a SingHEART prospective 
longitudinal cohort study (ClinicalTrials.gov Identifier: NCT02791152). The study is a multi-ethnic population-
based study conducted on healthy Asians, aged 21–69 years old without known diabetes mellitus or prior car-
diovascular disease (Ischemic heart disease, stroke, peripheral vascular disease). The study complied with the 
Declaration of Helsinki and written informed consent were given by participants. The study was approved by the 
SingHealth Centralized Institutional Review Board.

We included 600 volunteers, aged of 30 years with valid calcium score, into the main analysis of this study. Two 
hundred volunteers under the age of 30 years, who did not have a calcium score were excluded, as the calcium 
score was the main outcome of our analysis.

Subset analysis for activity tracker data was performed on 430 out of the 600 volunteers who had adequate 
data. Although subjects recruited were issued an activity tracker to be worn over a period of five days with first 
and last days of the study being partial days, there was inconsistent wearing of the activity. Discounting the partial 
days, each subject would yield an activity log for three complete tracking days (or equivalent to days with > 20 
valid hours of steps and sleep data)24,25. For data consistency and quality, subjects with improper activity tracker 
usage i.e. activity reading log less than five days and/or sleep reading log less than three days were censored.

Markers of CVD risk and outcome. Coronary artery calcium (CAC) scoring was used as the modelling 
outcome. The coronary calcium is a specific marker of coronary atherosclerosis, a precursor for coronary artery 
 disease26; it also reflects arterial age under the influence of underlying comorbidities and lifestyle. The CAC score 
was also regarded as the best marker for risk prediction of cardiovascular  events27,28.

This study stratified subjects into two classes of CVD risk. Low risk if their coronary artery calcium score 
were 0, and high risk if calcium score were 100 and above. Subjects who did not fall into these 2 categories were 
considered intermediate risk.

The aim of this study is to look at how accurate the machine learning algorithm is in handling different data 
types, in the task of predicting high risk and low risk patients, based on calcium score.

Data variables used for MLA: lifestyle survey questionnaires, clinical blood tests, ambulatory 
blood pressure and activity tracking data. Table 1 summarizes the data from SingHEART that was 
used in this study.

Data variables were categorized into four groups; lifestyle survey questionnaires, blood test data, 24-h ambula-
tory blood pressure, and activity tracking data by commercially available Fitbit Charge  HR29.

Data pre-processing, transformation and imputation were performed on the raw data. Variables selected 
were based on their a priori knowledge from previous publications on cardiovascular risk  assessment1–3, and 
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physician expert advice. In total, there were 30, 17, 12 and 16 unique variables in the respective groups: survey 
questionnaire, 24 h blood pressure and heart rate monitoring, blood tests and Fitbit data.

Framingham risk score (FRS) as the comparator. The Framingham 10-year risk score was computed 
using seven traditional risk factors: gender, age, single timepoint systolic blood pressure, Total Cholesterol (TC), 
High Density Lipoprotein (HDL), smoking status and presence of diabetes. A Framingham risk score of < 10% is 
consider low risk, while ≥ 20% is considered high  risk30.

Modelling pipeline. Figure 1 shows the methodological framework of the present study. Exploratory analy-
sis showed that ensemble MLA classifiers were superior at discriminating low risk individuals while ensemble 

Table 1.  List of risk factors used for prediction in this study.

Survey Questionnaire (Count: 30)

Demographics: Age gender, body mass index, race, single systolic blood pressure, single diastolic blood pressure, smoking history, waist and 
hip circumference
Medications: consumption of medication for BP and dyslipidemia (i.e. diuretics, ACE inhibitors, Calcium antagonists, HMG CoA reductase 
inhibitors)
Social-demographics: marital status, income, education, occupation,
Dietary preference: Cups of coffee, fruits serving, vegetable serving, alcohol consumption
Sleep quality: Sleep hours, sleep quality
Perception: Stress level, lifestyle active
Therapy: use of traditional/complementary medicines (i.e. traditional Chinese/Malay/Indian medicine, herbal remedies, acupuncture, chiro-
practic, vitamins, relaxation therapies, magnetic therapies, tai chi)
Medical history: diabetes mellitus, hypertension, hyperlidemia, heart attack, heart failure, other heart disease
Family history: ischemic heart disease

24 h ambulatory blood pressure and heart rate (Count: 17)

Average overall readings: systolic blood pressure, diastolic blood pressure, pulse rate, mean arterial pressure, heart rate
% Time ≥ Threshold for (H24, Awake, Nocturnal) readings: systolic blood pressure, diastolic blood pressure
Average real variability readings for (H24, Awake, Nocturnal): systolic blood pressure, diastolic blood pressure

Clinical blood variables (Count: 12)

ALT, AST, Albumin, CholesterolHDL, CholesterolLDL, CholesterolTotal, Creatinine, Glucose, Haemoglobin, Triglycerides, Urea, WBCCount

Physical activity and sleep trackers (Count: 16)

Calories burned, Steps, Distance, Floors, Minutes sedentary, Minutes lightly active, Minutes fairly active, Minutes very active, Activity calo-
ries, Minutes asleep, Minutes awake, Number of awakenings, Time in bed Minutes REM sleep, Minutes light sleep, Minutes deep sleep

Figure 1.  Modelling flow chart using ensemble MLA for cardiovascular risk prediction.
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MLA regressors performed better identifying individuals with high CVD risk. To leverage on the merits of both 
the classifiers and regressors MLA, we used both approaches for our model.

The ensemble classifiers produce a binary prediction outcome; low or non-low risk. The ensemble regressors 
makes a numerical prediction on the calcium score for individuals classified as non-low risk, and stratify into 
three bins of low, high, and intermediate risk. The predicted numerical values may range from negative to positive 
number. Negative predicted values were first converted to zero and subsequently the continuous predictions were 
converted to discrete bins using unique value percentile discretization ensuring records with the same numerical 
prediction are assigned the same risk category. Finally, the prediction outcome resides in a decision node build 
on a rule-based logic. The decision node assigns an outcome of low risk if classifiers predict an individual to 
be low in CVD risk, high risk if classifier predicts non-low risk and regressor predicts high risk. Patients with 
incongruent classifiers and regressor outcomes are considered unclassified.

The ensemble models in both classification and regression phase each fit three base learners (naive bayes 
(NB), random forest (RF) and support vector classifier (SVC) for classification prediction, and generalized linear 
regression (GLM), support vector regressor (SVR) and stochastic gradient descent (SGD) for regression predic-
tion). These base learners were chosen based on preliminary analysis, where these models showed efficiency in 
handling missing values and outliers.

The ensemble model then uses majority vote to determine the class label in classification phase. For the 
regression phase, the ensemble model averages the normalized predictions from the base regressor models to 
form a numerical outcome.

All models were trained on a stratified five-fold cross-validation. As SingHEART data had an imbalanced 
CVD risk distribution of risk based on the calcium score (low risk 63.4%, high risk 8.3%, intermediate risk 
18.7%) we oversampled the training set for the minority class labels to allow model to better learn features from 
the under-represented  classes31. The data were first partitioned into five mutually exclusive subsets, with each 
subset sharing the same proportion of class label as original dataset. At each iteration, the MLAs trained on four 
parts (80%) and validated on the fifth, the holdout set (20%). The process repeats five times, with five different 
but overlapping training sets. The resulting metrics from each fold were averaged to produce a single estimate.

To simulate access to the different variable groups as per clinical workflow and ease of information availability, 
we assessed the performance of individual variable group, and in combination as per the following:

Model 1: Survey Questionnaire.
Model 2: 24 h ambulatory blood pressure and heart rate.
Model 3: Clinical blood results.
Model 4: Model 1 + Model 2.
Model 5: Model 1 + Model 3.
Model 6: Model 1 to Model 3.
Model 6*: Model 1 to Model 3 with feature selection.
Model 7: Physical activity and sleep trackers (exploratory subset analysis).
Variables in model 6* were reduced using SVC recursive feature elimination with cross-validation (SVC-

RFECV) method to automatically select the best set of predictors that yield the highest area under Receiver 
Operating Characteristic curves (AUC). Model 1–6 were trained using 600 subjects.

We also performed exploratory analysis using MLA on the Fitbit Charge HR data (Model 7). Model 7 was 
trained on a subset of 430 subjects constrained by availability of valid activity tracking data.

Evaluation methodology and metrics. Since no single metric can objectively evaluate the cardiovascu-
lar risk prediction, we evaluate the performance of our models at CVD risk class level using a panel of metrics; 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F1-score and Area under 
Receiver Operating Characteristic curves (AUC). Overall discriminative ability of the model was described by 
the area under received operating characteristic curve (ROC). All AUC metrics were accompanied by 95% con-
fidence interval (CI) and standard deviation (SD).

To better understand the relative importance of different risk factors, we conduct a post-hoc approach to rank 
the variables by their contribution to CVD risk prediction. Feature importance were obtained from the SVC 
algorithm where the relative importance was determined by the absolute size of the coefficients in relation to 
others. All statistical analyses were conducted on Python version 3.7 environment and all MLAs and evaluation 
metrics were constructed using Scikit-learn libraries.

Results
Baseline characteristics. The SingHEART data consist of 800 anonymized individuals. After excluding 
cases no coronary calcium scan and other missing information, 600 subjects were used for this analysis. Tables 2, 
3, 4, 5 presents the demographics, lifestyle survey questionnaires, clinical blood test and activity tracking data 
characteristics stratified by CVD risk class. The p-values displayed are obtained by comparing low and high risk 
categories. Continuous variables are presented in mean values with ± standard deviations while variables are 
categorical responses are expressed in count and percentage.

The cohort had a mean age of 49.6 years (range 29 to 69 years) and 46% were males. All the factors in the 
Framingham Risk score were significantly different between the low and high-risk classes on univariate analysis.

In novel parameters such as 24 h ambulatory blood pressure and heart rate, higher measures and derivatives 
of blood pressure measurement were congruously associated with increased risk (p-value < 0.001). Patients with 
lower risk had a lower mean average heart rate.
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Model performance. AUC for 4 individual variable groups of survey questionnaires, clinical blood tests, 
24 h blood pressure and heart rate monitoring, and activity tracker all performed better than the conventional 
FRS for both low risk and high risk patients (p-value < 0.001). Of all the individual variable groups, survey 
questionnaires achieved the highest AUC score for both low risk (AUC 0.715 95% CI 0.681–0.750) and high risk 
(AUC 0.710 95% CI 0.653–0.766). Adding clinical blood tests to survey questionnaire did not improve AUC for 
both the low risk (p-value = 0.441) and high risk (p-value = 0.715) categories. Adding 24 h blood pressure and 
heart rate monitoring significantly improved the overall performance compared to the Model 1 using survey 
questionnaire only, with significant p-values of 0.01 for low risk and 0.005 for high risk groups.

Table 6 demonstrated the cross validated model performance, by evaluating sensitivity, specificity, positive 
predictive value, negative predictive value, F1 and AUC. FRS had high sensitivity (91.4%) and low specificity 
(32.9%) in detecting low risk individuals, and low sensitivity (3.7%) and high specificity (99.3%) in detecting 
high risk individuals. The MLA models achieved a better balance between sensitivity and specificity.

The continuous net reclassification of the lifestyle questionnaire survey variables over FRS in our popula-
tion were 18% for low cardiovascular risk prediction and 39% for high cardiovascular risk prediction. For the 
combined Model 6*, the continuous net reclassification over FRS were 25% and 119% for low and high risk 
categories respectively. Figure 2 shows the receiver operating curves comparing the various models in the low 
and high cardiovascular risk groups based on their CAC.

Conventional risk factor variables such as age, blood pressure readings, gender and family history of ischemic 
heart disease were the top ranking contributors to risk prediction in Model 1 (lifestyle survey). Other less con-
ventional but important contributors include self-assessed physical activity and sleep hours.

For Model 2, 24-h blood pressure and heart rate monitoring, percentage time of blood pressure > 120/80 mmHg 
appeared to be most important compared to other blood pressure readings. Average real variability of blood 
pressure during wake period and percentage time of nocturnal diastolic hypertension ≥ 70 mmHg were also 
featured by the model.

In Model 3, clinical blood test variables, conventional risk factor variables of glucose, AST, haemoglobin, 
albumin and cholesterol readings topped the feature importance ranking.

Table 2.  Demographics by risk categories.

Risk factors Total (n = 600)
Low risk (Agatston = 0) 
(n = 421)

High risk 
(Agatston >  = 100) (n = 55)

Intermediate risk 
(Agatston 1–99) (n = 124) *P-Values

Age 49.6 ± 9.2 47.02 ± 8.68 58.55 ± 6.55 54.39 ± 7.34 0.0000

Gender (Male 1, Female 0) 276 (46)% 155 (36.82)% 43 (78.18)% 78 (62.9)% 0.0001

Body Mass Index (BMI) 23.63 ± 3.72 23.59 ± 3.71 23.85 ± 3.63 23.7 ± 3.82 0.0000

Waist circumference 83.09 ± 11.01 82.38 ± 11.11 85.95 ± 9.71 84.24 ± 11 0.0000

Hip circumference 95.15 ± 9.82 95.37 ± 9.26 93.27 ± 14.54 95.21 ± 9.07 0.0000

Race

Chinese 561 (93.5)% 396 (94.06)% 51 (92.73)% 114 (91.94)% 0.0000

Indian 18 (3)% 10 (2.38)% 3 (5.45)% 5 (4.03)% 0.0000

Malay 10 (1.67)% 7 (1.66)% 1 (1.82)% 2 (1.61)% 0.0001

Others 11 (1.83)% 8 (1.9)% 0 (0)% 3 (2.42)% 0.9993

Income

 < $3000 235 (39.17)% 150 (35.63)% 25 (45.45)% 60 (48.39)% 0.5008

 ≥ $3000—$4999 146 (24.33)% 116 (27.55)% 14 (25.45)% 16 (12.9)% 0.0005

 ≥ $5000 219 (36.5)% 155 (36.82)% 16 (29.09)% 48 (38.71)% 0.0027

Occupation

Not working 115 (19.17)% 73 (17.34)% 14 (25.45)% 28 (22.58)% 0.0005

Blue-collar worker 32 (5.33)% 20 (4.75)% 4 (7.27)% 8 (6.45)% 0.0000

Pink-collar worker 45 (7.5)% 32 (7.6)% 2 (3.64)% 11 (8.87)% 0.0000

White-collar worker 404 (67.33)% 293 (69.6)% 35 (63.64)% 76 (61.29)% 0.0459

Other workers 4 (0.67)% 3 (0.71)% 0 (0)% 1 (0.81)% 0.9993

Marital status (Married 1, else 0) 473 (78.83)% 327 (77.67)% 52 (94.55)% 94 (75.81)% 0.0000

Highest education (at least university degree 1, else 0) 310 (51.67)% 225 (53.44)% 27 (49.09)% 58 (46.77)% 0.8927

Smoking history 48 (8)% 31 (7.36)% 8 (14.55)% 9 (7.26)% 0.0000

Alcohol consumption 59 (9.83)% 44 (10.45)% 6 (10.91)% 9 (7.26)% 0.0000

Medical history

Personal/family history of Diabetes Mellitus 201 (33.5)% 135 (32.07)% 15 (27.27)% 51 (41.13)% 0.0012

Personal/family history of Hyperlipidemia 110 (18.33)% 74 (17.58)% 9 (16.36)% 27 (21.77)% 0.0000

Personal/family history of Hypertension 275 (45.83)% 191 (45.37)% 22 (40)% 62 (50)% 0.1407

Personal/family history of ischemic heart disease 69 (11.5)% 44 (10.45)% 8 (14.55)% 17 (13.71)% 0.0000

Medication for BP and dyslipidemia 12 (2)% 2 (0.48)% 4 (7.27)% 6 (4.84)% 0.0000
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Table 3.  Self-reported lifestyle factors and 24 h blood pressure and heart rate monitoring data by risk 
categories.

Lifestyle factors Total (n = 600) Low risk (Agatston = 0) (n = 421)
High risk (Agatston >  = 100)
(n = 55)

Intermediate risk (Agatston 1–99)
(n = 124) *P-values

Coffee (number of cups per day) 0.98 ± 1.02 0.98 ± 1.03 1.07 ± 1.03 0.93 ± 0.97 0.0000

Fruits (servings per day) 1.32 ± 0.86 1.3 ± 0.9 1.31 ± 0.6 1.38 ± 0.83 0.0000

Vegetables (servings per day) 1.93 ± 0.95 1.94 ± 0.99 1.87 ± 0.77 1.9 ± 0.9 0.0000

Sleep Hours 6.57 ± 1.03 6.55 ± 1.03 6.4 ± 0.87 6.71 ± 1.07 0.0000

Sleep quality

Bad 7 (1.17)% 7 (1.66)% 0 (0)% 0 (0)% 0.9993

Fairly bad 53 (8.83)% 32 (7.6)% 9 (16.36)% 12 (9.68)% 0.0000

Fairly good 397 (66.17)% 281 (66.75)% 33 (60)% 83 (66.94)% 0.1407

Very good 138 (23)% 98 (23.28)% 13 (23.64)% 27 (21.77)% 0.0002

Stress Level 4.46 ± 2.14 4.6 ± 2.15 4.47 ± 2 3.98 ± 2.12 0.0000

Lifestyle Active 5.55 ± 2.26 5.29 ± 2.28 6.25 ± 1.99 6.11 ± 2.13 0.0000

Traditional medicine, Therapies and 
Vitamins 268 (44.67)% 187 (44.42)% 30 (54.55)% 51 (41.13)% 0.5008

24 Hours blood pressure monitoring

Systolic BP single reading 128.1 ± 17.25 124.91 ± 16.43 137.8 ± 13.14 134.61 ± 18.22 0.0000

Diastolic BP single reading 78.19 ± 12.92 76.21 ± 12.82 84.09 ± 11.14 82.26 ± 12.31 0.0000

Average daily systolic BP 116.59 ± 13.27 113.99 ± 12.29 125.09 ± 11.94 121.63 ± 14.1 0.0000

Average daily diastolic BP 73.93 ± 8.72 72.3 ± 7.94 79.18 ± 8.59 77.14 ± 9.54 0.0000

Average daily mean aterial pressure 
(MAP) 88.09 ± 9.36 86.24 ± 8.52 93.96 ± 8.73 91.73 ± 10.23 0.0000

Average daily pulse pressure (PP) 42.57 ± 7.3 41.57 ± 7.09 46 ± 5.79 44.46 ± 7.83 0.0000

Average daily heart rate (HR) 71.47 ± 8.59 71.33 ± 8.71 73.51 ± 8.39 71.03 ± 8.19 0.0000

% time awake systolic BP ≥ 135 0.18 ± 0.25 0.14 ± 0.22 0.34 ± 0.27 0.27 ± 0.3 0.0000

% time awake diastolic BP ≥ 85 0.23 ± 0.26 0.19 ± 0.23 0.37 ± 0.3 0.32 ± 0.31 0.0000

% time nocturnal systolic BP ≥ 120 0.23 ± 0.29 0.19 ± 0.27 0.42 ± 0.34 0.3 ± 0.32 0.0000

% time nocturnal diastolic BP ≥ 70 0.42 ± 0.32 0.37 ± 0.31 0.61 ± 0.31 0.52 ± 0.33 0.0000

% time average daily systolic BP ≥ 120 0.4 ± 0.31 0.34 ± 0.29 0.62 ± 0.26 0.5 ± 0.31 0.0000

% time average daily diastolic BP ≥ 80 0.31 ± 0.27 0.27 ± 0.24 0.47 ± 0.28 0.4 ± 0.31 0.0000

Awake systolic BP ARV 9.04 ± 2.12 8.66 ± 1.88 10.32 ± 2.23 9.75 ± 2.42 0.0000

Nocturnal systolic BP ARV 8.97 ± 3.11 8.77 ± 3.16 9.61 ± 3.28 9.35 ± 2.79 0.0000

Awake diastolic BP ARV 43.39 ± 7.48 42.32 ± 7.15 47.04 ± 5.96 45.43 ± 8.25 0.0000

Nocturnal diastolic BP ARV 40.92 ± 7.16 40.25 ± 6.98 43.43 ± 6.97 42.06 ± 7.51 0.0000

Average daily systolic BP ARV 8.87 ± 1.93 8.53 ± 1.78 10.03 ± 1.94 9.49 ± 2.09 0.0000

Average daily diastolic BP ARV 42.64 ± 7.14 41.67 ± 6.88 45.98 ± 5.79 44.46 ± 7.76 0.0000

Table 4.  Blood test variables by risk categories.

Blood tests Total (n = 600) Low risk (Agatston = 0) (n = 421)
High risk (Agatston >  = 100) 
(n = 55)

Intermediate risk (Agatston 1–99) 
(n = 124) *P-Values

Alanine aminotransferase (ALT) 21.38 ± 13.02 20.09 ± 12.05 28.13 ± 19.49 22.75 ± 11.59 0.0000

Aspartate transaminase (AST) 26.54 ± 8.33 25.57 ± 7.71 31.82 ± 12.43 27.5 ± 7.08 0.0000

Albumin 43.14 ± 2.36 42.96 ± 2.43 43.75 ± 2.15 43.45 ± 2.17 0.0000

Cholesterol high-density lipoprotein 
(HDL) 1.49 ± 0.34 1.5 ± 0.33 1.48 ± 0.35 1.47 ± 0.35 0.0000

Cholesterol low-density lipoprotein 
(LDL) 3.39 ± 0.83 3.29 ± 0.82 3.68 ± 0.83 3.6 ± 0.81 0.0000

Cholesterol total 5.43 ± 0.94 5.31 ± 0.91 5.8 ± 0.96 5.64 ± 0.94 0.0000

Creatinine 68.52 ± 15.72 66.39 ± 15.42 74.42 ± 16.49 73.13 ± 14.81 0.0000

Glucose 5.29 ± 0.69 5.21 ± 0.66 5.67 ± 1.05 5.41 ± 0.51 0.0000

Haemoglobin 13.64 ± 1.47 13.45 ± 1.5 14.26 ± 1.28 14.02 ± 1.31 0.0000

Triglycerides 1.18 ± 0.68 1.12 ± 0.65 1.42 ± 0.68 1.29 ± 0.73 0.0000

White blood cell count (WBC) 5.81 ± 1.6 5.86 ± 1.66 5.61 ± 1.27 5.74 ± 1.52 0.0000

Urea 4.45 ± 1.13 4.33 ± 1.1 4.63 ± 1.02 4.79 ± 1.19 0.0000
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In the exploratory analysis concerning activity tracking data, minutes in “fairly active” and “very active”, and 
sleep-related activity log particularly, minutes of REM and minutes of light sleep data were more important 
features than average daily steps, distance and floors.

Summing all the factors, age, medication for blood pressure and dyslipidemia, albumin, glucose, wake period 
diastolic hypertension, LDL cholesterol, self-reported physical activity were the top predictors across multiple 
models (see Fig. 3).

Discussion
This study looked at four groups of variables (survey questionnaires, clinical blood tests, 24 h ambulatory blood 
pressure and heart rate monitoring and activity trackers) and their association with CAC score, for cardiovascular 
risk classification. We designed our modelling approach by first examining the discriminatory performance of 
variables in readily accessible, self-reported survey questionnaire group, which did not require equipment or 
blood test. The incremental contribution to the models’ performance were examined by sequentially adding 
other groups of variables, simulating availability of information as per clinical workflow. This was compared to 
the traditional FRS framework.

Previous well-established risk scores such as  FRS1,  SCORE2 and QRISK2  score3 were mostly derived using 
traditional risk factors like age, total cholesterol, HDL, systolic BP, smoking and diabetes, excluding physical 
activity, lifestyle and dietary habits. In our study, we found the risk estimation derived from the FRS framework 
to be suboptimal with an AUC of 0.622 and 0.515 when applied on the Asian population of low and high risk 
profiles respectively. The moderate performance of FRS in our cohort corresponds prior published literature in 
primary care clinics in  Asia32, although some other larger cohort studies suggest higher areas under the curve of 
up to 0.76833,34. While traditional risk factors remain robust, we hypothesize that non-traditional, personalized 
risk factors such as dietary intake, physical activity and ambulatory blood pressure can contribute to individual 
cardiovascular risk assessment. Recent studies such as  CARDIA35 has demonstrated such potential, and we 
explored these novel variables using machine learning algorithms. Beyond enhancing individualised cardiovas-
cular risk prediction, this allows users to identify modifiable behavioural factors that can improve risk profiles.

In this healthy Asian ethic population, we found that variables from survey questionnaire achieved an AUC 
of 0.715 and 0.710 for individuals with low and high CVD risk respectively. Interestingly, we observed that the 
addition of clinical blood tests on top of survey questionnaire risk factors did not significantly enhance ensemble 
MLA’s ability in classifying low and high cardiovascular risk, with non-significant p-values when the combined 
model (Model 5) was compared to the survey questionnaire model (Model 1). This suggests that potential of 
designing MLA-based survey questionnaire that can be easily implemented, for risk stratification. The survey 
questionnaire, without need for blood tests is less cumbersome and can be implemented as a population-wide 
survey, to risk stratify patients. This finding complements the currently available health risk  appraisals36 which 
highlights health risk, but does not diagnose or risk stratify patients, which our current model can do. Our model 
can potentially vary risk outputs based on changes in lifestyle behaviours included within the questionnaires; 
this gives patients an actionable plan beyond medications, to reduce their cardiovascular risk.

The ideal cut-off for hypertension has been a constant  debate37–39 and our study revealed interesting predictors 
which requires further study. While in-clinic and self-measured blood pressure are single timepoint measure-
ments, they do not reflect the actual variability and time-in-range for blood pressure when a person is performing 
their activities. There has been varying results in the correlation of blood pressure with cardiovascular events 
and end-organ  outcomes40–42. However there has been supporting studies, suggesting that the blood pressure 

Table 5.  Fitbit Charge HR data by risk categories. *Compares between low risk and high risk categories.

Wearables Total (n = 600)
Low risk (Agatston = 0) 
(n = 421)

High risk 
(Agatston >  = 100) 
(n = 55)

Intermediate risk 
(Agatston 1–99)
(n = 124) *P-values

Calories burned 2161.41 ± 478.39 2102.27 ± 451.04 2447.03 ± 559.49 2213.68 ± 470.08 0.0000

Steps 9406.76 ± 3198.63 9207.3 ± 3170.53 10,274.93 ± 3326.31 9631.18 ± 3174.39 0.0000

Distance 6.52 ± 2.33 6.36 ± 2.34 7.18 ± 2.33 6.73 ± 2.24 0.0000

Floors 9.02 ± 7.44 8.99 ± 7.7 8.74 ± 6.75 9.26 ± 6.93 0.0000

Minutes sedentary 873.27 ± 120.03 881.41 ± 121.88 836.56 ± 112.48 864.75 ± 114.6 0.0000

Minutes lightly active 220.44 ± 64.78 219.02 ± 63.86 224.04 ± 69.9 223.37 ± 65.73 0.0000

Minutes fairly active 18.39 ± 17.48 15.62 ± 13.59 34.37 ± 27.21 19.53 ± 18.53 0.0000

Minutes very active 19.77 ± 19.56 17 ± 16.99 34.29 ± 28.56 21.67 ± 18.76 0.0000

Activity calories 943.78 ± 359.86 892.63 ± 337.24 1204.36 ± 448.75 982.18 ± 323.04 0.0000

Minutes asleep 447.4 ± 90.75 451.4 ± 90.18 452.61 ± 93.08 431.44 ± 90.7 0.0000

Minutes awake 37.19 ± 16.39 37.29 ± 15.95 35.6 ± 20.82 37.68 ± 15.42 0.0000

Number of awakenings 2.78 ± 2.91 2.77 ± 2.91 2.22 ± 1.31 3.12 ± 3.43 0.0001

Time in bed 485.65 ± 98.04 489.78 ± 96.68 489.23 ± 101.39 470.1 ± 100.36 0.0000

Minutes REM sleep 1.33 ± 7.52 1.17 ± 7.37 0.28 ± 1.85 2.42 ± 9.48 0.7914

Minutes light sleep 4.02 ± 21.58 3.41 ± 20.18 0.92 ± 6.14 7.61 ± 29.43 0.7492

Minutes deep sleep 0.92 ± 5.1 0.82 ± 5.05 0.14 ± 0.95 1.61 ± 6.33 0.8419
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Table 6.  Performance of conventional Framingham Risk Score and MLA models by variable groups in low 
risk categories.

Model 1: Survey questionnaire

Model 2: 24 h ambulatory blood pressure and heart rate

Model 3: Clinical blood results

Model 4: Model 1 + Model 2

Model 5: Model 1 + Model 3

Model 6: Model 1 + Model 2 + Model 3

Model 6*: Model 1 to Model 3 with feature selection

Model 7: Physical activity and sleep trackers

FRS Model 1 Model 2 Model 3 Model 4

Low risk

Sensitivity
(95% CI), SD

0.914
(0.891 0.936), 0.014

0.797
(0.765 0.829), 0.019

0.696
(0.66 0.732), 0.022

0.662
(0.622 0.699), 0.023

0.817
(0.783 0.848), 0.02

Specificity
(95% CI), SD

0.329
(0.27 0.387), 0.036

0.633
(0.573 0.695), 0.037

0.559
(0.497 0.619), 0.037

0.577
(0.514 0.635), 0.036

0.609
(0.548 0.671), 0.037

Positive predictive value
(95% CI), SD

0.762
(0.731 0.792), 0.018

0.836
(0.805 0.867), 0.018

0.788
(0.753 0.821), 0.021

0.787
(0.752 0.82), 0.021

0.831
(0.8 0.86), 0.018

Negative predictive value
(95% CI), SD

0.62
(0.536 0.706), 0.05

0.57
(0.513 0.626), 0.034

0.438
(0.386 0.492), 0.032

0.421
(0.367 0.472), 0.031

0.585
(0.526 0.649), 0.037

F1
(95% CI), SD

0.831
(0.81 0.852), 0.013

0.816
(0.791 0.84), 0.015

0.739
(0.71 0.766), 0.017

0.719
(0.688 0.748), 0.018

0.824
(0.798 0.847), 0.015

AUC 
(95% CI), SD

0.622
(0.592 0.653), 0.019

0.715
(0.681 0.75), 0.021

0.627
(0.593 0.662), 0.022

0.62
(0.583 0.655), 0.022

0.713
(0.678 0.747), 0.021

Model 5 Model 6 Model 6* Model 7

Low risk

Sensitivity
(95% CI), SD

0.793
(0.762 0.822), 0.019

0.814
(0.781 0.844), 0.019

0.821
(0.79 0.851), 0.019

0.764
(0.723 0.805), 0.025

Specificity
(95% CI), SD

0.666
(0.606 0.727), 0.037

0.615
(0.556 0.68), 0.037

0.761
(0.709 0.815), 0.032

0.634
(0.565 0.701), 0.041

Positive predictive value
(95% CI), SD

0.848
(0.817 0.879), 0.018

0.833
(0.802 0.862), 0.018

0.89
(0.863 0.915), 0.016

0.822
(0.784 0.858), 0.022

Negative predictive value
(95% CI), SD

0.577
(0.521 0.633), 0.034

0.583
(0.529 0.643), 0.035

0.643
(0.59 0.697), 0.033

0.549
(0.481 0.618), 0.042

F1
(95% CI), SD

0.819
(0.794 0.843), 0.015

0.823
(0.799 0.848), 0.014

0.854
(0.831 0.875), 0.013

0.791
(0.76 0.82), 0.018

AUC 
(95% CI), SD

0.729 0.714
(0.681 0.749), 0.021

0.791
(0.759 0.822), 0.019

0.699
(0.66 0.737), 0.024(0.695 0.765), 0.021

FRS Model 1 Model 2 Model 3 Model 4

High risk

Sensitivity
(95% CI), SD

0.037
(0 0.083), 0.025

0.637
(0.526 0.745), 0.065

0.526
(0.413 0.636), 0.068

0.472
(0.358 0.589), 0.07

0.654
(0.547 0.758), 0.063

Specificity
(95% CI), SD

0.993
(0.987 0.998), 0.004

0.783
(0.755 0.812), 0.017

0.739
(0.708 0.77), 0.019

0.749
(0.718 0.778), 0.018

0.803
(0.776 0.83), 0.017

Positive predictive value
(95% CI), SD

0.333
(0 0.714), 0.216

0.23
(0.177 0.289), 0.034

0.17
(0.126 0.217), 0.029

0.16
(0.112 0.208), 0.029

0.253
(0.194 0.311), 0.036

Negative predictive value
(95% CI), SD

0.91
(0.892 0.929), 0.012

0.955
(0.939 0.97), 0.01

0.939
(0.919 0.957), 0.012

0.933
(0.912 0.952), 0.012

0.958
(0.943 0.972), 0.009

F1
(95% CI), SD

0.065
(0 0.145), 0.044

0.337
(0.268 0.41), 0.042

0.256
(0.194 0.317), 0.038

0.238
(0.173 0.3), 0.039

0.363
(0.29 0.432), 0.043

AUC 
(95% CI), SD

0.515
(0.496 0.538), 0.013

0.71
(0.653 0.766), 0.034

0.632
(0.574 0.691), 0.035

0.61
(0.554 0.672), 0.036

0.729
(0.674 0.783), 0.033

Model 5 Model 6 Model 6* Model 7

High risk

Sensitivity
(95% CI), SD

0.655
(0.547 0.755), 0.063

0.726
(0.627 0.825), 0.06

0.82
(0.733 0.903), 0.053

0.776
(0.673 0.873), 0.061

Specificity
(95% CI), SD

0.787
(0.759 0.816), 0.017

0.805
(0.778 0.832), 0.017

0.761
(0.731 0.788), 0.018

0.776
(0.741 0.812), 0.021

Positive predictive value
(95% CI), SD

0.238
(0.186 0.296), 0.034

0.275
(0.217 0.335), 0.036

0.258
(0.208 0.315), 0.033

0.289

(0.229 0.355), 0.038

Negative predictive value
(95% CI), SD

0.957
(0.941 0.972), 0.009

0.967
(0.953 0.98), 0.008

0.977
(0.963 0.988), 0.007

0.967
(0.949 0.983), 0.01

F1
(95% CI), SD

0.348
(0.281 0.421), 0.042

0.397
(0.328 0.468), 0.043

0.392
(0.329 0.459), 0.041

0.42
(0.348 0.492), 0.045

AUC 
(95% CI), SD

0.721
(0.666 0.774), 0.033

0.766
(0.715 0.816), 0.031

0.79
(0.745 0.836), 0.028

0.776
(0.722 0.826), 0.032
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of 120/80 will be optimal in preventing adverse cardiovascular events, especially  strokes42–44. Our MLA models 
have identified that a greater percentage time in blood pressure < 120/80 is associated with a better cardiovas-
cular profile. This brings about a new concept of time in range, which is an increasingly important measure in 
 diabetology45, Our study suggests that time-in-range may be extrapolated to hypertension. Additionally, our 
study also indicated the importance of the daytime variability of blood pressure, which is increasingly recognised 
to be a marker of cardiovascular risk to be also an important contributor. This concept is supported by recent 
studies demonstrating association of increased variability with cardiovascular  risk46–48. Although current blood 
pressure monitoring devices are single time-point, future wearables may be able to provide the time-in-range 
readouts and diurnal variability, which were important components associated with atherosclerosis in our study.

The physical activity data in our subgroup also revealed interesting findings in that active minutes were more 
important than total step count in predicting coronary atherosclerosis. This suggests that achieving the required 
metabolic equivalents and target heart rate is more important than distance travelled or steps taken in line with 
physical activity guideline of achieving 150 min of moderate physical exercise per  week49.

Figure 2.  ROC curves for low risk group (left) and high risk group (right). Colours and line style represent the 
prediction performance for different models. Prediction performance for both low and high risk groups were 
significantly better in model 5* compared to FRS.

Figure 3.  The top 15 features of MLA models showing the relative importance of the different variables in CVD 
risk prediction. Age, glucose, cholesterol LDL, wake period blood pressure variability, medication for BP and 
dyslipidemia, triglycerides and albumin reading were some common predictors across the different versions.
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A practical application of our findings would be in terms of statin prescription, by being able to modestly 
discern low risk and non-low risk, defined as calcium score 0 and calcium more than 0. The American College 
of Cardiology suggests patients with zero calcium score on coronary arteries (very low risk patients) can defer of 
statin therapy in the absence of elevated cardiac risk of ≥ 20% in 10  years50. In this study, we found our ensemble 
MLA performed better than the Framingham risk score in identifying low risk individuals (p-value < 0.001).

While there have been numerous studies on CVD risk prediction, studies involving the application of ensem-
ble MLA on contemporary risk factors such as lifestyle and ambulatory physiological data on Asian population 
remains understudied.  In51, a study modelled on survey-based responses suggest promising findings in detec-
tion of cardiovascular risk patients. Our work extends previous findings by examining the predictive value of 
the different groups of risk factors and their combined effect to classify CVD risk among healthy asymptomatic 
individuals in Asian population. Another key contribution of our study is identifying novel risk factors which 
contributes to CVD risk classification. Our approach prioritizes on easily obtainable variables where inputs to 
the risk prediction models is not restricted to laboratory or other advanced cardiac imaging test for classifica-
tion of CVD risk; our models are versatile in that while providing more information helps refine risk prediction, 
simple health behaviour and lifestyle inputs can already provide a risk prediction. From a population health 
perspective, this helps create patient self-awareness of health status, and motivate higher risk patients to seek 
therapy early, thereby lowering health care expenditure in long run. This work therefore present opportunities 
for use of self-assessed questionnaire data as a preliminary low-cost option to screen healthy individuals for 
CVD risk. Finally, we also demonstrated the suitability of machine learned models when on applied on dataset 
with numerous potential predictors. The use of an ensemble modelling technique to synthesize the outcome of 
multiple base learners can increase model’s robustness and prevent overfitting.

Limitation and future work
In our subanalysis of physical activity Fitbit charge HR parameters, we found that data from such devices were 
unable to risk stratify patients with high confidence. We attribute the inconclusive performance due to relatively 
small sample size of patients with adequate Fitbit data, especially for patients in the high risk categories. Patients 
with high CVD risk accounts for 9.2% (55 out of 600) of the dataset in comparison to 70.2% (421) patients in low 
risk. Congruent with prior studies, we found associations between activity tracker determined physical activities, 
sleeping hours and sleep quality with cardiovascular  health52, but we will need a larger sample size study before 
such parameters can be reliably incorporated into a risk model.

Our study is limited by a smaller sample size of patient with high CVD risk defined as calcium score ≥ 100. 
Individuals with high CVD risk accounts for 20.1% (124) of the dataset in comparison to 70.2% (421) individuals 
in low risk. We addressed the class-imbalance problem with synthetic minority oversampling technique (SMOTE) 
by generating synthetic samples of the minority class. SMOTE will not only mitigates the problem of overfitting 
caused by random oversampling, it will also create more instances of the minority class for MLA to  learn53. We 
also performed only internal validation. This model is built on data from an Asian population, applicability to 
other populations will require further calibration. Additionally, we only assessed the performance of the model 
in high and low risk patients; this is due to the limited sample size and to prevent overfitting of the data. We will 
present this data after the completion of our prospective trial consisting of at least 2000 patients.

As an extension to current work, longitudinal follow-up information will be added enriched the dataset by 
examining the continuity of each variable across different time points. A prospective trial evaluating this model 
is planned to provide a larger sample size for learning and model evaluation. Deep learning frameworks capable 
of capturing the complex interactions while preserving the order and temporal elements of the multiple readings 
can be explored in place of MLAs for more accurate CVD risk classification.

Data availability
The datasets that support the findings of this study are not publicly available due to personal data protection and 
ethical reasons. The data can be made available and the corresponding authors may be contacted for access to 
data for an IRB approved collaboration.
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