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Construction and validation 
of a risk prediction model 
for clinical axillary lymph node 
metastasis in T1–2 breast cancer
Na Luo1,2,4, Ying Wen1,4, Qiongyan Zou1, Dengjie Ouyang3, Qitong Chen1, Liyun Zeng1, 
Hongye He1, Munawar Anwar1, Limeng Qu1, Jingfen Ji1,4* & Wenjun Yi1,4*

The current diagnostic technologies for assessing the axillary lymph node metastasis (ALNM) status 
accurately in breast cancer (BC) remain unsatisfactory. Here, we developed a diagnostic model for 
evaluating the ALNM status using a combination of mRNAs and the T stage of the primary tumor as 
a novel biomarker. We collected relevant information on T1–2 BC from public databases. An ALNM 
prediction model was developed by logistic regression based on the screened signatures and then 
internally and externally validated. Calibration curves and the area under the curve (AUC) were 
employed as performance metrics. The prognostic value and tumor immune infiltration of the model 
were also determined. An optimal diagnostic model was created using a combination of 11 mRNAs 
and T stage of the primary tumor and showed high discrimination, with AUCs of 0.828 and 0.746 in 
the training sets. AUCs of 0.671 and 0.783 were achieved in the internal validation cohorts. The mean 
external AUC value was 0.686 and ranged between 0.644 and 0.742. Moreover, the new model has 
good specificity in T1 and hormone receptor-negative/human epidermal growth factor receptor 2- 
negative (HR−/HER2−) BC and good sensitivity in T2 BC. In addition, the risk of ALNM and 11 mRNAs 
were correlated with the infiltration of M2 macrophages, as well as the prognosis of BC. This novel 
prediction model is a useful tool to identify the risk of ALNM in T1–2 BC patients, particularly given 
that it can be used to adjust surgical options in the future.

Breast cancer (BC) is the most common malignant tumor in women, accounting for 30% of all new cancer cases 
around the  world1. The axillary lymph node (ALN) status is an important reference factor for predicting clinical 
outcomes in  BC2, and it also determines the degree of axillary surgery, radiation therapy, neoadjuvant therapy 
and adjuvant systemic therapy. Hence, it is of clinical importance to identify axillary lymph node metastasis 
(ALNM) accurately.

Sentinel lymph node biopsy (SLNB) is the gold standard for evaluating the status of ALNs in patients with 
T1–2 BC. However, it is an invasive surgical procedure, with a false negative (FN) rate of 9.8%3, and approxi-
mately 50–70%4 of BC patients with positive sentinel lymph nodes (SLNs) do not have nonsentinel ALNM. 
Simultaneously, axillary lymph node dissection (ALND) or radiotherapy may be needed for patients with positive 
 SLNs5. The current standard assessment methods for nodal staging in patients with T1–2 BC, such as a physical 
examination, ultrasound (US) or computed tomography (CT), have been shown to be less than  satisfactory6–8.

Hence, a less invasive method is needed to evaluate the ALN status and to safely avoid the use of SLNB in 
patients without ALNM. There have been increasing numbers of studies with multiple prediction models for 
ALNM in BC that were based on several different kinds of factors, such as a combination of radiomics and kinetic 
curve  patterns9, ultrasound  images10, and  miRNAs11. Previous studies have reported that mRNAs have been 
implicated in metastasis, proliferation, and apoptosis in  BC12–14. In addition, clinical factors, such as pathological 
tumor size, are considered influencing factors for ALNM in  BC15. Therefore, the construction of a model that 
combines mRNAs and clinicopathological factors to predict ALNM in T1–2 BC would be feasible and innovative.
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In this study, we constructed a model to predict ALNM in T1–2 BC by analyzing public databases, and we 
also analyzed the association between the risk of ALNM and patient survival and immune cell infiltration. 
Therefore, we hope that this study will provide an effective and new method to predict lymphatic metastasis 
accurately in BC.

Materials and methods
Public datasets. Transcriptome profiling data (including lncRNA and mRNA data) normalized to frag-
ments per kilobase million (FPKM) and relevant clinical information on BC from The Cancer Genome Atlas 
(TCGA) were downloaded. According to the specific inclusion and exclusion criteria, 465 samples in the TCGA 
database and 716 samples in the Gene Expression Omnibus (GEO) database were selected. All 465 patients in 
the TCGA were randomly divided into two independent datasets at a ratio of 7:3 based on a computer-generated 
random number (training dataset: 326 patients; validation dataset: 139 patients). GSE9893 served as another 
training dataset. The clinical characteristics of all patients are shown in Table 1 and Supplementary Table 1.

The inclusion criteria were as follows: (a) female BC patients with pathological stage T1-T2 disease; and (b) 
patients with a pathological diagnosis of invasive ductal carcinoma or invasive lobular carcinoma. The exclu-
sion criteria were as follows: (a) patients with incomplete clinicopathological information, such as TX stage (the 
primary tumor could not be assessed), NX stage (regional lymph node involvement could not be assessed), and 
MX stage (the metastatic status could not be assessed) in the TNM staging system, and those with an uncertain 
estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) 
status; (b) patients who had received preoperative adjuvant therapy; and (c) patients with distant metastasis.

Identification of differentially expressed genes (DEGs). The “limma” package in R was utilized to 
select DEGs between lymph node (LN)-positive and LN-negative patients in the TCGA/GSE9893 datasets. We 
used the false discovery rate (FDR) < 0.05 and |log2FC (fold change)| > 1 as the thresholds for identifying the 
DEGs. A volcano diagram and a heatmap were generated using the “pheatmap” R package.

Feature selection. We employed least absolute shrinkage and selection operator (LASSO) regression to 
further select the most diagnostically predictive features in the training datasets. The lymph node status served 
as the dependent variable, and a minimum λ was used for feature selection. Then, we used univariate logistic 

Table 1.  Baseline characteristics of samples from the TCGA database.

Clinical features

Training set
Internal 
validation set

P-valueN % N %

Age 0.213

≥ 56 180 55.2% 68 48.9%

< 56 146 44.8% 71 51.1%

ER 0.597

Negative 85 26.1% 33 23.7%

Positive 241 73.9% 106 76.3%

PR 0.214

Negative 118 36.2% 42 30.2%

Positive 208 63.8% 97 69.8%

HER2 0.230

Negative 246 75.5% 112 80.6%

Positive 80 24.5% 27 19.4%

T-stage of primary tumor 0.832

T1 97 29.8% 40 28.8%

T2 229 70.2% 99 71.2%

Lymph node status 0.993

Without metastasis 169 51.8% 72 51.8%

With metastasis 157 48.2% 67 48.2%

Subtypes 0.522

HR+/HER2− 188 57.7% 89 64.0%

HR+/HER2+ 57 17.5% 21 15.1%

HR−/HER2+ 23 7.1% 6 4.3%

HR−/HER2− 58 17.8% 23 16.5%

Pathological types 0.391

Invasive ductal carcinoma 282 86.5% 116 83.5%

Invasive lobular carcinoma 44 13.5% 23 16.5%
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regression to filter the diagnostic features selected by the LASSO regression analysis. The LASSO regression 
analysis was performed with the “glmnet” package in R.

Prediction model construction and performance assessment. Using a multivariate logistic regres-
sion algorithm, we constructed a risk prediction model in the training dataset. A nomogram was formulated 
based on the results of the multivariable analyses by integrating multiple prediction indicators. Correspondingly, 
the coefficient of each feature in the model and the predicted index of each patient in the training cohort were 
calculated. The goodness of fit between the observed value and the predicted value was tested using the Hosmer–
Lemeshow test and displayed in the calibration curve. The predictive discrimination of the model was evaluated 
using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. Decision curve 
analysis (DCA) was employed to judge the clinical applicability of the nomogram by quantifying the net benefits 
at different threshold  probabilities16. The prediction model was evaluated in the validation datasets. The “rms”, 
“ROCR” and “rmda” packages in R were applied to create the calibration curve, ROC graph and DCA curve.

Prognostic analysis. The largest Youden index was used as the cutoff value to separate the patients into 
high- or low-risk  groups17. Kaplan–Meier analysis with the log‐rank test was subsequently performed to assess 
the differential outcomes in overall survival (OS) or distant metastasis-free survival (DMFS) between the two 
groups. The Kaplan–Meier plotter (https:// kmplot. com/ analy sis/)  database18 was applied to analyze the differ-
ence in recurrence-free survival (RFS) according to target gene expression.

Functional analysis and immune infiltration. We performed Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment analyses on the DEGs using the “clusterProfiler” package in 
R. ImmuCellAI (http:// bioin fo. life. hust. edu. cn/ ImmuC ellAI#!/) and CIBERSORT were used to estimate tumor 
immune infiltration in each sample in the TCGA  cohort19,20. Based on the “Gene” module of the TIMER2.0 
 database21 (http:// timer. cistr ome. org/), we further evaluated the correlation between the hub genes and the infil-
tration of M2 macrophages.

Statistical analysis. Statistical analysis was performed using R software (version 4.0.2). The Wilcoxon 
rank‐sum test is a nonparametric statistical test mainly utilized for comparing two groups, and the Kruskal–Wal-
lis test is suitable for comparing two or more groups. A conventional two-sided P-value < 0.05 was considered 
significant.

Results
Clinical characteristics of the patients. We developed a risk prediction model for clinical ALNM in 
T1–2 BC patients. A flow chart of the whole study design is shown in Supplementary Fig. 1. The clinical features 
of the patients in the training and internal validation sets in the TCGA are given in Table 1, and no differences 
in baseline characteristics were observed between the two groups (P-value > 0.05). We also summarized the 
relevant clinical information of the BC samples from the GEO database that met the inclusion and exclusion 
criteria (Supplementary Table 1).

Development of a risk prediction model for BC. Differential gene expression analysis revealed 256 
upregulated and 314 downregulated genes in the TCGA training sets (Fig. 1A). However, in the GSE9893 data-
set, 2742 upregulated genes and 2176 downregulated genes were found (Fig. 1B). Therefore, the results revealed 
35 common upregulated genes and 22 common downregulated genes (Fig.  1C). A total of 57 mRNAs were 
selected as biomarker candidates and used together with clinicopathologic factors (T stage, age, ER, PR, HER2, 
and subtypes) to construct a diagnostic model in the training set using LASSO regression analysis (Fig. 1D,E). 
The heatmap shows the correlations between the expression of the 57 mRNAs and clinicopathological variables. 
Compared with non-axillary lymph node metastasis (NALNM) group, the expression levels of many genes were 
higher in the ALNM group, such as HOXB2, HOXB5, HOXB7 (Supplementary Fig. 2). In addition, the optimal 
value of λ in LASSO regression was 0.0185.

Subsequently, all significant factors in the univariate logistic regression analysis (Supplementary Table 2) 
were included in the multivariate logistic regression analysis. Finally, we constructed a risk prediction model 
that contains the T stage of the primary tumor and 11 genes in T1–2 BC, as shown in Supplementary Table 3.

Nomogram construction and validation. These 12 features that are associated with ALNM in BC were 
used to construct the nomogram (Fig. 2A). This nomogram can be used to estimate the probability of ALNM 
through the summation of the points of each variable.

To compare the discrimination ability of the model in predicting ALNM, we conducted ROC curve analy-
sis of T1–2 BC patients. The AUC value of the model in the training set was 0.828 (95% CI: 0.783–0.873; 
P-value < 0.001), which indicated that the model had high prediction efficacy (Fig. 2B). Furthermore, the cali-
bration curve of the model demonstrated good agreement between the predictions and observations in the 
TCGA training set (Fig. 2C). The Hosmer–Lemeshow test suggested that the model had good fit (χ2 = 8.859; 
P-value = 0.354). Moreover, the prediction model showed a high net benefit to aid in clinical decisions for a risk 
probability threshold between 2 and 91% in the training set according to the DCA curve (Fig. 2D).

In the internal validation stage of the model, the AUC values were found to be 0.671, 0.746 and 0.783 
(Fig. 3A–C, Supplementary Table 4). In the external validation cohort, the AUC value in the GSE11001 dataset 
was up to 0.742, while the AUC values in the other GEO datasets were 0.644, 0.661, 0.673, and 0.709 (Fig. 3D–H, 

https://kmplot.com/analysis/
http://bioinfo.life.hust.edu.cn/ImmuCellAI#
http://timer.cistrome.org/
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Supplementary Table 4). The calibration curves showed great calibration of the risk prediction model in the 
internal and external validation cohorts (Supplementary Fig. 3).

Furthermore, the specificity of the risk prediction model in predicting ALNM in T1 BC was as high as 
92.3–95.1%, and the false positive rate was between 4.9 and 7.7% (Fig. 4A, Supplementary Table 5). In patients 
with T2 BC, the sensitivity of the model was between 71.3 and 90.3% (Fig. 4B, Supplementary Table 6). The 
model also had good specificity in evaluating the risk of ALNM in HR−/HER2− BC patients (Fig. 4C, Supple-
mentary Table 7).

The prognostic role of the risk prediction model. All patients were separated into high- or low-risk 
groups according to the optimal cutoff value. Kaplan–Meier analyses were subsequently performed to assess the 

Figure 1.  Building the risk prediction model for T1-2 invasive breast cancer. (A, B) Volcano plots of the TCGA 
and GSE9893 datasets; (C) Wayne figure of common genes between the TCGA and GSE9893 datasets; (D, E) 
Feature selection in the training set with the LASSO method.
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differential outcomes between the two groups. Patients in the high-risk group had worse OS (P-value = 9.337e−07) 
and DMFS (P-value = 3.45e−02) (Fig. 5A,B).

To further evaluate the prognostic value of genes in the risk prediction model, the RFS of BC patients 
was investigated with the Kaplan–Meier Plotter database. Interestingly, the expression of ACOX1, CD1A, 
OPN3, REPS1, RTN1, CNP, DUT, HOXB3, and PYGB was significantly associated with the prognosis of BC 
(P-value < 0.05), which was consistent with the predictive value of the model (Fig. 5C).

Analysis of gene functions and tumor immune infiltration. We analyzed the common differen-
tially expressed genes by functional enrichment analysis, and the results indicated that the abovementioned 
genes mostly function in the processes of antigen processing and endogenous peptide antigen (Fig. 6A), which 
suggests that the common genes may be associated with tumor immune infiltration. Furthermore, we evalu-

Figure 2.  Efficacy of the risk prediction model in T1-2 invasive breast cancer. (A) Nomogram for the model; 
(B–D) ROC curve, calibration plot and decision curve analysis of the nomogram in predicting lymph node 
metastasis in the TCGA training sets.
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ated the correlation between the risk of ALNM in T1–2 BC patients and the immune infiltration level with the 
ImmunCellAI online resource. The results showed that the risk of ALNM was related to the infiltration of tumor 
immune cells such as macrophages, T helper type 1 cells (Th1), T helper type 17 cells (Th17), and cytotoxic T 
cells (CTLs) (Fig. 6B).

We calculated the 22 subpopulations of immune cells in 685 BC patients (according to the previous inclusion 
and exclusion criteria of the TCGA database, patients were re-incorporated without restricting the expression 
of ER,PR and HER2) by using the CIBERSORT algorithm and investigated the differences between tissues with 
different N stages. Surprisingly, the lymph node stage was correlated with the infiltration of M2 macrophages 
(P-value < 0.05) (Fig. 6C). Based on the TIMER2.0 database, we further explored the functions of the 11 genes 
in the model, all of which were associated with the infiltration of M2 macrophages (Fig. 6D).

Figure 3.  Discrimination ability of the model in the internal verification and external verification cohorts. 
(A–C) ROC curve analysis of the model in the internal validation cohort in the TCGA and GSE9893 and the 
total set in the TCGA; (D–H) ROC curve analysis of the model in the external verification cohorts, such as 
GSE20685, GSE43365, GSE11001, GSE58644 and GSE74667.
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Discussion
ALNs are often the first and most frequent metastatic site and are the most important factor for the diagnosis 
and prognosis of  BC22,23. In the current study, we developed and validated a risk prediction model to evaluate the 
probability of positive lymph nodes in patients with T1–2 BC to improve the ability of preoperative individual-
ized treatment decisions in the future.

As mentioned previously, the risk prediction model incorporates 11 genes that may be related to ALNM and 
the T stage of the primary tumor. The results of this study showed that the risk of ALNM was positively correlated 
with tumor size, and similar results have been  reported15.

To confirm the generalizability and repeatability of the established model, we used internal verification 
and external verification cohorts for further analysis. Generally, an AUC value greater than 0.75 indicates high 
accuracy, 0.75 to 0.6 indicates general accuracy, and less than 0.6 indicates low  accuracy24. In this study, the 
distinguishing ability of the risk prediction model in T1–2 BC was acceptable regardless of whether it was used 
in either the internal or external validation cohort. Furthermore, the model had good specificity in predicting 
ALNM in T1 or HR−/HER2− BC patients, which means that SLNB may be omitted in patients who are classified 
as low risk according to this model based on the patient’s condition. In stage T2 patients, the model showed good 
sensitivity, suggesting that patients who are classified as high risk need to receive neoadjuvant therapy or accept 
ALND directly. Interestingly, although the model was designed to predict ALNM in T1–2 BC, we found that it 
could be used to predict patient survival, supporting the clinical and prognostic value of the model.

The expression of acyl-CoA oxidase 1 (ACOX1) is associated with brain metastasis in  BC25. CD1a molecule 
(CD1A) may predict regional lymph node invasion and prognosis in  BC26. Deoxyuridine triphosphatase (DUT) 
is correlated with the treatment of  BC27. FKBP prolyl isomerase 9 (FKBP9) has been shown to be related to 

Figure 4.  Effectiveness of the model in different T stages and different molecular types of breast cancer. (A, B) 
Female patients with early (T1 or T2) breast cancer; (C) different breast cancer molecular subtypes in the total 
set.
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distant metastasis in prostate  cancer28. The frequency of FKBP9 mutation is relatively high in  BC29. A previ-
ous study revealed that low expression of homeobox B3 (HOXB3) was associated with a poor prognosis in 
hormone receptor-negative  BC30. Glycogen phosphorylase B (PYGB) has potential applications in the preven-
tion of BC  metastasis31. Signal recognition particle 14 (SRP14) plays a role in OS in acute myeloid leukemia 
 patients32. The expression of 2′,3′-cyclic nucleotide 3′ phosphodiesterase (CNP) correlates with glioblastoma 
patient  survival33. Opsin 3 (OPN3) promotes epithelial-mesenchymal transition and tumor metastasis in lung 

Figure 5.  Prognostic value of the risk prediction model. (A) Kaplan–Meier OS curve in GSE9893; (B) DMFS 
curves for breast cancer patients in GSE58644; (C) Kaplan–Meier survival curves according to genes in the 
model.
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 adenocarcinoma34. RALBP1-associated Eps domain-containing 1 (REPS1) may be involved in neurodegeneration 
with brain iron  accumulation35. The last gene, reticulon 1 (RTN1), is believed to be associated with prognosis 

Figure 6.  Analyses of gene function and tumor immune infiltration. (A) GO results revealed that the DEGs 
were involved in some immune-related processes; (B) Risk cores correlated with immunocyte infiltration in the 
TCGA cohort; (C) Lymph node stage in breast cancer correlated with M2 macrophages; (D) Correlation of the 
expression of 11 genes with M2 macrophages in breast cancer.
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and evolution in malignant  glioma36. Furthermore, many genes in 57 candidate biomarkers, such as HOXB2, 
HOXB5, HOXB7, COL3A1, COL5A2, KRT18 and KRT19, are closely related to tumorigenesis, metastasis and 
invasion of  cancer37–43.

In this study, the odds ratios (ORs) of eight genes in the risk prediction model were more than 1, suggesting 
that the aforementioned genes, such as ACOX1 and DUT, facilitate lymph node metastasis in BC. In addition, we 
found that the high expression of ACOX1, CNP, DUT and OPN3 was associated with poor survival. This finding 
is consistent with the hypothesis that the above genes may serve as adverse prognostic indicators of survival by 
affecting ALNM in BC patients. Similarly, BC patients with high CD1A or REPS1 expression had longer survival 
times than those with low CD1A or REPS1 expression.

Previous studies have shown that M2 macrophages play protumor  roles44 and that the infiltration of M2 
macrophages is correlated with lymph node metastasis of  BC45. A similar result was found in this study. We 
found that the risk of ALNM and the 11 genes in the risk prediction model were correlated with the infiltration 
of M2 macrophages by bioinformatics analysis, which indicates that the above genes may affect ALNM in BC by 
participating in tumor immune infiltration.

In summary, we innovatively constructed a risk prediction model that contains the T stage of the primary 
tumor and 11 genes in T1–2 BC, although we used different cohorts for internal and external verification. 
However, this was a retrospective study, and further multicenter studies with larger sample sizes are needed to 
demonstrate its potential clinical application value in the future.

Data availability
The data which used in this article are public data.
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