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A digital twin auxiliary approach 
based on adaptive sparse attention 
network for diesel engine fault 
diagnosis
Jiajie Jiang1, Hui Li1, Zhiwei Mao 1*, Fengchun Liu2, Jinjie Zhang1, Zhinong Jiang1 & He Li1

Condition monitoring and fault diagnosis of diesel engines are of great significance for safety 
production and maintenance cost control. The digital twin method based on data-driven and physical 
model fusion has attracted more and more attention. However, the existing methods lack deeper 
integration and optimization facing complex physical systems. Most of the algorithms based on deep 
learning transform the data into the substitution of the physical model. The lack of interpretability 
of the deep learning diagnosis model limits its practical application. The attention mechanism is 
gradually developed to access interpretability. In this study, a digital twin auxiliary approach based on 
adaptive sparse attention network for diesel engine fault diagnosis is proposed with considering its 
signal characteristics of strong angle domain correlation and transient non-stationary, in which a new 
soft threshold filter is designed to draw more attention to multi decentralized local fault information 
dynamically in real time. Based on this attention mechanism, the distribution of fault information 
in the original signal can be better visualized to help explain the fault mechanism. The valve failure 
experiment on a diesel engine test rig is conducted, of which the results show that the proposed 
adaptive sparse attention mechanism model has better training efficiency and clearer interpretability 
on the premise of maintaining performance.

The diesel engine is an important power machine, which is widely used in ships, the military industry, nuclear 
power, and other fields. Because of its compact structure, complex motion, and poor working environment, the 
probability of failure is relatively high. If the equipment fails, it will often cause serious safety losses and a lot of 
maintenance  costs1. Therefore, it is very necessary to study the health evaluation and fault diagnosis of diesel 
engines.

In the past decades, diagnosis methods based on mechanical vibration data have been widely used in the 
 literature2. Traditionally, signal analysis and processing methods such as time-domain  analysis3, frequency-
domain  analysis4, time–frequency  analysis5,6 can be used to process vibration signals to achieve the purpose 
of fault diagnosis. However, the above methods rely heavily on fault mechanism and signal processing related 
professional knowledge and rich experience, which are difficult to deal with complex mechanical equipment 
systems under variable working conditions. The data-driven intelligent fault diagnosis method can not only 
effectively and quickly process mechanical signals, provide accurate diagnosis results, but also doesn’t need too 
much professional knowledge. Therefore, the deep learning algorithm, one of the most popular data-driven 
methods, has attracted more and more attention in the research of fault  diagnosis7–10.

Although deep learning has achieved phased results in the field of fault diagnosis, data-driven methods rely on 
statistical models to determine the health status of the system. When the historical data is insufficient or the oper-
ating environment changes suddenly, it may not be enough to perform the health monitoring task. Therefore, the 
digital twin concept of data-driven and physical model integration has gradually attracted extensive attention in 
the industrial  field11–13. Complex physical systems are often difficult to establish an accurate mathematical model, 
and it is impossible to evaluate their state and control optimization by analyzing. Digital twin uses data-driven 
methods to update, modify, connect and supplement the mathematical models by adding the historical and real-
time operational data of the system. Integrating the system mechanism and operational data can better evaluate 
the system dynamically in real time. However, the existing methods lack deeper integration and optimization. 
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Most of them convert the data into the substitution of physical models based on complex algorithms such as deep 
learning. The interpretability of the models is insufficient and it is difficult to deeply describe or characterize the 
mechanism of the  system14. This greatly limits the application and development of the digital twin method in 
the industrial field. Therefore, some researchers try to add attention mechanisms to the network, exploring the 
relationship between the data in the model and the output process and basis of the network.

At present, attention mechanism has been widely and successfully applied to research tasks such as image 
caption  generation15,16, document  classification17,18, speech  recognition19,20, text  translation21,22. For example, Xu 
et al.15 revealed the corresponding relationship between words and images through the attention mechanism. 
Yang et al.17 proposed the hierarchical attention structure of ’word sentence article’, finding the dependence on 
sentences and words in the text in the process of documents classification. Chan et al.19 illustrated the alignment 
process between audio signals and characters in the network by applying the attention mechanism. Vaswani 
et al.21 created the self-attention structure of named transformer, which visualizes the relationship between any 
two words of all in the text translation and clarifies the syntax of sentences. In the field of fault diagnosis, Li 
et al.23 assisted the deep network in locating effective information data segments by introducing an attention 
mechanism. Yang et al.24 employed a neural network model combining convolutional neural network, gated 
recursive unit, and attention mechanism, explaining the feature extraction process of the neural network on 
bearing data set. Zhao et al.25 generated a soft threshold by the attention mechanism in the deep network to filter 
information in the channel, which filters out the unimportant feature information and significantly improves 
the anti-noise performance. These deep networks can be integrated into digital twin systems to improve model 
reasoning and decision-making26,27.

Most of the above attention mechanisms can be classified as global attention mechanisms according to Ref.28. 
The global attention mechanism considers all sequences in the data. On the one hand, the network disperses the 
attention weight of each sequence and reduces the interpretability. On the other hand, it increases the computing 
cost and affects the computing efficiency of the network. Especially for long sequence data, it will significantly 
lead to the decline of network  performance29. Accordingly, Luong et al.28 put forward the local attention mecha-
nism. The network no longer pays attention to the global sequence, but only focuses on the nearby region of the 
target sequence, which has the lower computational cost. However, the local attention mechanism ignores the 
impact of non-adjacent sequences on the results, whose limitations are  obvious29. Xue et al.29 further proposed 
the gated attention mechanism, in which the backbone attention network is a network containing the global 
attention mechanism. Then the binary gate is generated through the auxiliary network to dynamically select the 
concerned sequence into the backbone attention network. However, the auxiliary network in Ref.29 will expand 
the network scale to a certain extent. At the same time, there is also the problem of gradient disappearance for 
long sequences, which harms the generation of attention gating.

Due to the design of timing gear train and the existence of ignition impact, the signal of diesel engines has 
the characteristics of periodicity, transient and non-stationary2. The angular domain signal has a strong cor-
relation with the crankshaft phase, resulting in a considerable part of the signal is redundant for fault diagnosis. 
Compared with the signals of gears and rolling  bearings2, the key frequency information is difficult to capture, 
which brings difficulties to the further development of diesel engine fault diagnosis.

To solve the above problems, inspired by the idea of soft threshold filtering in Ref.25, this paper is no longer 
limited to the internal characteristics of the sequence but extends to sequences processing. Then build the 
binomial distribution function following the principle of backpropagation with the method in Ref.30. Further, 
propose A digital twin auxiliary approach named adaptive sparse attention network (ASAN). The network 
mainly makes use of the advantages of convolutional neural networks in complex signal feature extraction and 
the processing ability of bidirectional cyclic neural networks in sequence data, combined with an adaptive sparse 
attention module on this basis. The sparse attention module dynamically generates attention weights for each 
sequence data and adaptively calculates a soft threshold that is used to filter the sequence weights in real time. 
In this way, the reserved sequences are not limited to only one region but also fewer sequences are transferred 
to the next layer of the network, thus achieving the purpose of sparse attention. The proposed ASAN method 
reduces the computational cost of the global attention method and increases the training efficiency of the net-
work, improving the network performance compared with the local attention method. At the same time, this 
method also has better interpretability, which can further explore the interval of fault signal characteristics and 
study the fault signal mechanism. In the face of other faults, the model can be further updated and  optimized31 
according to the real-time data.

The main contributions of this paper are as follows:

(1) A new digital twin auxiliary approach named adaptive sparse attention network (ASAN) is proposed, which 
uses a soft threshold to dynamically select the data sequences that need attention in real time. It avoids 
iterative calculation of redundant sequences and reduces the calculation cost of the network, allowing the 
model to focus on more important sequences in the data and improves the interpretability.

(2) The effects of independent and shared convolution parameters on the network are compared. It is found 
that the convolution parameters of each sequence independently set in three different input modes (angular 
domain, frequency domain, envelope spectrum) can significantly improve the performance of the model 
and enhance the generalization ability of the network.

(3) Fault simulation experiments including different valve conditions under three loads are carried out on a 12 
cylinder diesel engine in the laboratory, and the effectiveness of the proposed algorithm is verified. On the 
premise of maintaining the performance of the model, the proposed algorithm has better training efficiency 
and interpretability, which can locate the range of fault characteristics and reveal the expression of signal 
characteristics. Then it lays a foundation for fault feature extraction and fault diagnosis in the next step.



3

Vol.:(0123456789)

Scientific Reports |          (2022) 12:675  | https://doi.org/10.1038/s41598-021-04545-5

www.nature.com/scientificreports/

Proposed model (ASAN)
To locate the information segments closely related to different states of the diesel engine, the attention mechanism 
is used. Considering the sequence feature redundancy of diesel engine signal, an adaptive sparse attention model 
is further proposed. In addition, we visually display the attention weight distribution of the input samples to 
explore whether the decision-making process of the model is consistent with human experience. The proposed 
model and fault diagnosis process of digital twin is shown in Fig. 3.

Convolution layer. Convolutional neural networks (CNNs) are specially designed to deal with complex 
signals. In the past few years, a large number of  studies32,33 have been based on the characteristics of CNN’s local 
receptive field, weight sharing, and spatial subsampling, so that the data information has the ability not to be 
affected by scale, displacement, and distortion. In this study, 1DCNN is used to extract the features of vibration 
signals.

Firstly, segment the data. Suppose that the input sequence data after segmentation is x = [x1, x2, . . . , xN ] , 
where N is the length of the sequence, that is, the number of segments. The convolution operation on each 
sequence can be defined as follows:

where b and ϕ represent bias term and nonlinear activation function respectively. The output zi of the convolu-
tion layer is obtained by sliding the convolution kernel w from the first point to the last point of xi , which can 
be regarded as the feature learned by the convolution kernel on the corresponding sequence xi . In addition, 
multiple convolution kernel stacking operations with different lengths can be applied in the convolution layer.

After that, the pooling layer needs to be applied to the output features generated by the convolution layer. 
On the one hand, pooling can extract the most important local information in each feature map. On the other 
hand, this operation can significantly reduce the feature dimension. In this paper, the maximum pool function 
is used. Each sequence pooling operation can be represented as follows:

where g is the length of the pooled window, pi represents the output of the ith sequence feature after the pooled 
operation, and s represents the dimension. Multiple convolutions and pooling operations improve the learning 
ability of CNNs. At the same time, the network structure of multiple CNN layers can extract the low-dimensional 
and high-dimensional features of the original data. Reasonably setting parameters of CNN networks can make 
it better learn fault diagnosis knowledge.

Bidirectional LSTM layer. The long short-term memory architecture (LSTM) can prevent the gradient 
disappearance of backpropagation to a certain extent, which is often used to model the dependence between 
long  sequences34.

Figure 1 illustrates the calculation flow of an LSTM memory unit. At each time step, the computing unit is cut, 
written, and cleared through several gates to control the transmission of information along the data sequence, 
which enhances the learning ability of the model to capture the characteristics of long sequences. When a new 
input enters the unit, if the input door is opened, its information will accumulate to the unit. If the forgetting gate 
ft is activated, the output state ct−1 of the previous computing unit will be forgotten. The output gate ot controls 
whether the latest cell output ct is transferred to the hidden layer state ht . In this study, the mainstream LSTM 
algorithm in Ref.35 is adopted, and the calculation in the unit is as follows:
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Figure 1.  LSTM memory unit.



4

Vol:.(1234567890)

Scientific Reports |          (2022) 12:675  | https://doi.org/10.1038/s41598-021-04545-5

www.nature.com/scientificreports/

where σ is the sigmoid activation function, whi represents the transformation matrix from the hidden layer to 
the input gate, wxc represents the transformation matrix from the input state to the output gate. Accordingly, 
other subscripts and so on.

Although LSTM solves the problem of the disappearance of the sequence gradient to some extent, it can 
not be avoided completely, which leads to more attention to the sequence information behind it. Therefore, if 
LSTM can pay attention to both front and back sequences, the neural network is expected to obtain a better 
understanding of signals.

Bidirectional LSTM can solve the above problem by dividing the hidden layer into two parts: forward hid-
den sequence 

−→
h  and backward hidden sequence 

←−
h  . The output layer can be updated through the following 

iterative process:

Adaptive sparse attention layer. This section details the structure of the adaptive sparse attention mod-
ule and the source of the method. The feasibility of backpropagation is simply proved.

Classic attention mechanism. The attention mechanism is inspired by the brain’s ability to solve overload infor-
mation. In recent years, this method has been successfully applied in a wide range of tasks.

In order to locate the data information, the original input x is divided into N segments. Then the high-
dimensional feature r extracted by the network is used as the input of the attention module. The vector ri is a 
high-dimensional representation of the ith segment.

The attention mechanism generates a positive weight αi for ri , which represents the importance of the cor-
responding data segment in the generation of the final result. αi can be calculated by an attention model fatt with 
ri as input and a softmax function.

fatt can be a simple attention model, that is, a layer of neural network. When the attention weight of each 
segment is generated, the enhanced representation vector v of the whole input data can be obtained:

Then, you can use v as a high-level representation of x for further diagnosis. The network output using the 
softmax regression function is interpreted as the probability of each category, which is the result of the final fault 
classification diagnosis.

where Wf  and bf  are the corresponding weight matrix and bias term respectively. It should be pointed out that 
the mechanism here is a typical method for learning the attention of neural networks. Similar attention methods 
are often used in other research  tasks23.

Adaptive sparse attention structure. The proposed adaptive sparse attention is a variant of attention, which 
uses a soft threshold to remove unimportant sequence features. The soft threshold is inserted into the network 
structure as a nonlinear conversion layer. In addition, the threshold can be learned adaptively in the network. 
The specific process is described as follows:
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As shown in Fig. 2b, this is an adaptive sparse attention structure. Different from the typical attention struc-
ture in Fig. 2a, it has a special module for estimating the threshold, in which the sigmoid function is used for the 
attention layer to scale the scaling parameters to the range of (0, 1), so as to obtain a preliminary threshold. The 
scaling process can be expressed as follows:

where z is the output of the attention layer in the network, which is a one-dimensional vector. α is the corre-
sponding scaling parameter. Then, the scale parameter α is multiplied by the maximum value of the attention 
layer to the threshold. This arrangement takes into account that the threshold not only needs to be positive but 
also can not be too large. If the threshold is greater than the maximum absolute value of the attention layer, the 
output of the adaptive sparse attention is zero. To sum up, the threshold used by adaptive sparse attention is 
expressed as follows:

where τ is the final threshold. In this way, the threshold can be kept within a reasonable range, and the output of 
the adaptive sparse attention will not be all zero.

Then, the output of the attention layer is filtered through the threshold. This study refers to Ref.30 to construct 
the mask function for filtering. The sigmoid function with simple structure and easy transformation is selected. 
The mask function is as follows:

where relu is a commonly used activation function, which directly sets the negative number to zero and retains 
the positive number. If a is large enough, b takes 0.618. When (z − τ ) > 0 , the output result of f (z) approaches 1. 
When (z − τ )= 0 , the output result of f (z) approaches 0 but is greater than 0. This can prevent the gradient disap-
pearance caused by relu . When (z − τ ) < 0 , the output result of f (z) is equal to 0. In this study, a was set to 50.

Finally, the filtered output and the output of the attention layer are recalculated by the softmax function to 
reconstruct the attention output. The calculation method is shown in the following formula:

where Nseg is the number of sequences and newzi is the output of the sparse attention module (Fig. 3).
At the same time, this method conforms to the theory of reverse propagation. First, we can simplify the 

derivative equation as follows:

loss′(τ ) is proportional to f ′(τ ) . In optimization problems, τ increases if loss′(τ ) < 0 and decreases otherwise. 
f ′(τ ) represents the partial derivative of the mask function to τ , which can be expressed by piecewise function:

When τ approaches z , f ′(τ ) < 0 . According to Eq. (20), loss′(τ ) < 0 , then τ will iterate in the increasing direc-
tion. If τ is given a small initialization and the distribution of z is limited, as τ increases away from the smaller 
value and maintains a certain distance from the larger value, f ′(τ )=0 and loss′(τ )=0 , τ will not change. And its 
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Figure 2.  The change of adaptive sparse attention structure.
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iterative process will be temporarily stopped. The case of f ′(τ ) > 0 is not considered here, because when τ is 
reduced, the filtered components in z are reduced and the sequence entering the next step is increased, which is 
contrary to the original intention of the proposed algorithm (filtering sparseness as much as possible).

So, we constrained the iterative direction of τ , either increasing or stopping. At the same time, in order to 
limit the distribution of z and obtain reasonable results, the loss function is reconstructed as  follows30:

where s represents the output of each attention layer, Y (s) and Y∗ respectively represent the predicted label vector 
and the real label vector from specific attention layers. Lcls represents the cross-entropy loss of classification to 
ensure the accuracy of each layer’s attention output. In addition, the latter part of Eq. (22) is sorting loss, where 
p
(s)
t  represents the prediction probability of the network corresponding layer on the correct category label t  . 

And p(1)t +margin ≤ p
(2)
t  is forced in training. This design ensures that the soft threshold filtering operation 

makes the network iterate in a better direction, which makes the generation of sparse attention more convinc-
ing. margin takes 0.05 here.

The proposed adaptive sparse attention method will generate a soft threshold to obtain attention filtered out-
put. The threshold is learned automatically in the depth architecture, not manually set by experts. Therefore, this 
method does not need the professional knowledge of signal processing, which has a certain positive significance 
in the face of difficult fault diagnosis and interpretability.

Relevant parameters of the proposed network are shown in Table 1.
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Figure 3.  Fault diagnosis process of digital twin based on adaptive sparse attention network.
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Experimental study
Experimental device and scheme. The test bench is a TBD234V12 direct injection diesel engine, whose 
key parameters are shown in Table 2. Vibration acceleration sensors are installed on the cylinder head of each 
cylinder to obtain its vibration signal. Eddy current sensors are installed in the radial and axial directions of the 
flywheel connected to the crankshaft to obtain the instantaneous speed signal and key signal respectively. The 
test data is collected through the BH5000E monitoring system. The main structure and layout of the test bench 
is shown in Fig. 4. The parameters of the acceleration sensor are shown in Table 3. The cylinder head vibration 
acceleration sensor is connected with the base by double studs, and the base is connected with the cylinder head 
surface by the adhesive. The data collector of the BH5000E has a 24-bit analog-to-digital converter (ADC) reso-
lution, a maximum sampling rate of 102.4 KS/s per channel and 32 analog input ports. The collected signals are 
processed by a server with 16 GB RAM and a 3.10 GHz Intel i7 processor.

As one of the main motion mechanisms, the valve train of diesel engine often has the fault from abnormal 
increase of valve clearance due to wear and other reasons, which results in economic losses. The test takes the 
abnormal inlet and exhaust valve clearance as the target fault. Under the cold state of the unit, the exhaust valve 
clearance of cylinder A4 is changed by adjusting the bolt. The clearance is set quantitatively with the help of the 
feeler gauge. And the test is carried out under different working conditions.

Table 1.  Network parameter settings.

Parameter Value

Training epochs 300

Learning rate 0.001

Conv1 kernel size 8

Conv1 kernel length 3

Conv2 kernel size 16

Conv2 kernel length 3

LSTM hidden units 16

Table 2.  Key parameters of TBD234V12 diesel engine.

Number of cylinders Compression ratio Idling/rpm Structural style Firing order

12 15:1 650 V type 60° B1-A1-B5-A5-B3-A3-B6-A6-B2-A2-B4-A4

Diesel engine

Hydraulic

dynamometer

Data collector

Server Cylinder head Valve structure

Acceleration

sensor

Valve clearance

Figure 4.  Layout of fault simulation test bench and sensor.
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Data description. Vibration data of valves in different conditions under three loads were collected during 
the test. There were 6 working conditions in total. The detailed working condition settings are shown in Table 4. 
The speed of the diesel engine is 1500 rpm and the sampling frequency is 51,200 Hz. The TBD234V12 diesel 
engine is a four-stroke diesel engine. The crankshaft rotates for 2 cycles, that is, 720° is a period. Therefore, the 
single-period data points of the test diesel engine should be 51,200/(1500/60) × 2 = 4096. In this paper, samples 
with different numbers of periods are selected according to different input signals, which are normalized. The 
training set, verification set, and test set are divided according to the ratio of 6:2:2.

The collected time-domain signal is shown in Fig. 5. Taking the vibration signal of cylinder A1 as an example, 
the impact closely related to cylinder action is ignition, exhaust valve opening, intake valve opening, exhaust 
valve closing and intake valve closing in turn. The starting point (0°) of each cylinder signal period is the firing 

Table 3.  Parameters of the accelerometer.

Performance specification Unit Accelerometer

Voltage sensitivity mV/g 10

Frequency range (± 5%) Hz 1–10,000

Frequency range (± 10%) Hz 0.4–16,000

Natural frequency Hz 42,000

Amplitude range  ± g pk 500

Residual noise g rms 0.0003

Mechanical shock limit  ± g pk 5000

Temperature range °C − 55 to 125

Amplitude linearity % ± 1

Table 4.  Setting of experimental conditions.

Engine speed/rpm Load/N m Exhaust valve clearance/mm Experimental marking

1500

0
0.5 N0

0.9 F0

400
0.5 N400

0.9 F400

800
0.5 N800

0.9 F800

Figure 5.  Acquired time and frequency domain signals.



9

Vol.:(0123456789)

Scientific Reports |          (2022) 12:675  | https://doi.org/10.1038/s41598-021-04545-5

www.nature.com/scientificreports/

TDC of cylinder B1. It is inferred that the firing phases of each cylinder are distributed according to the firing 
order spacing of 60°. The corresponding frequency-domain signal is shown in the figure, which is obtained by 
the Fourier transform directly from the time-domain signal in multiple periods.

Since the fault is only set in single cylinder A4, other cylinders are normal and the signal difference is weak. 
It is a more difficult task to diagnose the valve failure of the diesel through other normal cylinders. Therefore, the 
dataset contains a total of 6 cylinders from A1 to A6 to enhance the difficulty of fault diagnosis and classification. 
In addition, because the ignition phase of each cylinder in the operation of the diesel engine is different, it can 
not meet the input form requirements of the model. So the ignition phase of each cylinder is uniformly adjusted 
to align with the ignition of cylinder A1 in the data set, that is, the phase of firing TDC is near 60° relative to 
the firing TDC of cylinder B1 (0°). This paper mainly studies the fault of the exhaust valve, so the valve in the 
following text refers to the exhaust valve if there is no special description.

Comparison of input methods. Angular domain. Firstly, the collected original mechanical vibration 
signal is directly converted to the angular domain as the model input to test the effect of the model in the an-
gular domain. The time-domain signal is converted into the angular domain through instantaneous speed. The 
process is as follows:

where, ωins is the instantaneous speed converted by the tooth spacing of the gear, and the integral of the instan-
taneous speed to time is the crankshaft angle angle at the current time.

In the diesel engine angular domain data set, single-cylinder A4 data that is a period sample is used as input. 
The input points are 4096 and marked data Ntrain = 30 for training. Due to the design of the timing gear train, the 
cylinder head vibration has a strong correlation with the crankshaft angle. Although the signal is non-stationary 
in the time domain, it is invariant in the angle domain, which lays a foundation for the generalization of the 
model signal segmentation. At the same time, further considering the period of angle domain waveform, to avoid 
obvious impact waveform segmentation of the signal, the data is adjusted as follows as a preprocessing method:

where x is the original signal, H is the Hilbert transform, x̂ is the module length of the original signal after Hilbert 
transform. x̂ obtains the signal s through the smoothing function slide , and ti is the abscissa phase correspond-
ing to the maximum point of s . ni is the center phase of the segmented region closest to ti . θ is the initial phase 
of the angular domain signal. When the distance between ti and ni + θ is the smallest, It can be considered that 
the signal adjustment is appropriate. Here, when the number of segments n is 16, the initial phase θ is − 10°. It is 
generally believed that the features are hidden in the impact. Retaining the complete impact waveform is more 
conducive to the feature extraction of the model.

The mechanical vibration signal of diesel engines’ valve failure and different loads are intuitive. Generally 
speaking, the obvious change of valve impact amplitude and phase indicates that the valve fails, and the ignition 
impact of diesel engines will increase with the increase of load. Figure 6 shows the normalized average value of 
attention weight learned by the model for each working condition sample of the diesel engine data set. Figure 7 
shows the visual attention weight of each working condition sample, where color indicates the size of attention 
weight and red represents the high level (Figs. 8, 9).

It can be observed from Figs. 6 and 7 that the network mainly captures the peaks of angular domain signals, 
but not all peaks. Under rev1500load0, the attention peak of normal data is in the valve closing and ignition 
phase, and fault data’s is in valve opening and ignition phase; Under rev1500load400, the attention peak of 
normal data is in the ignition phase, and fault data’s is still in the valve opening and ignition phase; Under 
rev1500load800, the attention peak of normal data is in the firing phase, and the fault data has a large attention 
weight for multiple phases. In order to more accurately explain the variation rule between each characteristic 
phase and working conditions, this paper classifies the attention weight of each working condition sample and 
makes summary statistics according to Fig. 10.

When the diesel engine has abnormal exhaust valve clearance, the attention weight of ignition and exhaust 
closing decreases, and the attention weight on exhaust opening increases significantly. The intake and exhaust 
valves are opened and closed in a fixed phase. When the valve clearance increases abnormally, the collision wear 
between the rocker arm and the valve will become larger, which directly leads to the shortening of the valve 
opening process (i.e. the valve opening phase lags and the closing phase advances). The existence of the clearance 
will also lead to the obvious increase of the valve opening impact. In addition, the ignition of the diesel engine 
faulty cylinder will be negatively affected to a certain extent. The results of network attention are consistent 
with human experience. When the load of the diesel engine increases, the attention on the ignition and valve 
opening of cylinder A4 have a certain growth trend, and the valve closing impact also fluctuates greatly, which 
is consistent with manual experience.

The network can identify the direct feature of the valve fault, that is, the valve phase, and the indirect feature, 
that is, the ignition-related phase. In addition, with the increase of load, the ignition working condition of the 

(23)angle =
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0
ωinsdt,

(24)x̂ = |H(x)|,
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diesel engine will change. The network can also identify ignition and other related phases adaptively according 
to the load. This shows that the deep network structure can learn the discrimination characteristics of the diesel 
engine under different working conditions, which are consistent with the basic rule of human fault diagnosis 
knowledge.

Frequency domain. In this section, the effect of the attention mechanism in the spectrum that is used as the 
model input is studied. Similar to the vibration angle domain signal, the spectrum also provides an intuitive view 
for fault diagnosis, especially fault location and identification. Figure 8 shows the attention visualization learned 
on the diesel spectrum dataset. Single-cylinder A4 data that is four periods samples are used as input. The num-
ber of input points is 16,384, the labeled data Ntrain = 30 is used for training, and the number of segments is 64.

It can be observed from Figs. 8 and 11 that the network mainly captures two peak areas within 5000 Hz in 
the frequency domain, namely 800–2400 Hz and 3200–4800 Hz. In case of abnormal exhaust valve clearance of 
diesel engine happened, the network noticed the interval near 4400–4800 Hz; with the increase of diesel engine 
load, the attention weight of the network to the interval of 1600–2400 Hz and 3600–4000 Hz firstly decreases and 
then increases. On the premise that the fault position is known, we have carried out a simple frequency domain 
analysis on the ignition and valve opening phase impact. As shown in Fig. 12, it is found that when there is an 
abnormal valve clearance, the peak value in the frequency domain moves from around 4000 Hz and falls within 
the range of 4400–4800 Hz; When the load increases, the spectral peak in the range of 3600–4000 Hz appears 
diffusion, which coincides with the attention of the network. Therefore, the method proposed in this paper has 
certain significance for feature interval location, but feature extraction still needs further research.

Figure 6.  Attention for each working condition on angular domain.

Figure 7.  Visualization of attention weight on angular domain signal of various working conditions.
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Figure 8.  Visualization of attention weight on frequency domain signal of various working conditions.

Figure 9.  Visualization of attention weight on envelope spectrum signal (8000 Hz) of various working 
conditions.

Figure 10.  Attention weight summarized in the working condition.
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Envelope spectrum. In this section, the influence of the attention mechanism on the envelope spectrum is stud-
ied. Single-cylinder A4 data that is six periods samples is used as input. The number of input points is 24,576, the 
labeled data Ntrain = 30 is used for training, and the number of segments is 64.

By analyzing the envelope spectrum of 25,600 Hz in Fig. 13, it is found that the network pays attention to 
the data in the lower frequency region, which is consistent with the experience of artificial envelope analysis. 
Therefore, after further testing and analysis, the sample period is extended to 7, and 8000 Hz is intercepted as 
the input data. The obtained attention weight is shown in Fig. 14, and Fig. 9 is the attention visualization learned 
from the envelope spectrum (8000 Hz).

It can be observed that the network mainly captures the area within 1375 Hz of envelope spectrum data. 
When abnormal exhaust valve clearance appears, the network strengthens and pays attention to the sections 
near 750–875 Hz and 1125–1250 Hz. With the increase of diesel engine load, the attention of the network to the 
500–1375 Hz range gradually diffuses, in which the attention to the 625–750 Hz range increases and the 0–125 Hz 
range decreases. The decrease in attention to the 0–125 Hz range of the envelope spectrum is probably due to 
the low-frequency vibration caused by the constraint unbalanced of the diesel engine under no-load conditions, 
which will be suppressed with the increase of load. 750–875 Hz and 1125–1250 Hz may be closely related to the 
fault characteristics of valve impact. 625–750 Hz of envelope spectrum and 3200–4000 Hz of spectrum signals 
have the same diffusion phenomenon, which is likely to be closely related to ignition impact. The generation and 
extraction of feature frequency need more in-depth research.

Figure 11.  Attention for each working condition on the frequency domain.

Figure 12.  Frequency domain analysis of specific phase signal (Upper: firing; lower: valve opening).
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Results and discussion. This section compares the effect of different input methods on network performance 
and comprehensively describes the advantages and disadvantages of different input methods. The test data 
includes 6 working conditions shown in Table 4. 60 groups of training samples are used for each working condi-
tion, and the data contains a total of 6 cylinders from A1 to A6 to enhance the difficulty of network diagnosis. 
In the practical industry, due to the changes of machine working conditions and the interference of environ-
mental noise, there are distribution differences between training and test data, resulting in a significant decline 
in diagnostic performance. This challenging problem is called cross-domain fault  diagnosis36. To evaluate the 
performance of the model in many aspects, the network is trained with the data of 0 N m load, and the cross-
domain diagnostic test is carried out under 800 N m load. To eliminate the influence of the test results caused 
the randomness, each group of experiments is repeated 10 times. The fault diagnosis accuracy and cross-domain 
diagnosis performance are shown in Fig. 15.

There is a clear relationship between angle domain signal and crankshaft angle. The interpretation of the 
model on the angle domain is intuitive, but its performance is poor in the cross-domain diagnosis task. Spectrum 
and envelope spectrum signals have better cross-domain diagnostic performance than angle domain signals. But 

Figure 13.  Attention for each working condition on envelope spectrum (25,600 Hz).

Figure 14.  Attention for each working condition on envelope spectrum (8000 Hz).
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for envelope spectrum signals, the network pays more attention to lower frequency components, which degrades 
its performance relative to the spectral signal. The envelope spectrum signal may lack some high-frequency 
characteristics and is not suitable for diesel engine fault diagnosis. For the spectrum signal, the network has a 
comprehensive range of concerns. At the same time, it is better than other input methods in both fault diagnosis 
and cross-domain diagnosis tasks. Therefore, the frequency domain signal is comprehensively selected as the 
input mode of the network.

Effect of segment number. The input data needs to be segmented before it can be input into the network. 
When the number of segments is too small, each segment signal contains not only important feature informa-
tion but also some redundant information. It is difficult for the network to produce appropriate attention weight 
allocation, and the performance improvement of the model is not obvious. However, when the number of seg-
ments is too large, the important features will be segmented, and the hidden features in the information will be 
modified, which may make the performance of the model worse. Therefore, to avoid the loss of transient infor-
mation, the segmentation test adopts the combination of binary tree and trigeminal tree. At the same time, the 
number of segments is limited to less than 128 to avoid the excessive stacking of convolution structures, which 
affects the operational efficiency of the network. The number of segments is selected as follows:

n is the number of segments and sort is the sorting function. Using the data of 6 cylinders from A1 to A6, the 
samples of each working condition Ntrain = 60 are tested. Figure 16 shows the influence of segment number n 
on the performance of the model.

As can be seen from Fig. 16, the angular domain and envelope spectrum signals are more sensitive to the 
number of segments n , n of the frequency domain signal has a wider adaptive range. And the performance of the 
model on frequency domain signal is better than the other two. For angular domain signals, when n = 16 , the 
network reaches the optimal performance. For envelope spectrum, when n = 2, 5, 16, 64 , the network has high 
classification performance, which shows that these segments are more reasonable for data cutting. However, too 
few segments will lead to too much information contained in each segment of the signal, which is not conducive 
to our further analysis of the characteristic interval. Considering comprehensively, the number of segments 
n = 64 is selected. For frequency-domain signals, when n = 64 , the network achieves the optimal performance.

Convolution weight setting. To investigate whether the weights in each sequence convolution layer are 
shared or not and how they affect the performance of the proposed model, two groups of control experiments 
are set. All the experimental model structures are the model in Fig. 3 but do not include the attention module, to 

(27)n = 2sort(i,i+log2 3−1) (i = 1, 2, . . . , 7).

Figure 15.  Diagnostic performance of different input methods.

Figure 16.  Effect of segment number on network performance.
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eliminate the influence of the sparse attention module. Adjust the corresponding network according to the test 
requirements of each group, and take the frequency domain data as the input. In the first group of experiments, 
the convolution parameters of each sequence are shared, which is recorded as CPS (convolution parameter shar-
ing); In the second group of experiments, the convolution parameters of each sequence are independent and 
recorded as CPI (convolution parameter independence). The input data points of the two groups are 16,384. 
The test dataset includes 6 working conditions shown in Table 4. 60 groups of training samples are used for each 
working condition, and the data contains 6 cylinders from A1 to A6 to increase the diagnostic difficulty of the 
network. To evaluate the performance of the model in many aspects, the network is trained with the data of 
0 N m load, and the cross-domain diagnostic test is carried out under 800 N m load. Cross-domain diagnostic 
tasks are recorded as CPS-CROSS and CPI-CROSS. To eliminate the influence of the test results caused the 
randomness, each group of experiments is repeated 10 times. The fault diagnosis accuracy and cross-domain 
diagnosis performance are shown in Fig. 17.

From Fig. 17, we can see that the CPI method is superior to the CPS method in both the accuracy of a clas-
sification and the stability of classification results in the fault diagnosis and cross-domain diagnosis tasks. In 
addition, the CPI method improves significantly compared with the CPS method in the face of three different 
input modes. It shows that the method of independent convolution parameters for each sequence has better 
generalization in the proposed model.

Method comparison. To verify the performance of the proposed adaptive sparse attention network, a vari-
ety of existing intelligent diagnosis methods are compared with the proposed methods.

In the SVM method, the inputs are four time-domain features extracted from the time-domain signal: inlet 
valve opening impact, inlet valve closing impact, exhaust valve opening impact, and exhaust valve closing impact; 
In the BP method, the frequency domain signal is used as the input, and the number of nodes in each layer is 
3600-60-6 respectively; In the CPI method, the network structure in “Convolution weight setting” is used, the 
convolution parameters of each sequence are independent, and the attention module is not included; In the 
Global method, the attention structure adopts the global attention mechanism; In the Local method, the atten-
tion structure adopts the local attention mechanism, which pays attention to the window area where the target 
sequence is located; In the proposed ASAN method, the network structure is described in Fig. 3. Each method 
was tested 10 times with the same dataset including 6 cylinders from A1 to A6 and 6 working conditions, and the 
average accuracy and loss of the test set were counted. In addition, the network is trained by the data of 0 N m 
load, then the cross-domain diagnosis test is performed and calculated under 800 N m load. The test results are 
shown in Table 5.

Compared with the CPI method, the global method has one more layer of attention structure and increases 
the complexity of the algorithm. Although the convergence epochs are reduced, the training time is not short-
ened. The complexity of the other three attention methods is similar, the network scale is the same, and the time 
taken by each epoch is close. Refer to Ref.28 to compare and test the convergence of loss, which can reflect the 
training efficiency of the network to a certain extent. The results are shown in Fig. 18.

Figure 17.  Influence of convolution weight setting on network performance.

Table 5.  Diagnostic performance of different methods.

Diagnostic method Input mode Fault diagnosis accuracy Cross-domain diagnostic accuracy

SVM Manual features 0.967 0.63

BP

Frequency domain

0.975 0.67

CPI 0.992 0.818

Global 1 0.84

Local 0.958 0.71

ASAN 1 0.84
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It can be seen from Table 5 and Fig. 18 that the fault diagnosis accuracy of SVM and BP methods is high, 
which can reach more than 95%, but the cross-domain diagnosis performance is poor. The CPI method greatly 
improves the cross-domain diagnosis performance of the model, but it has a certain impact on the training 
efficiency of the model. The Global method further improves the network performance, whose fault diagnosis 
accuracy reaches 100% and the cross-domain diagnosis accuracy reaches 84%. But the training time of the 
model has not been reduced. The Local method further speeds up the convergence speed of the model, but it 
will lead to the decline of fault diagnosis and cross-domain diagnosis performance. The ASAN method not only 
maintains the same excellent performance as the Global method in fault diagnosis and cross-domain diagnosis 
but also increases the efficiency of model training. Comprehensively, the proposed ASAN method is superior 
to other algorithms in Table 5.

To show that the proposed algorithm has better interpretability, the attention weight of cylinder A4 samples is 
normalized and averaged. The visualization results of each method are shown in Figs. 8, 19 and 20, respectively. It 
can be seen that the Global method has a considerable degree of attention in the whole frequency band. Because 
of the window limitation, the Local method can only pay attention to the frequency band around 4000 Hz, which 
is also reflected in the three methods. The ASAN method not only retains Globals’ focus but also greatly sup-
presses the expression of redundant sequences, which can help us better understand and diagnose fault signals.

Conclusion
In this paper, an effective deep attention learning-based digital twin auxiliary approach for diesel engine fault 
diagnosis is proposed to discusses the interpretability of the network from the perspective of understanding the 
fault mechanism. To further improve the interpretability of the model, an adaptive soft threshold filter on the 
attention module is adopted to suppress redundant information dynamically in real time and combined with 
CNN and BiLSTM. The diesel valve fault dataset is used for experimental validation. The raw vibration angle 
domain data, spectrum, and envelope spectrum are used as model inputs respectively. The test shows that the 
output result of the model is consistent with the manual experience of fault diagnosis, and verify the effective-
ness of sparse attention mechanism, especially in the spectrum. Comparisons with other approaches to verify 
the superiority of the proposed method.

Figure 18.  Training loss curves under different models.

Figure 19.  Visualization of attention weight in Global method.
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The future work is mainly to explore the signal interval obtained through the sparse attention mechanism, 
further extract its internal features, and explain the causes of the features, to achieve the purpose of feedback 
maintenance. The collaborative updating of the model and real-time data will also be studied in the follow-up. 
Moreover, the proposed digital twin auxiliary approach based on ASAN needs to be further improved and veri-
fied in the actual industrial field.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the high cost 
of the original data collection, but are available from the corresponding author on reasonable request.
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