
1

Vol.:(0123456789)

Scientific Reports |          (2022) 12:422  | https://doi.org/10.1038/s41598-021-04424-z

www.nature.com/scientificreports

Classifying central serous 
chorioretinopathy subtypes 
with a deep neural network using 
optical coherence tomography 
images: a cross‑sectional study
Jeewoo Yoon1,2,10, Jinyoung Han1,2,9,10, Junseo Ko1, Seong Choi1,2, Ji In Park3, 
Joon Seo Hwang4, Jeong Mo Han5, Kyuhwan Jang6, Joonhong Sohn6, Kyu Hyung Park7 & 
Daniel Duck‑Jin Hwang6,8,9*

Central serous chorioretinopathy (CSC) is the fourth most common retinopathy and can reduce quality 
of life. CSC is assessed using optical coherence tomography (OCT), but deep learning systems have 
not been used to classify CSC subtypes. This study aimed to build a deep learning system model to 
distinguish CSC subtypes using a convolutional neural network (CNN). We enrolled 435 patients with 
CSC from a single tertiary center between January 2015 and January 2020. Data from spectral domain 
OCT (SD‑OCT) images of the patients were analyzed using a deep CNN. Five‑fold cross‑validation was 
employed to evaluate the model’s ability to discriminate acute, non‑resolving, inactive, and chronic 
atrophic CSC. We compared the performances of the proposed model, Resnet‑50, Inception‑V3, and 
eight ophthalmologists. Overall, 3209 SD‑OCT images were included. The proposed model showed 
an average cross‑validation accuracy of 70.0% (95% confidence interval [CI], 0.676–0.718) and 
the highest test accuracy was 73.5%. Additional evaluation in an independent set of 104 patients 
demonstrated the reliable performance of the proposed model (accuracy: 76.8%). Our model could 
classify CSC subtypes with high accuracy. Thus, automated deep learning systems could be useful in 
the classification and management of CSC.

Central serous chorioretinopathy (CSC) is the fourth most common retinopathy following age-related macular 
degeneration (AMD), diabetic retinopathy, and branch retinal vein  occlusion1. The incidence of CSC is 9.9 per 
100,000 men and 1.7 per 100,000  women1–3. Persisting subretinal fluid (SRF) damages the outer layer of the retina, 
thus causing permanent vision loss, which degrades the quality of  life4–6. In addition, CSC is reportedly associ-
ated with polypoidal choroidal  vasculopathy7–10, a subtype of neovascular AMD, and its importance is growing.

CSC is typically classified as acute or chronic, according to the chronicity of the disease and the pattern of 
retinal pigment epithelium (RPE) change. However, it is difficult to identify the aforementioned categories using 
one imaging  test5. Therefore, CSC is traditionally diagnosed using multimodal imaging modalities, such as fundus 
photography (FP), fluorescein angiography (FA), indocyanine green angiography (ICGA), optical coherence 
tomography (OCT), and fundus autofluorescence (AF)5,11. Among these modalities, FA and ICGA are essential 
for accurately diagnosing CSC. However, they have limitations owing to their invasive and time-consuming 
nature. In contrast, OCT is a non-invasive, rapid, and accurate test, and generates highly reproducible  results11–13. 
It is now considered a gold standard imaging modality for the follow-up of patients with  CSC5.
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Recently, a deep learning approach was applied to differentiate CSC from normal eyes and classify acute 
and chronic CSC using  OCT14, which demonstrates the predictive power of the deep learning model similar 
to retina specialists. This study goes one step further; instead of just differentiating acute or chronic CSC, we 
propose a deep convolutional neural network (CNN) that can classify the subtypes of CSC using OCT image 
alone. In clinical practice, various CSC subtypes have been reported that are not easily differentiated by retina 
 experts5,15. Hence, a detailed diagnosis and classification would enable better patient understanding of the prog-
nosis, according to the CSC subtype. Moreover, this would facilitate the selection of more appropriate treatment 
policies and  management11,14.

There is neither a universally accepted classification system for CSC nor a consensus on features that consti-
tute chronic  CSC15,16. In addition, no research has distinguished the detailed CSC subtypes using deep learning 
models. Herein, based on Daruch’s  report15, we classified CSC into four subtypes, namely acute, non-resolving, 
inactive, and chronic atrophic CSC. We then proposed a CNN that could classify CSC into the aforementioned 
subtypes. We aimed to compare the performance of the proposed model with that of ophthalmologists and 
applied gradient weighted class activation mapping (Grad-CAM)17 with the aim of determining the characteristic 
features used by the model in the classification process.

Results
We included 3209 images of 435 patients with CSC. The mean age was 52.76 ± 9.65 years. Table 1 summarizes 
the baseline characteristics of the enrolled patients.

Model performance. The proposed model, based on VGG-16, for classifying CSC subtypes demonstrated 
an average cross-validation accuracy of 70.0% (95% confidence interval [CI], 0.676–0.718), which was higher 
than that of Resnet-50 (68.6%; 95% CI, 0.643–0.730) and Inception-V3 (68.2%; 95% CI, 0.653–0.712). Moreover, 
we applied the transfer learning method to Resnet-50 and Inception-V3. Our model achieved the highest test 
accuracy of 73.5% on providing the second fold to the test set (Fig. 1). Figure 1 also depicts the confusion matrix 
for the five-fold cross-validation results. Our proposed model revealed more false categorizations while classify-
ing acute and non-resolving subtypes than while classifying other subtypes. Moreover, we collected 665 OCT 
images from 104 patients, which included 161, 197, 134, and 173 OCT images for acute, non-resolving, chronic, 
and inactive cases, respectively, to evaluate the model’s performance on an additional independent dataset. The 
proposed model achieved a high accuracy on the independent dataset (76.8%).

Performance comparison with ophthalmologists. Figure 2 represents the performance of the oph-
thalmologists and the proposed model for classifying the four different CSC subtypes. The classification accu-
racy of eight ophthalmologists for diagnosing the four CSC subtypes ranged from 58.9 to 72.3% (including the 
majority vote). In contrast, our model displayed an accuracy of 73.5%. Therefore, the proposed model demon-
strated better performance than that of the ophthalmologists in classifying the four CSC subtypes based on OCT 
images. In particular, among the 102 OCT images that the two retina specialists failed to correctly diagnose into 
the four CSC subtypes, our model correctly categorized 65 OCT images (64%). Of the 223 OCT images that 
one retina expert analyzed correctly, the proposed model accurately classified 140 OCT images (63%). Simi-
lar to the proposed model, most ophthalmologists failed to correctly distinguish the acute and non-resolving 
subtypes (Fig. 2b). However, among the 93 OCT images that the two retina specialists failed to categorize into 
acute and non-resolving images, our model could correctly categorize 61 images (66%). Among the 125 OCT 
images that one retina expert classified correctly, our model correctly classified 76 images (61%). That is, our 
proposed model could capture the key features of retinal diseases from the OCT images, thus displaying great 
utility in supporting ophthalmologists in their diagnoses. However, among the 153 OCT images classified by the 
two retina specialists into acute and non-resolving CSC, the model failed to correctly classify 39 images (25.4%, 
Table 2). The Kappa coefficients between the first and second retina specialists, the model and first retina special-
ist, and the model and second retina specialist were 0.47, 0.46, and 0.51, respectively, all of which demonstrated 
moderate agreement (P < 0.001) in diagnosing the four CSC subtypes.

Table 1.  Baseline characteristics of patients who underwent macular optical coherence tomography. a CSC 
central serous chorioretinopathy. b SD standard deviation.

CSCa

Acute Non-resolving Chronic Inactive Total

Images, n 929 887 764 629 3209

Patients, n 109 107 109 110 435

Age, years, mean  (SDb) 49.31 (8.40) 52.91 (9.56) 58.29 (8.76) 50.59 (9.44) 52.76 (9.65)

Gender, n (%)

Male 95 (87.16) 82 (76.64) 98 (89.91) 76 (69.10) 351 (80.69)

Female 14 (12.84) 25 (23.36) 11 (10.09) 34 (30.90) 84 (19.31)

Eye, n (%)

Right 45 (41.28) 53 (49.53) 58 (53.21) 59 (53.64) 215 (49.43)

Left 64 (58.72) 54 (50.47) 51 (46.79) 51 (46.36) 220 (50.57)
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Grad‑CAM visualization. Figure 3 depicts the representative heat maps produced by the Grad-CAMs. The 
highlighted regions were those where the retina specialists usually considered diagnosing CSC  subtypes11,14. 
The heat maps revealed that our proposed model used an approach similar to that used by retina specialists in 
assessing the CSC images.

Discussion
We aimed to build a deep learning model and investigate its performance for classifying CSC subtypes, without 
a segmentation algorithm. Our model could effectively distinguish the CSC subtypes and its performance was 
either comparable to or better than that of experienced retina doctors.

Our model displayed an overall good performance across all subtypes, particularly in detecting acute, inactive, 
and chronic CSC (Fig. 2b). Despite several reports on CSC treatment, there is no consensus on its classification 
and optimal  treatment5,15,16,18,19. This gap in the knowledge necessitates a large-scale prospective randomized 
controlled trial in the future. This is because CSC has a relatively high proportion of spontaneous improvement 
or resolution, which can be mistaken for a therapeutic effect in retrospective  studies5. Traditionally, in acute or 
inactive CSC, clinicians recommend observation without immediate treatment as the initial  management16. That 
is, in acute CSC, immediate interventions, such as focal laser treatment, intravitreal anti-vascular endothelial 
growth factor injections, or photodynamic therapy, are unnecessary. However, it is necessary to monitor the 
reduction of SRF via follow-up5,15,16. In case of inactive CSC, treatment may not be required. Nonetheless, there 
lies a possibility of CSC recurrence with SRF, thereby necessitating regular follow-up. Non-resolving CSC is likely 
to become chronic with extensive atrophic changes, particularly during irreversible damage to the photorecep-
tor with persistent SRF. In such cases, active intervention supposedly prevents permanent vision impairment. 
Moreover, in the case of chronic CSC, treatment is generally considered in the presence of  SRF16,20,21. However, 
severe irreversible atrophic change in the photoreceptor may hinder the recovery of visual function. Thus, treat-
ment may not be meaningful.

In this study, we added the inactive type to the classification system, which was classified as a case with a his-
tory of a previous CSC episode and RPE irregularity, but no definite atrophic  change15,22. The proposed model 
distinguished chronic atrophic and inactive CSC using a single OCT image, demonstrating better performance 
than that of ophthalmologists (Fig. 2b). Inactive CSC does not require specific treatment but requires regular 
follow-up. Furthermore, the visual prognosis is good. Therefore, despite the lack of SRF in inactive CSC, it is 
necessary to differentiate the subtype from chronic CSC with no SRF. The latter is characterized by atrophic 
damage to the photoreceptors and RPE, resulting in deterioration of vision quality.

Figure 1.  Performance comparison of models on spectral domain-optical coherence tomography images. Test 
accuracies of each fold during five-fold cross-validation. Our proposed model achieved the highest accuracy 
of 73.5% when using the second fold as the test set. An illustration of the confusion matrix of classification 
results in five-fold cross-validation. While the x-axis denotes the predicted class, the y-axis denotes the ground 
truth. Therefore, diagonal values from the top left to bottom right denote the correct predictions made by our 
proposed model. Our proposed model displays robust performance on every fold.
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Figure 2.  Performance comparison between the proposed model and the ophthalmologists. (a) Accuracy 
comparison between our proposed model and the ophthalmologists in distinguishing the four different central 
serous chorioretinopathy subtypes. While our proposed model has achieved a high accuracy of 73.5%, the 
ophthalmologists (including majority vote [MV]) achieved accuracies of 58.9–72.3%. (b) Confusion matrix 
comparison between our model and the ophthalmologists in distinguishing the four different central serous 
chorioretinopathy subtypes. All subjects, i.e., the eight ophthalmologists, majority vote, and the proposed model 
generated more false cases in distinguishing acute and non-resolving subtypes than other retinal disease pairs. 
R1, R2, and R3 denote ophthalmology residents with < 1, 3, and 4 years of experience, respectively. F1, F2, and 
F3 denote retina fellows with < 1, 2, and 2 years of experience, respectively. RS1 and RS2 refer to retina specialists 
(RS) with > 10 years of experience. MV refers to the majority vote results obtained by eight ophthalmologists. F 
retina fellow, R ophthalmology resident.

Table 2.  Case comparison between the proposed model and human experts. The six images denote the false 
detections by our model while classifying images into central serous chorioretinopathy subtypes. a R1, R2, 
and R3 denote ophthalmology residents with < 1, 3, and 4 years of experience, respectively. b F1, F2, and F3 
denote retina fellows with < 1, 2, and 2 years of experience, respectively. c RS1 and RS2 refer to retina specialists 
with > 10 years of experience. d GT denotes the ground truth.

Model Non-resolving Non-resolving Non-resolving Acute Chronic Acute

R1a Acute Acute Non-resolving Non-resolving Acute Non-resolving

R2a Acute Acute Non-resolving Acute Non-resolving Non-resolving

R3a Acute Non-resolving Acute Acute Non-resolving Acute

F1b Acute Acute Acute Acute Acute Acute

F2b Acute Acute Acute Acute Acute Acute

F3b Acute Acute Acute Acute Acute Acute

RS1c Acute Acute Acute Non-resolving Non-resolving Non-resolving

RS2c Acute Acute Acute Non-resolving Non-resolving Non-resolving

GTd Acute Acute Acute Non-resolving Non-resolving Non-resolving
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It was most difficult to distinguish between acute and non-resolving CSC using only OCT images. Particu-
larly, the two retina experts misclassified 52% and 32% of the actual acute or non-resolving CSCs, compared to 
our model’s incorrect answer rate of 32%. The major reason was that the distinction between acute and non-
resolving CSC by Daruich et al.15 was not based on OCT but was arbitrarily based on patient symptoms over a 
period of 4 months. Second, only one OCT image was used without multimodal imaging information, possibly 
leading to low diagnostic performance. Nevertheless, our model could correctly identify 61 images (66%) of 
the 93 images that both retina experts classified incorrectly. Of the 125 images on which the two retina experts 
disagreed (i.e., only one retina expert answered correctly), 76 could be correctly identified by our model (61%). 
Acute and non-resolving CSC are arbitrarily divided based on a specific timeline of 4 months. However, they 
differ in the duration of SRF. Thus, an OCT-based biomarker may exist but has not yet been reported. Hence, 
our model could learn the latent pattern and display better performance than ophthalmologists. That is, the 
proposed deep learning model could assist retina experts in subtype classification (i.e., acute vs. non-resolving 
CSC) that requires skilled experience.

In certain macular diseases, such as CSC, Grad-CAM17 could be an adjunctive tool for detecting OCT bio-
markers while determining the characteristic features of the  macula14. Using Grad-CAM, we were able to identify 
and specify the parts of an image that affect each of the CSC subtype probability scores. The heat map of the 
regions activated by the model could identify and quantify the differences, highlighting the crucial areas’ clas-
sification process. First, in acute CSC, our model did not consider the significance of an increase in choroidal 
thickness but instead considered the retina important. The shape change in the inner retinal layer deformed 
by SRF rather than the SRF itself was considered an important criterion for subtype classification. In the first 
image of acute CSC in Fig. 3, RPE detachment (RPED) was primarily observed. Interestingly, our model did 
not highlight the base of the RPED, rather highlighted its upper boundary and the retina located above. This 
supported our assumption that greater inner retina change above the photoreceptor layer was considered an 
important criterion for identifying acute CSC. Second, our model principally examined the outer layer of the 
retina and the choroid for classifying chronic CSC. Compared to other subtypes, the choroid appears to be an 
important clue in the identification of chronic CSC. Among its several layers, the choriocapillaris and Sattler’s 
layer, which correspond to the inner choroid, appear to be primarily emphasized. Third, in inactive CSC, the 
model focused on the RPE and the photoreceptors of the outer layer of the retina. In contrast, the inner layer of 
the retina and the choroid appeared unimportant. Inactive CSC is defined as a case comprising RPE alterations 

Figure 3.  Heat maps for the classification models by gradient weighted class activation mapping (Grad-CAM). 
Grad-CAM was able to identify the pathologic regions of central serous chorioretinopathy (CSC) on the optical 
coherence tomography (OCT) images, presented as a heat map.
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without SRF. This necessitates the assessment of changes in the RPE for diagnosing inactive CSC. As demon-
strated in the second inactive CSC case in Fig. 3, the upper portion of the photoreceptor layer, such as the inner 
nuclear layer and outer plexiform layer, was simultaneously highlighted. That is, the RPE and photoreceptors 
are predominantly considered critically. However, clinicians consider the inner layers of the photoreceptor while 
classifying inactive CSC. The Grad-CAM visualization suggested that our model had similar standards to those 
of ophthalmologists. In addition, in non-resolving CSC, our model seemed to observe both the retina and the 
choroid. In particular, the inner layers of the retina (i.e., from the internal limiting membrane to the outer nuclear 
layer) were more widely emphasized than the area highlighted in acute CSC. In general, acute CSC accompanies 
only changes in the choroid or the outer retinal layer, including the RPE, while considering its  pathogenesis5,15. 
From the Grad-CAM results, we could infer the possibility of the accompanying subtle abnormal changes in 
the inner retinal layer with prolonged SRF duration, as it became the non-resolving type. Therefore, it is neces-
sary to determine if structural change in the retinal inner layer follows with time when SRF persists for several 
months in non-resolving CSC.

Our study had several limitations. First, we included only OCT images from patients who met our inclusion 
criteria and trained the deep neural network with these images. We excluded patients with other concomitant 
macular diseases. External validation should be performed with images from different OCT manufacturers in 
future studies. All images were acquired from a single OCT device located at an academic center. However, 
the dataset was sufficient to demonstrate the feasibility of our model to distinguish the CSC subtypes. Second, 
we investigated the model’s performance using the information obtained from one OCT image per case. Thus, 
information from multiple OCT images was not considered. In clinical practice, ophthalmologists typically make 
a final diagnosis by observing several OCT images along with clinical information, such as symptom duration. 
Therefore, diagnosing CSC by combining multiple images with diverse clinical information would be more accu-
rate than considering one image. We compared the performance of the model and ophthalmologists with one 
cropped OCT image, which may not be identical to the actual clinical environment. This necessitates extending 
our model to the actual clinical setting. In addition, for classifying acute and non-resolving CSC, the classifica-
tion performance would likely be improved by using not only the OCT B scan image, but also the infrared (IR) 
reflectance image, which is automatically provided by the Spectralis OCT device. The IR reflectance decreased 
(B3) because of SRF in acute CSC (Fig. 4). The foveal granular pattern (E3) in inactive CSC indicated a long-
term change in RPE melanin distribution, following a CSC episode. IR or near-IR images are other non-invasive 
imaging modalities based on autofluorescence, emanating predominantly from RPE and choroid  melanin23,24. 
Training the deep learning model with multimodal imaging information, such as OCT, FP, IR, FA, and ICGA, 
will more clearly help distinguish between an acute type with relatively fresh SRF and a non-resolving type that 
has persisted for longer. Hence, a deep learning model that comprehensively learns from several images per case 
or additional multimodal images (i.e., IR, FAG, or ICGA images) simultaneously can achieve a higher level of 
performance than the current model. Third, we only focused on classifying CSC subtypes in this cross-sectional 
analysis. The model could be extended to predict the treatment response or vision prognosis according to CSC 
subtypes using the longitudinal image dataset of patients with CSC.

We aimed to develop a deep neural network model to classify four CSC subtypes. To diagnose these subtypes, 
we cast the problem as a multinomial classification issue. To solve the multinomial classification problem, we 
utilized the soft-max activation  function25, a generalization of the sigmoid  function25 used in binary classifica-
tion, at the end of the proposed model. The proposed multinomial classification model displayed higher accuracy 
than the ophthalmologists, thereby demonstrating great utility in clinical support for the precise diagnosis of 
retinal diseases.

In summary, we developed a deep CNN model that could distinguish CSC subtypes with > 70% accuracy. 
Such an efficient automatic classification model could play a subsidiary role in supporting retina experts in 
distinguishing and managing various CSC subtypes. Our findings provide a basis for developing accurate OCT-
based models for diagnosing and managing CSC and other macular diseases.

Methods
Ethics. This study was conducted in accordance with the tenets of the Declaration of Helsinki. The Eth-
ics Committee of Hangil Eye Hospital approved the research protocol and its implementation (Hangil IRB—
20,007). The committee waived the requirement for informed consent, considering the retrospective observa-
tional study design.

Data collection and labeling. We analyzed the records of patients who visited the Hangil Eye Hospital 
between January 2015 and January 2020. Independent retina specialists diagnosed all CSC cases using fundus 
examinations and FP, AF, IR, FA, ICGA, and OCT images. A confocal scanning laser ophthalmoscope (Heidel-
berg Retina Angiograph, HRA; Heidelberg Engineering, Heidelberg, Germany) was used to perform simultane-
ous FA and ICGA in all cases.

We used the spectral domain (SD)-OCT (Heidelberg Spectralis, Heidelberg Engineering, Heidelberg, Ger-
many) images of 435 patients with CSC. We selected one eye per patient, and included images from a single 
visit per patient. Moreover, we excluded data that revealed the presence of other potentially conflicting retinal 
pathologies, such as AMD, polypoidal choroidal vasculopathy, pachychoroid neovasculopathy, and pachychoroid 
pigment epitheliopathy. We randomly selected one to five non-centered image cuts from 25 volume scan image 
cuts for each OCT volume and five centered image cuts displaying the typical CSC pattern.

We used the modified version of Daruich et al.’s CSC classification  scheme15. Based on the RPE or photo-
receptor status and the duration of symptoms, patients were classified into one of the following CSC subtypes: 
(1) acute CSC with SRF lasting ≤ 4 months; (2) non-resolving CSC with SRF persisting > 4 months; (3) chronic 
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atrophic CSC with definite RPE and photoreceptor atrophy, with or without SRF; and (4) inactive CSC without 
SRF, but with signs of a previous CSC episode with RPE irregularity (Table 3 and Fig. 4).

Two retina specialists (DDH and JMH) examined the medical records and performed categorization. All 
images obtained using OCT, FA, and ICGA multimodal imaging methods were included in this study. In cases 
of disagreement, a third retina specialist (JSH) evaluated the discrepancy and discussed the case with other 
specialists. Following discussion, all discrepancies were resolved by consensus.

Data preprocessing. We prepared 3,209 SD-OCT images as an input for the deep neural network by crop-
ping each 596 × 1264-sized SD-OCT image into a 340 × 746-sized RGB image. We subsequently down-sampled 
the cropped 340 × 746 image to a 224 × 224 RGB image for input into the deep neural network, which only 

Figure 4.  Representative cases of CSC according to the subtypes: Normal (A), Acute (B), Non-resolving (C), 
Chronic atrophic (D), and Inactive CSC (E). In acute CSC (B), IR (B3) showed decreased reflectance on foveal 
center due to SRF. FA (B4) shows leakage of dye in ink blot pattern and OCT shows (B6) increased subfoveal 
choroidal thickness and presence of subretinal fluid. In non-resolving CSC (C), FA (C4) shows minimal leakage 
of dye and OCT (C6) shows subretinal fluid with RPE undulation. In chronic atrophic CSC (D), AF (D2) shows 
gravitational track of RPE atrophy and OCT (D6) shows disrupted outer retinal layer with atrophic changes 
of photoreceptor layer. In inactive CSC (E), AF (E2) and OCT (E6) shows RPE irregularity without atrophy. 
IR (E3) image shows multiple granular pattern. FP Color fundus photography, AF Fundus autofluorescence, 
IR Infrared, FA Fluorescein angiography, ICGA  Indocyanine green angiography, OCT Optical coherence 
tomography.
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accepted the fixed-sized images. Interestingly, 224 × 224 RGB is widely used for popular image classification 
models, such as VGG-1626 and Resnet-5027. To avoid overfitting, we performed data augmentation for building 
a robust model on a variety of input images. In particular, the data augmentation process included the following 
steps: (i) random horizontal image flips, (ii) random width/height image shift in the range of [-1.0, 1.0] pixels, 
and (iii) random rotations up to 15° of the image. We performed the data augmentation process only in the 
training phase.

Model architecture. To classify a specific OCT image into four different retinal diseases, we built a deep 
learning model, based on the well-known CNN architecture, VGG-1626. Despite other well-known CNN archi-
tectures, including Resnet-5027 and Inception-V328, we selected VGG-16 considering its better performance. The 
proposed model consisted of 13 CNN layers, followed by a rectified linear unit (ReLU) activation function, five 
max-pooling layers, and four completely connected layers with dropouts and soft-max activation (Fig. 5). While 
the dropout can help to avoid overfitting, a fully connected layer is a traditional multi-layered  perceptron29. We 
used the final output layer with a soft-max activation  function25 at the end of the proposed model, to predict one 
of the four subtypes. Herein, the soft-max activation function converted a raw prediction vector in the range 
of [− infinity, + infinity] (e.g., [2.0, 1.0, 0.5, 0.2]) from the logits layer to a vector of multiple categorical prob-
abilities in the range of [0, 1] (e.g., [0.6, 0.2, 0.1, 0.1]). Interestingly, 0.6, 0.2, 0.1, and 0.1 denoted the probability 
that the given OCT image belonged to the first, second, third, and fourth categories, respectively. The model 
subsequently compared the soft-max outputs with one-hot encoded labels to calculate the cross-entropy  loss25. 
If the index of the highest value of the soft-max outputs did not match the correct (ground-truth) label index, 
the proposed model obtained a penalty and updated its weights.

Furthermore, we applied the transfer learning method to avoid overfitting, and to train our model  faster30. 
Specifically, we initialized 13 CNN layers with pre-trained weights, which were components of VGG-16 and 
acquired from the large-scale dataset  ImageNet31. Consequently, we froze the CNN layers during training to 
reduce the computation time. The proposed deep neural network comprised 27,267,588 trainable parameters.

Grad‑CAM visualization. We applied Grad-CAM to visualize the pathological region of an OCT  image17. 
Grad-CAM highlighted the important regions in the OCT image when our proposed model classified the target 
label (acute, chronic, inactive, and non-resolving). We determined the activated regions using the gradients for 

Table 3.  Modified central serous chorioretinopathy classification according to the subretinal fluid, retinal 
pigment epithelium, and photoreceptor  status15,22. a CSC central serous chorioretinopathy. b SRF subretinal fluid. 
c RPE retinal pigment epithelium. d NA not available.

CSCa subtype SRFb SRF duration RPEc status

Acute Yes  ≤ 4 months Normal RPE or RPE alterations without atrophy

Non-resolving Yes  > 4 months Normal RPE or RPE alterations without atrophy

Chronic atrophic Yes or No NAd Widespread (or focal) RPE and photoreceptor atrophy with or without gravitational 
tracks

Inactive No NA Signs of previous CSC episode with RPE alterations without atrophy

Figure 5.  An illustration of the proposed model based on VGG-16 architecture. Our proposed model consists 
of an input layer, 16 convolutional neural network layers with ReLU activation functions, five max-pooling 
layers, four FC layers with dropouts, and soft-max. The final FC layer with a soft-max activation function has 
been used to predict one of the four subtypes, i.e., acute, chronic, in-active, and non-resolving central serous 
chorioretinopathy.
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the feature maps of the CNN layer. Moreover, we created a heat map to highlight the area of the image used by 
the model for classification.

Experiment setup. To train and evaluate the proposed model, we performed five-fold cross-validation. We 
split our dataset into five different folds, and subsequently trained the model with four folds. The model was then 
tested with the remaining fold. We conducted five classification rounds, each of which used a different test fold, 
and calculated the average value of the performance metrics for the five rounds. We split the datasets by patients. 
That is, not a single patient existed across different folds. To compare the model performance with that of other 
well-known CNN architectures, including Resnet-5027 and Inception-V328, we conducted five cross-validations 
on these models. All models (including the proposed model) were trained with a batch size of 64, epochs of 30, 
and Adam  optimization32 (learning rate: 0.0001).

To evaluate the proposed model from a clinical perspective, we selected the classification round that dem-
onstrated the best performance in the five-fold cross-validation and provided the test fold data of the selected 
round to eight ophthalmologists, including three ophthalmology residents, three retina fellows, and two retina 
specialists, each with > 10 years of clinical experience at an academic ophthalmology center. They reviewed a 
test fold comprising 186, 140, 109, and 185 OCT images for acute, chronic, inactive, and non-resolving cases, 
respectively. To obtain the collective opinion of multiple ophthalmologists for each case, we reported on the 
eight ophthalmologists’ majority consensus. For example, if six ophthalmologists identified an OCT image 
as non-resolving and the other two ophthalmologists classified it as inactive, the image would be classified as 
non-resolving.

Statistical analyses. We used Cohen’s Kappa coefficients to rate the agreement level between the two ret-
ina experts. We calculated this statistic using Scikit-learn, a well-known Python library.

Data availability
The data are not available for public access because of patient privacy concerns, but are available from the cor-
responding author on reasonable request.
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