
1

Vol.:(0123456789)

Scientific Reports |          (2022) 12:302  | https://doi.org/10.1038/s41598-021-04419-w

www.nature.com/scientificreports

Predicting suspended sediment 
load in Peninsular Malaysia using 
support vector machine and deep 
learning algorithms
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High loads of suspended sediments in rivers are known to cause detrimental effects to potable water 
sources, river water quality, irrigation activities, and dam or reservoir operations. For this reason, 
the study of suspended sediment load (SSL) prediction is important for monitoring and damage 
mitigation purposes. The present study tests and develops machine learning (ML) models, based 
on the support vector machine (SVM), artificial neural network (ANN) and long short‑term memory 
(LSTM) algorithms, to predict SSL based on 11 different river data sets comprising of streamflow (SF) 
and SSL data obtained from the Malaysian Department of Irrigation and Drainage. The main objective 
of the present study is to propose a single model that is capable of accurately predicting SSLs for any 
river data set within Peninsular Malaysia. The ANN3 model, based on the ANN algorithm and input 
scenario 3 (inputs consisting of current‑day SF, previous‑day SF, and previous‑day SSL), is determined 
as the best model in the present study as it produced the best predictive performance for 5 out of 11 of 
the tested data sets and obtained the highest average RM with a score of 2.64 when compared to the 
other tested models, indicating that it has the highest reliability to produce relatively high‑accuracy 
SSL predictions for different data sets. Therefore, the ANN3 model is proposed as a universal model 
for the prediction of SSL within Peninsular Malaysia.

The background of the present study is first described in this section. This is followed by descriptions of the 
literature review, research gap, and contributions of the present study.

Background. The conservation of river water quality is important for human civilization as river water often 
represents a source of potable water while also being used for irrigation purposes in many regions, including 
Peninsular  Malaysia1–4. High suspended sediment loads (SSLs), which essentially comprise of tiny clay, silt, and 
sand particles, are known to have detrimental effects on the quality of river water as the sediments may act as 
transport mediums for pollutants and  bacteria5,6. The pollutants include phosphorus and heavy metals namely 
zinc, mercury, and manganese. High suspended sediment loads (SSLs) also affect the ecosystems within rivers 
by reducing the survivability of aquatic plants as less sunlight is able to penetrate through the river water and be 
utilised for photosynthesis. History shows many instances of pollutions and disasters caused by unmonitored 
or unregulated SSL in Peninsular Malaysia and around the globe. In 2016, it was reported by Malaysia’s Natural 
Resources and Environment Minister that a major Malaysian river recorded a Nephelometric Turbidity Unit 
(NTU) of 6000, indicating a significantly high concentration of suspended sediments causing poor water qual-
ity. Recently in 2021, Sungai Pinang was reported to be polluted with sediments consisting of broken-down 
organic matter, causing the river to have a black appearance. This sediment-based pollution was a source of foul 
stench affecting a nearby food court and condominium within the vicinity of the Karpal Singh Drive. Also very 
recently in 2021, 305 lakes and rivers in Minnesota, United States were listed as too polluted to meet the required 
standards. Among the causes of high pollution were high sediment concentrations, which harmed fish as they 
struggled to find food due to high bacteria environments and algal blooms caused by eutrophication. Toxic algal 
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blooms caused by sediments richly leached with nutrients such as phosphorus were also reported in 2018 at the 
St. Lucie River, Florida, United States, causing respiratory problems as well as irritation in the eyes and noses 
of the locals. Increased SSLs may also have an effect on dam and reservoir  operations1,7. Dam inlets and chan-
nels can be obstructed by suspended sediments, while reservoir capacity may be reduced due to the settling of 
suspended sediments caused by relatively slow-moving water in the reservoir vicinity. Therefore, the ability to 
foresee the SSL within a particular river through predictions is especially important as a means to preserve the 
quality and supply of river water resources; to minimize or mitigate damages to the environment and hydrologi-
cal structures namely dams and reservoirs; and to ensure the healthy continuity of hydrology-related activities 
such as  irrigation4,8.

Literature review. Traditionally, the sediment rating curve (SRC), which is a fitted relationship between 
suspended sediment concentration and river water discharge, has been utilised to assess trends and obtain pre-
dictions of SSLs, albeit having long response times and requiring a lot of information. However, a branch of 
artificial intelligence known as machine learning (ML), has been shown to effectively address these  issues5 while 
producing more accurate SSL predictions compared to  SRCs1–3,9–11. ML and deep learning, which is a more 
specialized version of ML typically consisting of neural networks, have also been used to solve important predic-
tion problems within various fields. ML algorithms such as the decision tree (DT), random forest (RF), support 
vector machine (SVM) have been used for short-term water quality prediction to improve water management 
and pollution control, maize crop-yield prediction, and blockchain financial products earnings prediction to 
reduce concern of investors towards the risks and returns of financial products blockchain technology-based 
 applications12–14; while deep learning algorithms such as the artificial neural network (ANN), long short-term 
memory (LSTM), and gated recurrent unit (GRU) have lately been utilized to solve more relatively complex 
problems such as the prediction of points-of-interest for purposes such as monitoring and maintaining public 
health following the coronavirus diseases (COVID-19), the prediction of greenhouse climate to ensure crop 
growth stability, and the prediction of health data with privacy reservation to combat the issue of missing data 
due to healthcare equipment failure and system  updates15–18. In recent years, the artificial neural network (ANN) 
and support vector machine (SVM) algorithms have been shown to be among the most established and effective 
algorithms for application in the prediction of SSLs as shown by numerous existing  literature3,6,11,19–30. Other than 
the ANN and SVM, other algorithms have also been studied for the purpose of SSL prediction. Meshram et al.9 
studied the iterative classifier optimizer-based pace regression (ICO-PR) and iterative classifier optimizer-based 
random forest (ICO-RF) for SSL prediction in the Seonath River basin, India. It was shown that the ICO-RF is 
more accurate than the ICO-PR, and stand-alone PR and RF models. The study by Samadianfard et al.31 hybrid-
ized RF and multi-layer perceptron (MLP) with genetic algorithm (GA) and stochastic gradient descent (SGD) 
to produce four suspended sediment concentration (SSC) predictive algorithms namely GA-RF, GA-MLP, SGD-
RF, and SGD-MLP. These algorithms were tested using data from the Minnesota and San Joaquin rivers; and it 
was determined that the GA-RF and GA-MLP models performed the best in predicting SSC for the Minnesota 
River, while the SGD-RF and SGD-MLP models were the most accurate for the San Joaquin River. Shadkani 
et al.32 used MLP, MLP-SGD, and gradient boosted tree (GBT), to predict SSL for the St. Louis and Chester sta-
tions along the Mississippi River, United States. It was found that the SGD optimization on the MLP resulted in 
more accurate SSL predictions, hence SGD-MLP was put forward as the most accurate model for SSL prediction. 
Hazarika et al.5 applied the coiflet wavelet-based large margin distribution machine-based regression (LDMR) 
and coiflet wavelet-based large margin distribution machine-based extreme learning machine (ELM) to predict 
SSL in the Tawang Chu River, India. The study showed that the two coiflet wavelet-based models produced bet-
ter predictions compared to other tested models based on twin support vector regression (SVR), stand-alone 
LDMR, and stand-alone ELM. AlDahoul et al.2 studied the application of long short-term memory in predicting 
SSL at the Johor River basin, Malaysia. It was demonstrated that LSTM is capable of outperforming several other 
ML algorithms namely elastic net linear regression (ENLR), ANN, and extreme gradient boosting (XGB). The 
prediction of SSL using LSTM was also investigated in the study by Nourani and  Behfar33, in which it was found 
that the LSTM-based models were superior to classical feed-forward neural networks in predicting SSL at the 
Mississippi River. The adaptive neuro-fuzzy inference system (ANFIS) was trialled with different membership 
functions to predict SSL for the Cumberland River, United States in the study by Babanezhad et al.34. ANFIS with 
the trimf membership function was found to produce the best predictive performance among the tested models, 
including ant colony optimization-based fuzzy inference system (ACOFIS). ANFIS was also hybridized with the 
bat algorithm (ANFIS-BA) in the study by Ehteram et al.35, in which it was found that ANFIS-BA was more reli-
able for SSL prediction in the Atrek River, Iran compared to other tested models namely ANFIS hybridized with 
whale algorithm (ANFIS-WA), and hybridized multi-feedforward neural network (MFNN) models with the BA 
and WA algorithms (MFNN-BA and MFNN-WA). The study by Azamathulla et al.36 applied genetic expression 
programming-based (GEP) models to predict SSLs in the Muda River, Langat River, and Kurau River in Malay-
sia. The GEP-based model was discovered to produce better predictive performances when compared to the 
other tested models which are ANFIS and a benchmark regression model. The dynamic evolving neural fuzzy 
inference system was studied by Adnan et al.37 for the prediction of SSL at two locations within China, namely 
Guangyuan and Beibei. DENFIS was shown to have a higher predictive accuracy compared to the other two 
models tested, which are ANFIS with fuzzy c-means clustering (ANFIS-FCM) and multivariate adaptive regres-
sion splines (MARS). However, in the study by Yilmaz et al.1, MARS was found to be capable of predicting SSL 
for the Çoruh River basin with the lowest error, compared to models based on the artificial bee colony (ABC) 
and teaching–learning based optimization. Tao et al.8 applied the radial basis M5Tree (RM5Ttree) to predict SSL 
for the Trenton hydrological station on the Delaware River, United  States8. Results of the study showed that the 
RM5Tree model produced predictions with enhanced accuracy and outperformed the other tested models based 
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on the response surface method (RSM), ANN and the classical M5Tree. Using the same data set applied in the 
study by Tao et al.8, Salih et al.7 used M5P, attribute classifier M5P (AS-M5P), M5Rule (M5R) and K Star (KS) 
models to predict  SSL7. Different input scenarios of streamflow (SF) and SSL were used in this study, in which it 
was found that M5P was superior among the tested models. A hybrid version of the M5P, named bagging-M5P, 
was utilized by Khosravi et al.38 for SSL prediction in the Estero Morales River, Chile. The study showed bagging-
M5P to be superior to the classical M5P, reduced error pruning tree (REPT), instance-based learning (IBK), and 
hybridized versions of the REPT model. Tabatabaei et al.10 predicted SSL using data from the Ramian hydrologi-
cal station on the Ghorichay River, Iran by utilizing an SRC model optimized with the non-dominated sorting 
genetic algorithm II (NSGA-II), which increased prediction efficiency. In the study by Uca et al.4, multiple linear 
regression (MLR) and ANN were tested to predict SSL for the Jenderam catchment, Malaysia. The results dem-
onstrated the capability of MLR in outperforming ANN with regards to SSL prediction accuracy.

Research gap. A limitation that is present in majority of the aforementioned existing studies on SSL predic-
tion is that most have focused on utilizing ML algorithms to develop predictive models for only one hydrological 
station or river, which means the models were developed based off of one data set. As the magnitude and behav-
iour of SSLs for each river is different, the suitability of certain ML algorithms for the task of SSL prediction may 
vary. Certain ML algorithms may be suitable and produce good SSL predictions for a hydrological station at a 
particular river but may not perform well in predicting SSLs for a different river, due to variance in anthropo-
genic and natural factors. In the case study of Peninsular Malaysia, existing studies have utilized ML algorithms, 
particularly ANN, MLR, LSTM, and GEP, to develop SSL predictive  models2,4,27–29,36. Apart from the study by 
Azamathulla et al.36, all studies on SSL prediction within Peninsular Malaysia have focused on developing ML 
models solely based on data sets from single hydrological stations located in rivers such as Sungai Johor, Johor; 
Sungai Pari, Perak, Sungai Langat, Selangor, and the Jenderam catchment, Selangor. This creates a noteworthy 
research gap for the Peninsular Malaysia case study, as it is unknown whether there is a model or algorithm that 
is capable of producing accurate SSL predictions for multiple different rivers within the region. The present study 
contributes towards addressing this research gap through the development of predictive models for SSLs based 
on time series data sets of SF and SSLs from hydrological stations located along 11 different rivers throughout 
Peninsular Malaysia. The two established algorithms based on existing literature within the current field, namely 
SVM and ANN, were selected for utilization in the present study. In addition, LSTM was also chosen for the 
development of predictive models as it has recently been documented to have good ability in accurately predict-
ing  SSLs2,33, while also already performing well in other fields relating to flood forecasting, wind turbine fault 
diagnosis, rainfall-runoff modelling, building energy consumption forecasting, and drought  forecasting39–43.

Contributions. The present study was motivated by the aforementioned cases of SSL pollution in the Malay-
sian and American rivers, such as Sungai Pinang and St. Lucie River. Early anticipation and mitigation measures 
through the application of ML models could have played a significant role in reducing damages towards the 
local people and natural habitat. As there are many novel and advanced SSL-predicting models being developed 
in different study regions and demonstrated in scientific literature, practical adoption of ML predictive models 
for real-life application hydrological stations may not be straightforward due to the uncertainty of whether a 
selected ML model is able to replicate its good performance for different rivers with varying SSL behaviour and 
magnitude due to different anthropogenic and natural factors. Therefore, the scientific novelty of the present 
study is the selection and proposal of a single predictive model that is capable of producing SSL predictions of 
good accuracy for different rivers throughout Peninsular Malaysia. The major contribution of the present study 
is the testing and development of predictive ML models based on 3 different ML algorithms for hydrological 
stations on 11 different rivers throughout Peninsular Malaysia, in order to determine and propose a single ML 
model that is capable of predicting SSLs with high accuracy for multiple different rivers. Using time series data 
of SF and SSL for each river, SVM, ANN, and LSTM are tested to predict SSLs for each river using four different 
input scenarios. The performance of each model is evaluated using selected performance evaluation measures, 
namely mean absolute error (MAE), root mean squared error (RMSE) coefficient of determination  (R2) and 
ranking mean (RM). The ML model that produces the best SSL predictions for the most rivers and obtains 
the best average RM is then proposed as a universal model that may be used for any specific case study within 
Peninsular Malaysia. The findings obtained in the present study may mainly be of interest to hydrological organi-
zations looking for suitable or proven ML models for practical application within Peninsular Malaysia, as the 
models have been developed and tested using 11 different river data sets within the selected region. However, 
audiences from abroad may also take interest in the findings of the present study as the proposed SSL predictive 
model may possibly produce accurate SSL predictions for case studies in other regions around the world as well. 
The method of selecting the best SSL predictive ML model in the present study, which is by using performance 
evaluation measures to determine the model that produces the best SSL predictions for the most rivers and 
obtains the best average RM, may also be a point of interest for a wider audience regardless of geographic loca-
tion. The rest of the present study is organized as follows: Sect. 2 describes the materials and methods used to 
carry out the present study. Section 3 reports and discusses the results of the present study. Section 4 concludes 
the overall study.

Materials and methods
In this section, the materials and methods employed in the process of predicting SSL for the 11 selected rivers 
within Peninsular Malaysia are explained. Important information regarding the location and data of case study, 
model development process, ML algorithms, data pre-processing, and performance evaluation measures are 
described.
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Location and data of case study. Peninsular Malaysia represents the western region of Malaysia com-
prising of 13 states and 2 federal territories. It encompasses a total area of 132,265  km2, which is about 40% of 
the total area of Malaysia; and is located just North of the equator. Peninsular Malaysia has approximately 1235 
river  basins44, with Sungai Pahang representing the longest river in the region at 459 km in length. In the pre-
sent study, raw data in the form of daily average SF and daily total SSL were obtained from the Water Resources 
Management and Hydrology Division of the Malaysian Department of Irrigation and Drainage for different 
rivers within 11 states in Peninsular Malaysia. Based on the volume and continuity of the available data; and 
the relevance of the rivers to their respective state, one river is selected per state for the purpose of the present 
study. Information on the selected rivers for each state; identification and location of the hydrological measuring 
stations; and the duration of data provided by the respective station for each selected river is shown in Table 1.

Model development process. The model development process in the present study consists of raw data 
collection, data pre-processing, feature selection, model prediction, and performance analysis. This is illustrated 
as shown in Fig. 1.

Machine learning algorithms. Three ML algorithms were chosen for SSL prediction in the present study, 
which are SVM, and two deep learning algorithms namely ANN and LSTM. The SVM and ANN algorithms are 
considered established in the current field as they have been shown to produce good SSL predictions by many 
existing  literature3,6,11,19–30, while the LSTM algorithm has recently been found to produce good SSL-predicting 
performances in recent  studies2,33 and has already shown good performances in several other studies within dif-
ferent  fields39–43. The Python programming language was selected for the development of SSL predictive models 
as it easy to comprehend and command, while also having good library support. The system specifications used 
to develop the predictive models in the present study are detailed in Table 2.

Support vector machine (SVM). The SVM, also known as the decision support system, was proposed by 
 Vapnik45. It represents a kernel-based algorithm that is abundantly used for pattern classification, function 
approximation, and also regression  analyses24,26, especially in hydrological and time series  simulations21. The 
version of SVM used to solve regression analyses is typically known as support vector regression (SVR), which 
is utilized to predict SSL in the present study. SVR generally works by estimating the learning data through the 
definition of a function, and determining the linear separation function to enable realistic results that reflect 
its statistical learning  theory24. SVM is advantageous in the way that it has less tendency to overfit, has good 
ability to generalize, can simultaneously minimize estimation errors, and linearly separate inputs in a mapped 
high dimensional feature  space26. However, SVM is sensitive to noise, hence its predictive ability reduces when 
the utilized data set is significantly  noisy46–48. Its predictive performance also reduces with larger data sets due 
to an increase in training  time48. SVM will also underperform in instances where there are fewer training data 
samples in comparison to the number of features for each data point. According to Buyukyildiz &  Kumcu24, the 
SVM function is given by:

where (αi − α∗
i ) is the Lagrange multiplier, K(x, z) is the kernel function inside the multiplier, and bi is bias.

The main SVR hyperparameter that is tuned before running the SVR models is the kernel function. According 
to Himanshu et al.26 and Rahgoshay et al.21, among the four kernel functions that can be utilized namely radial 
basis functions (RBF), linear, polynomial, and sigmoid, RBF represents the best function to be used because of 
its good ability in handling complicated parameter  space26. Through trial and error, it was indeed found that 
RBF gave the best results for SSL prediction in the present study. All other unmentioned SVR hyperparameters 

(1)f (x) =

N∑

i=1

(αi − α∗

i )K(x, z)+ bi

Table 1.  Information on selected rivers’ data for each state.

State River Streamflow station no
Suspended sediment 
station no Latitude Longitude Data duration

Johor Sungai Johor 1,737,451 1,737,551 01°46′50"N 103°44′45"E 1978 to 1998

Kedah Sungai Muda 5,605,410 5,606,510 05°36′35"N 100°37′35"E 1976 to 2009

Kelantan Sungai Kelantan 5,721,442 5,721,542 05°45′45"N 102°09′00"E 1980 to 1997

Melaka Sungai Melaka 2,322,413 2,322,513 02°20′35"N 102°15′10"E 1979 to 2004

Negeri Sembilan Sungai Kepis 2,723,401 2,723,501 02°42′20"N 102°21′20"E 1980 to 1995

Pahang Sungai Pahang 3,527,410 3,527,510 03°30′45"N 102°45′30"E 1988 to 2009

Perak Sungai Perak 4,809,443 4,809,553 04°49′10"N 100°57′55"E 1977 to 1995

Perlis Sungai Arau 6,503,401 6,503,501 06°30′10"N 100°21′05"E 1986 to 1995

Selangor Sungai Selangor 3,414,421 3,414,521 03°24′10"N 101°26′35"E 1976 to 2001

Terengganu Sungai Dungun 4,832,441 4,832,541 04°50′35"N 103°12′15"E 1977 to 1996

F.T. of Kuala Lumpur Sungai Klang 3,116,430 3,116,530 03°08′20"N 101°41′50"E 2010
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Figure 1.  The model development process employed in the present study.

Table 2.  System specifications used to train and test ML models.

Parameter Specification

Programming language Python 3.7.12

ML libraries Scikit-learn 1.0 (for SVM)
TensorFlow 2.6.0 (for ANN, LSTM)

Notebook environment Jupyter (hosted by Colaboratory)

Central processing unit (CPU) Intel® Core™ i7-6700HQ CPU @ 2.60 GHz

Random access memory (RAM) 16.0 GB

System type 64-bit operating system, × 64 based processor

Table 3.  Hyperparameter tuning for SVR algorithm.

Hyperparameter tuning 
of SVR algorithm

Kernel function RBF
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were left as their default values given that good predictions were obtained. The SVR hyperparameter tuning is 
shown in Table 3; while the time and space complexity of SVR are as follows:

where n is the number of data points and k is the number of support vectors.

Artificial neural network (ANN). The ANN is a non-linear data processing mathematical algorithm that is able 
to connect multiple input variable to produce one or more output  variables8,28. It is based on the biological func-
tioning of the neural connections within the human  brain19. This algorithm typically comprises of three layers, 
which are the input layer, hidden layer, and output layer. The hidden layer may consist of either one or multiple 
layers, and functions to make sense of a multidimensional expansion of the input  layer19. The architecture of 
an ANN is made up of units called neurons, also known as  nodes8,19,28. One of the drawbacks of ANN is that 
this algorithm can be computationally expensive and highly dependent on hardware  capability49–51. The ANN 
requires processing power parallel with its structure, hence adequate processors are needed for the models to be 
trained with realistic and efficient training durations. In addition, there does not exist a specific set of rules to 
determine the ANN structure during model development or coding. Therefore, a suitable ANN architecture is 
to be achieved with model development experience and processes of trial-and-error. Other than that, the ANN 
has a black-box nature that limits its ability to pin-point causal relationships between variables and a particular 
output; and may overfit during training due to model interaction or non-linearity50,51. According to several 
 studies8,19,28, the mathematical model of an ANN may be represented by:

where yi is the output variable, N is the number of neurons, ωij is the weight connecting the jth neuron and the 
ith neuron, xi is the input vector, bj is the bias of the jth neuron, and f is the activation function.

As mentioned by Mustafa et al.28, there is no certain rule for selecting the number of neurons in the hidden 
layer. Therefore, this hyperparameter must be selected through trial-and-error. Through testing, it was found 
that 2 hidden layers with 6 neurons in each layer was good for SSL prediction in the present study as it provided 
good adaptability in producing good results for the 11 different river data sets. Other than the number of neurons 
and number of hidden layers, different number of epochs, batch numbers, training algorithms, and activation 
functions were tested to find the best possible ANN architecture capable of adapting to the 11 different river 
data sets. The best ANN architecture found is shown in Table 4. Other unmentioned hyperparameters includ-
ing initialiser, regulariser, and constraints, are remained default as good predictions are obtained. The time and 
space complexity of the ANN are as follows:

where n is the number of data points, e is the number of epochs, i is the number of input layer neurons, j is the 
number of second layer neurons, k is the number of third layer neurons, l is the number of output layer neurons, 
and z is the total number of neurons.

The train and validation loss vs epochs graphs are produced during each of the ANN models’ training process. 
This is to ensure through graphical observation that the losses reduce and converge, while also to verify that 
overfitting does not occur during training. As a sample, the losses vs epochs graph for the best performing ANN 
model (ANN3) for the Johor data set is shown in Fig. 2.

(2)Training time complexity = O(n2)

(3)Training space complexity = O(k)

(4)yi = f

(
N∑

i=1

ωijxi + bj

)

(5)Training time complexity = O(ne(ij + jk + kl))

(6)Training space complexity = O(z)

Table 4.  Hyperparameter tuning for ANN algorithm.

Hyperparameter tuning of ANN algorithm

Number of hidden layers 2

Number of neurons in each hidden layer 6

Number of epochs 100

Early call-back function When validation loss does not improve after 50 epochs

Batch number 32

Training algorithm Adam

Activation function ReLU

Loss function MSE
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Long short‑term memory (LSTM). The LSTM is an advanced version of the recurrent neural networks (RNN) 
that addresses issues with conventional RNNs relating to gradient vanishing and explosion. This algorithm 
boasts memory cells and control gates, which together are able to collect and store  information2,39. The four con-
trol gates are the input gate, update gate, forget gate, and output  gate42. They enable the writing, updating, forget-
ting, and reading of the information forwarded from the memory  cells42. Through the operation of the control 
gates, the LSTM is hence able to minimise errors by retaining relevant information and forgetting irrelevant 
information as needed. Similar to the ANN and deep learning ML algorithms in general, the LSTM requires high 
computational power to train and develop predictive  models52,53. The high memory-bandwidth needed given 
the presence of linear layers in each cell may reduce the hardware efficiency of this algorithm. Depending on 
the LSTM architecture and difficulty of the problem at hand, the LSTM may also take significantly long to train 
and  develop54. Additionally, the LSTM is prone to  overfitting55,56, hence needing dropout regularization and 
early call-back mechanisms to reduce overfitting effects. According to Guo et al.57, the LSTM output is generally 
computed through function:

where ht is the output, ot is the output gate, ⊙ is the Hadamard product, and Ct is the cell status value at time t.
Similar to ANNs, LSTMs also have hidden layers that are occupied by neurons. A trial-and-error process must 

be carried out to determine an optimal number of hidden layers and neurons in each hidden layer. Through test-
ing, it was determined that 2 hidden layers with 50 neurons in each hidden layer was able to provide the best pos-
sible overall SSL predictions for the 11 different river data sets tested in the present study. The number of epochs, 
step number, batch number, training algorithm, dropout regularization on each hidden layer, activation function, 
and recurrent activation function were also experimented with in order to determine the best LSTM architecture 
for the present study, which is detailed in Table 5. Other unmentioned hyperparameters including initialiser, 
regulariser, and constraints, are remained default as good predictions are obtained. Given that LSTMs are local 
in time and  space58, the overall computational complexity of an LSTM for each time step can be described by:

where w is the number of weights.
The train and validation loss vs epochs graphs are produced during each of the LSTM models’ training pro-

cess. This is to ensure through graphical observation that the losses reduce and converge, while also to verify 
that overfitting does not occur during training. As a sample, the losses vs epochs graph for the best performing 
LSTM model (LSTM3) for the Johor data set is shown in Fig. 3.

Data pre‑processing. The pre-processing steps performed on the raw data sets for the selected 11 rivers 
obtained from the Malaysian Department of Irrigation and Drainage are detailed in this section. The data pre-
processing steps include file merging and preparation, imputation of missing data, data partitioning, and feature 
scaling. These steps are performed to prepare the data sets to be fed to the ML algorithms for training and testing 
of models.

File merging and preparation. The SSL and SF data sets for each selected river were obtained separately in .txt 
file format from the Malaysian Department of Irrigation and Drainage. Given that there are 11 selected rivers, a 

(7)ht = ot⊙tanh(Ct)

(8)Overall computational complexity = O(w)

Figure 2.  Train and validation loss vs epochs for ANN3 model training process.
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total of 22 .txt files (11 SSL .txt files and 11 SF .txt files) were collected. For each river, a .csv file was then prepared 
by merging data from the SSL and SF .txt files of each corresponding river. The SF and SSL data in the .csv files 
were arranged into three columns, headed by ‘Date’, ‘SF(t)’, and ‘SSL(t)’. SF(t) denotes the SF at time t or the cur-
rent SF, while SSL(t) denotes the SSL at time t or the current SSL. Unimportant information that readily came 
with the raw data sets were removed.

Missing data. The raw SF and SSL time-series data sets contained missing values which needed to be dealt with 
before proceeding with model training. This is because most ML algorithms produce errors when they encoun-
ter missing values within a data set. In the study field of suspended sediments, it is demonstrated by previous 
studies that imputation using interpolation has been utilized to fill in for missing or unavailable data values with 
likely and reasonable  values59–62. The imputeTS package, developed by Moritz & Bartz-Beielstein63 and available 
in the RStudio environment, was utilized for imputation in the present study. Linear interpolation was adopted 
to inhabit the sections within the data sets in which values are missing. As a sample, the outcome of the imputa-
tion process for missing values in the Johor data set for SF and SSL is shown in Figs. 4 and 5 respectively.

Data partitioning. Data partitioning is applied to the data sets to segregate the daily SF and SSL data for each 
river into a training set and a test set. The training set is utilized to develop and equip the ML models with the 
ability to make SSL predictions, while the test set is used to evaluate the ability and accuracy of the ML models’ 
predictions with the help of selected performance measures. With reference to the study by Kannangara et al.64, 
an optimum ratio for training to testing is found to be 80:20. Existing studies on SSL predictions have also 
shown to use and produce good results using a training data to testing data ratio of 80:202,19,36. Therefore, in the 
present study, 80% of each river’s data set is taken for training while the remaining 20% is used for testing. Using 

Table 5.  Hyperparameter tuning of LSTM algorithm.

Hyperparameter tuning of LSTM algorithm

Number of hidden layers 2

Number of neurons in each hidden layer 50

Number of epochs 100

Early call-back function When validation loss does not improve after 20 epochs

Step number 7

Batch number 32

Training algorithm Adam

Dropout regularization on each hidden layer 0.2

Activation function tanh

Recurrent activation function sigmoid

Loss function MSE

Figure 3.  Train and validation loss vs epochs for LSTM3 model training process.
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this ratio, each river’s data set is partitioned accordingly with similar statistical properties as shown in Table 6. 
Additionally, it is worth to note that for the deep learning algorithms (ANN, LSTM), 20% of the training set is 
used for validation.

Feature scaling. Feature scaling is required to be performed on all data sets as both SVM and the deep learning 
algorithms used in the present study are sensitive to data scales. This data pre-processing step may be carried 
out through either normalisation or standardisation depending on the type of ML algorithm to be used. Feature 
scaling ensures that all data variables are accurately weighted to ensure fast convergence and error minimisa-
tion during  training4,28. In the present study, standardisation is applied on the data sets before training the SVM 
models, while normalisation is used before training the ANN and LSTM models. Both the input and output 
data are scaled before training and testing the models, and it is ensured that the ML models’ outputs are inverse 
transformed back into their original scales before evaluation using the selected performance measures.

Feature selection. Feature selection is essentially the process of selecting input parameters to be used for 
model training. For the present study, in addition to daily SSL data for the 11 selected rivers, SF data has also 
been provided. Existing studies have described SF to significantly affect SSL, as larger river discharges enables 

Figure 4.  SF imputed values for Johor data set. (SF values in units of  m3/s, time step in units of day).

Figure 5.  SSL imputed values for Johor data set. (SSL values in units of ton/day, time step in units of day).



10

Vol:.(1234567890)

Scientific Reports |          (2022) 12:302  | https://doi.org/10.1038/s41598-021-04419-w

www.nature.com/scientificreports/

the transport of sediment through the water body at a higher rate, hence increasing the SSL  magnitude65–68. The 
present study has hence utilised both daily average SF and daily total SSL data to make SSL predictions, as previ-
ous studies have produced good SSL predictions by using these  inputs5,11,24,37. A statistical analysis on the daily 
SF and SSL data for each of the 11 selected rivers is shown in Table 7.

In the present study, the time-series forecasting problem of predicting SSL is re-framed into a supervised 
learning problem by organising the data sets into a sliding window. This step is performed to enable the applica-
tion of SVM and ANN for time-series forecasting, as they are traditionally not time-series forecasting algorithms. 

Table 6.  Data partitioning for each river’s data set.

River data set Total duration Training set Test set

Sungai Johor, Johor 1st January 1978 to  31st December 
1998

1st January 1978 to  26th October 
1994

27th October 1994 to  31st Decem-
ber 1998

Sungai Muda, Kedah 1st January 1976 to  31st December 
2009

1st January 1976 to  22nd March 
2003

23rd March 2003 to  31st Decem-
ber 2009

Sungai Kelantan, Kelantan 1st January 1980 to  31st December 
1997 1st January 1980 to  2nd June 1994 3rd June 1994 to  31st December 

1997

Sungai Melaka, Melaka 1st January 1979 to  31st December 
2004

1st January 1979 to  27th October 
1999

28th October 1999 to  31st Decem-
ber 2004

Sungai Kepis, Negeri Sembilan 1st January 1980 to  31st December 
1995

1st January 1980 to  25th October 
1992

26th October 1992 to  31st Decem-
ber 1995

Sungai Pahang, Pahang 1st January 1988 to  31st December 
2009

1st January 1988 to  14th August 
2005

15th August 2005 to  31st Decem-
ber 2009

Sungai Perak, Perak 1st January 1977 to  31st December 
1995

1st January 1977 to  20th March 
1992

21st March 1992 to  31st December 
1995

Sungai Arau, Perlis 1st January 1986 to  31st December 
1995

1st January 1986 to  7th January 
1994

8th January 1994 to  31st Decem-
ber 1995

Sungai Selangor, Selangor 1st January 1976 to  31st December 
2001

1st January 1976 to  26th October 
1996

27th October 1996 to  31st Decem-
ber 2001

Sungai Dungun, Terengganu 1st January 1977 to  31st December 
1996

1st January 1977 to  7th January 
1993

8th January 1993 to  31st Decem-
ber 1996

Sungai Klang, F.T. of Kuala 
Lumpur

1st January 2010 to  31st December 
2010

1st January 2010 to  26th October 
2010

27th October 2010 to  31st Decem-
ber 2010

Table 7.  Statistical analysis of daily SF and SSL data for the 11 selected rivers. (SF is in units of  m3/s, SSL is in 
units of ton/day).

River data set Data Mean Median Mode Standard dev Min Max Count

Sungai Johor, Johor
SF 40.0 28.7 15.9 43.4 0.5 709.7 7670

SSL 338.0 170.0 70.0 507.4 1.0 9985.0 7670

Sungai Muda, Kedah
SF 87.1 58.0 26.0 88.3 3.0 1160.0 12,419

SSL 428.7 79.0 5.0 1061.9 0.0 9736.0 12,419

Sungai Kelantan, Kelantan
SF 495.7 364.2 509.3 587.1 81.7 9775.1 6575

SSL 368.3 101.0 4.0 744.6 1.0 7820.0 6575

Sungai Melaka, Melaka
SF 5.8 3.3 1.4 7.8 0.0 119.9 9497

SSL 167.2 25.0 1.0 500.2 0.0 9473.0 9497

Sungai Kepis, Negeri Sembilan
SF 0.5 0.2 0.1 1.7 0.0 65.3 5844

SSL 4.3 0.0 0.0 85.2 0.0 6247.0 5844

Sungai Pahang, Pahang
SF 683.5 520.6 497.3 540.5 133.0 6285.3 8036

SSL 8.8 5.0 4.0 24.9 0.0 705.0 8036

Sungai Perak, Perak
SF 219.6 212.0 250.0 109.7 19.0 988.0 6939

SSL 805.0 409.0 42.0 1076.2 0.0 9971.0 6939

Sungai Arau, Perlis
SF 0.7 0.0 0.0 1.6 0.0 23.0 3652

SSL 6.1 1.0 1.0 17.5 0.0 318.0 3652

Sungai Selangor, Selangor
SF 53.9 44.0 34.7 36.7 2.3 313.9 9497

SSL 790.0 338.0 9.0 1062.1 2.0 9178.0 9497

Sungai Dungun, Terengganu
SF 124.5 78.2 50.0 185.1 9.4 3178.8 7305

SSL 325.3 91.9 13.0 604.2 0.0 8526.0 7305

Sungai Klang, F.T. of Kuala Lumpur
SF 0.5 19.7 20.8 9.6 10.3 105.6 365

SSL 814.6 755.0 789.0 597.0 224.0 6006.0 365
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Figure 6.  Partial autocorrelogram for SSL (Sungai Johor, Johor data set).

Figure 7.  Partial autocorrelogram for SSL (Sungai Muda, Kedah data set).

Figure 8.  Partial autocorrelogram for SSL (Sungai Kelantan, Kelantan data set).

Figure 9.  Partial autocorrelogram for SSL (Sungai Melaka, Melaka data set).
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Figure 10.  Partial autocorrelogram for SSL (Sungai Kepis, Negeri Sembilan data set).

Figure 11.  Partial autocorrelogram for SSL (Sungai Pahang, Pahang data set).

Figure 12.  Partial autocorrelogram for SSL (Sungai Perak, Perak data set).

Figure 13.  Partial autocorrelogram for SSL (Sungai Perlis, Perlis data set).
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Before organising the data sets into a sliding window, a partial autocorrelation function (PACF) analysis was 
performed on all SSL data to determine the lagged SSL data that are most correlated to the current-day SSL data. 
Based on the PACF analyses in Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, for most data sets, the 1-day lagged SSL 
[SSL(t-1)], 2-day lagged SSL [SSL(t-2)], and 3-day lagged SSL [SSL(t-3)] are shown to have a significant correla-
tion with the current-day SSL [SSL(t)].

Next, Pearson’s correlation coefficient is employed to analyse the correlation between current-day SF data 
[SF(t)] and SSL(t). Pearson’s correlation coefficient, denoted by rxy , is defined by:

where x,y are respective data means; xi , yi are individual respective data points; and n is the sample size.
The lagged SSL and SF data are then studied using Pearson’s correlation coefficient to understand the predic-

tive powers of these data as input parameters on SSL(t). Pearson’s correlation coefficient matrix for all the data 
sets is as shown in Table 8. It can be seen that there is indeed significant correlation between SSL(t-1), SSL(t-2), 
SSL(t-3), SF(t), SF(t-1), SF(t-2), SF(t-3) and SSL(t) in almost all of the data sets.

Based on the findings from the PACF and Pearson’s correlation coefficient analyses, the SSL(t-1), SSL(t-2), 
SSL(t-3), SF(t), SF(t-1), SF(t-2), SF(t-3) data are determined to have significant predictive powers over SSL(t), 
hence are selected as input parameters for the present study. Therefore, in addition to the Date, SSL(t), and SF(t) 

(9)rxy =

∑n
i=1 (xi − x)

(
yi − y

)
√∑n

i=1 (xi − x)2
√∑n

i=1

(
yi − y

)2

Figure 14.  Partial autocorrelogram for SSL (Sungai Selangor, Selangor data set).

Figure 15.  Partial autocorrelogram for SSL (Sungai Dungun, Terengganu data set).

Figure 16.  Partial autocorrelogram for SSL (Sungai Klang, Federal Territor y of Kuala Lumpur data set).



14

Vol:.(1234567890)

Scientific Reports |          (2022) 12:302  | https://doi.org/10.1038/s41598-021-04419-w

www.nature.com/scientificreports/

Pearson’s correlation coefficient matrix based on Sungai Johor, Johor data set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.957 0.863 0.759 0.827 0.792 0.712 0.623

SF(t-2) 0.957 1 0.957 0.863 0.794 0.827 0.792 0.712

SF(t-1) 0.863 0.957 1 0.957 0.716 0.794 0.827 0.792

SF(t) 0.759 0.863 0.957 1 0.628 0.716 0.794 0.827

SSL(t-3) 0.827 0.794 0.716 0.628 1 0.964 0.883 0.789

SSL(t-2) 0.792 0.827 0.794 0.716 0.964 1 0.964 0.883

SSL(t-1) 0.712 0.792 0.827 0.794 0.883 0.964 1 0.964

SSL(t) 0.623 0.712 0.792 0.827 0.789 0.883 0.964 1

Pearson’s correlation coefficient matrix based on Sungai Muda, Kedah data set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.926 0.814 0.737 0.483 0.451 0.403 0.370

SF(t-2) 0.926 1 0.926 0.814 0.452 0.483 0.451 0.403

SF(t-1) 0.814 0.926 1 0.926 0.408 0.452 0.483 0.451

SF(t) 0.737 0.814 0.926 1 0.379 0.408 0.452 0.483

SSL(t-3) 0.483 0.452 0.408 0.379 1 0.969 0.933 0.913

SSL(t-2) 0.451 0.483 0.452 0.408 0.969 1 0.969 0.933

SSL(t-1) 0.403 0.451 0.483 0.452 0.933 0.969 1 0.969

SSL(t) 0.370 0.403 0.451 0.483 0.913 0.933 0.969 1

Pearson’s correlation coefficient matrix based on Sungai Kelantan, Kelantan data set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.904 0.737 0.613 0.454 0.408 0.335 0.283

SF(t-2) 0.904 1 0.904 0.737 0.409 0.454 0.408 0.335

SF(t-1) 0.737 0.904 1 0.904 0.333 0.409 0.454 0.408

SF(t) 0.613 0.737 0.904 1 0.280 0.333 0.409 0.454

SSL(t-3) 0.454 0.409 0.333 0.280 1 0.934 0.840 0.776

SSL(t-2) 0.408 0.454 0.409 0.333 0.934 1 0.934 0.840

SSL(t-1) 0.335 0.408 0.454 0.409 0.840 0.934 1 0.934

SSL(t) 0.283 0.335 0.408 0.454 0.776 0.840 0.934 1

Pearson’s correlation coefficient matrix based on Sungai Melaka, Melaka data set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.794 0.610 0.528 0.594 0.425 0.293 0.240

SF(t-2) 0.794 1 0.794 0.610 0.433 0.594 0.425 0.293

SF(t-1) 0.610 0.794 1 0.794 0.313 0.433 0.594 0.425

SF(t) 0.528 0.610 0.794 1 0.265 0.313 0.433 0.594

SSL(t-3) 0.594 0.433 0.313 0.265 1 0.709 0.510 0.427

SSL(t-2) 0.425 0.594 0.433 0.313 0.709 1 0.709 0.510

SSL(t-1) 0.293 0.425 0.594 0.433 0.510 0.709 1 0.709

SSL(t) 0.240 0.293 0.425 0.594 0.427 0.510 0.709 1

Pearson’s correlation coefficient matrix based on Sungai Kepis, Negeri Sembilan data set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.387 0.222 0.115 0.652 0.090 0.035 0.009

SF(t-2) 0.387 1 0.387 0.222 0.145 0.652 0.090 0.035

SF(t-1) 0.222 0.387 1 0.387 0.056 0.145 0.652 0.090

SF(t) 0.115 0.222 0.387 1 0.027 0.056 0.145 0.652

SSL(t-3) 0.652 0.145 0.056 0.027 1 0.036 0.014 0.005

SSL(t-2) 0.090 0.652 0.145 0.056 0.036 1 0.036 0.014

SSL(t-1) 0.035 0.090 0.652 0.145 0.014 0.036 1 0.036

SSL(t) 0.009 0.035 0.090 0.652 0.005 0.014 0.036 1

Pearson’s correlation coefficient matrix based on Sungai Pahang, Pahang data set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.974 0.919 0.858 0.588 0.583 0.556 0.520

SF(t-2) 0.974 1 0.974 0.919 0.568 0.588 0.583 0.556

SF(t-1) 0.919 0.974 1 0.974 0.535 0.568 0.588 0.583

SF(t) 0.858 0.919 0.974 1 0.498 0.535 0.568 0.588

SSL(t-3) 0.588 0.568 0.535 0.498 1 0.980 0.931 0.865

Continued
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Table 8.  Pearson’s correlation coefficient matrix for data sets of each selected river.

SSL(t-2) 0.583 0.588 0.568 0.535 0.980 1 0.980 0.931

SSL(t-1) 0.556 0.583 0.588 0.568 0.931 0.980 1 0.980

SSL(t) 0.520 0.556 0.583 0.588 0.865 0.931 0.980 1

Pearson’s correlation coefficient matrix based on Sungai Perak, Perak data set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.947 0.906 0.880 0.383 0.330 0.293 0.270

SF(t-2) 0.947 1 0.947 0.906 0.330 0.383 0.330 0.293

SF(t-1) 0.906 0.947 1 0.947 0.291 0.329 0.383 0.330

SF(t) 0.880 0.906 0.947 1 0.264 0.291 0.329 0.383

SSL(t-3) 0.383 0.330 0.291 0.264 1 0.882 0.808 0.755

SSL(t-2) 0.330 0.383 0.329 0.291 0.882 1 0.882 0.808

SSL(t-1) 0.293 0.330 0.383 0.329 0.808 0.882 1 0.882

SSL(t) 0.270 0.293 0.330 0.383 0.755 0.808 0.882 1

Pearson’s correlation coefficient matrix based on Sungai Perlis, Perlis data set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.835 0.684 0.607 0.862 0.708 0.567 0.496

SF(t-2) 0.835 1 0.834 0.684 0.714 0.862 0.708 0.567

SF(t-1) 0.684 0.834 1 0.834 0.576 0.714 0.862 0.708

SF(t) 0.607 0.684 0.834 1 0.511 0.576 0.714 0.862

SSL(t-3) 0.862 0.714 0.576 0.511 1 0.785 0.600 0.525

SSL(t-2) 0.708 0.862 0.714 0.576 0.785 1 0.785 0.600

SSL(t-1) 0.567 0.708 0.862 0.714 0.600 0.785 1 0.785

SSL(t) 0.496 0.567 0.708 0.862 0.525 0.600 0.785 1

Pearson’s correlation coefficient matrix based on Sungai Selangor, Selangor data set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.944 0.860 0.793 0.782 0.734 0.662 0.605

SF(t-2) 0.944 1 0.944 0.860 0.732 0.782 0.734 0.662

SF(t-1) 0.860 0.944 1 0.944 0.657 0.732 0.782 0.734

SF(t) 0.793 0.860 0.944 1 0.599 0.657 0.732 0.782

SSL(t-3) 0.782 0.732 0.657 0.599 1 0.939 0.851 0.784

SSL(t-2) 0.734 0.782 0.732 0.657 0.939 1 0.939 0.851

SSL(t-1) 0.662 0.734 0.782 0.732 0.851 0.939 1 0.939

SSL(t) 0.605 0.662 0.734 0.782 0.784 0.851 0.939 1

Pearson’s correlation coefficient matrix based on Sungai Dungun, Terengganu data set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.929 0.810 0.701 0.556 0.534 0.457 0.390

SF(t-2) 0.929 1 0.929 0.810 0.484 0.556 0.534 0.457

SF(t-1) 0.810 0.929 1 0.929 0.410 0.484 0.556 0.534

SF(t) 0.701 0.810 0.929 1 0.351 0.410 0.484 0.556

SSL(t-3) 0.556 0.484 0.410 0.351 1 0.897 0.776 0.688

SSL(t-2) 0.534 0.556 0.484 0.410 0.897 1 0.897 0.776

SSL(t-1) 0.457 0.534 0.556 0.484 0.776 0.897 1 0.897

SSL(t) 0.390 0.457 0.534 0.556 0.688 0.776 0.897 1

Pearson’s correlation coefficient matrix based on Sungai Klang, F.T. of Kuala Lumpur data 
set

Variables SF(t-3) SF(t-2) SF(t-1) SF(t) SSL(t-3) SSL(t-2) SSL(t-1) SSL(t)

SF(t-3) 1 0.489 0.299 0.299 0.989 0.498 0.308 0.311

SF(t-2) 0.489 1 0.489 0.299 0.487 0.989 0.498 0.307

SF(t-1) 0.299 0.489 1 0.489 0.297 0.488 0.989 0.497

SF(t) 0.299 0.299 0.489 1 0.291 0.297 0.487 0.989

SSL(t-3) 0.989 0.487 0.297 0.291 1 0.514 0.322 0.317

SSL(t-2) 0.498 0.989 0.488 0.297 0.514 1 0.515 0.322

SSL(t-1) 0.308 0.498 0.989 0.487 0.322 0.515 1 0.514

SSL(t) 0.311 0.307 0.497 0.989 0.317 0.322 0.514 1
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columns described in Sect. 2.4.1, columns for SSL(t-1), SSL(t-2), SSL(t-3), SF(t-1), SF(t-2), SF(t-3) are also added 
into the .csv files for each respective river.

Based on these selected input parameters, several input scenarios are formed to train the ML models for SSL 
prediction. The training of the models using different input scenarios is also performed to test the sensitivity of 
the models to different input combinations, similar to existing  studies2,8,9,23,24,26,35. The designed input parameter 
scenarios are shown in Table 9. With 4 input parameter scenarios, 3 ML algorithms, and 11 data sets, a total of 
132 models were run and evaluated in total.

Performance measures. Four performance measures are selected to evaluate the models’ performances, 
namely the mean absolute error (MAE), root mean squared error (RMSE), coefficient of determination  (R2), and 
ranking mean (RM). MAE, RMSE, and  R2 have been commonly used in SSL prediction  studies2,8–10,19,21,22,24,37,38,69, 
while RM was used by Ahmed et al.70 as a method to rank overall model performance.

Mean absolute error (MAE). The MAE quantifies the average absolute difference between predicted values and 
actual values. Therefore, a lower MAE is desired. In the present study, the MAE is measured in units of ton/day. 
The MAE is defined by:

where yi is the real value, ŷi is the predicted value, and n is the sample size.

Root mean squared error (RMSE). The RMSE is a good indicator of large errors as it places a relatively high 
weight to large errors. A lower RMSE is generally desired. The present study measures the RMSE in units of ton/
day. The equation for computing the RMSE is as follows:

where yi is the real value, ŷi is the predicted value, and n is the sample size.

Coefficient of determination (R2). The  R2 essentially calculates the correlation between real values and predicted 
values.  R2 scores may lie between − 1 and 1, with a value closer to 1 signalling a higher correlation between real 
values and predicted values.  R2 scores are unitless. To calculate  R2, the following equation is used:

where yi is real value, ŷi is predicted value, yi  is the mean of yi , and n is sample size.

Ranking mean (RM). Each model is first ranked based on the scores of the selected performance measures in 
the present study, which are MAE, RMSE, and  R2. Then, the RM of each model is calculated by averaging the 
ranks based on the scores of the three performance measures, MAE, RMSE, and  R2. The higher the RM, the bet-
ter the overall performance of a model. The RM is represented by the formula:

where n is the number of performance analysis measures used, which is 3.

Results and discussion
This section presents and discusses the performances of the developed models for SSL prediction. Comparisons 
and analyses are then made based on the model performances.
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Table 9.  Input parameter scenarios designed for the present study.

Output parameter Input parameter scenario Input parameter(s) Description

SSL(t)

1 SSL(t-1) When SSL data of previous day is available

2 SSL(t-1) + SSL(t-2) + SSL (t-3) When SSL data of previous 3 days is available

3 SSL(t-1) + SF(t) + SF (t-1) When SSL data of previous day and SF data of 
current day and previous day is available

4 SSL(t-1) + SSL(t-2) + SSL (t-3)
 + SF(t) + SF(t-1) + SF(t-2) + SF(t-3)

When SSL data and SF data of previous 3 days 
is available
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Performance of models based on the Sungai Johor, Johor data set. Model ANN3, based on the 
ANN algorithm and input parameter scenario 3, produced the best overall performance in predicting the SSL 
for the Sungai Johor, Johor data set.

ANN3 achieved the best MAE, RMSE, and  R2 with scores of 13.7489 ton/day, 28.4590 ton/day, and 0.9918 
respectively, hence giving it the highest RM of 1.00. The best SVR model was SVR2 (RM = 6.33), while the best 
LSTM model was LSTM4 (RM = 5.67). The models’ performance scores and actual vs predicted SSL of best 
models from each algorithm for the Sungai Johor test set is shown in Table 10 and Fig. 17 respectively.

Performance of models based on the Sungai Muda, Kedah data set. Model ANN3, based on the 
ANN algorithm and input parameter scenario 3, produced the best overall performance in predicting the SSL 
for the Sungai Muda, Kedah data set. ANN3 achieved the best MAE, RMSE, and  R2 with scores of 28.3826 ton/
day, 76.4909 ton/day, and 0.9548 respectively, hence giving it the highest RM of 1.00. The best SVR model was 
SVR3 (RM = 3.00), while the best LSTM model was LSTM3 (RM = 8.67). The models’ performance scores and 
actual vs predicted SSL of best models from each algorithm for the Sungai Muda test set is shown in Table 11 
and Fig. 18 respectively.

Performance of models based on the Sungai Kelantan, Kelantan data set. Model ANN3, based 
on the ANN algorithm and input parameter scenario 3, produced the best overall performance in predicting the 
SSL for the Sungai Kelantan, Kelantan data set. ANN3 achieved the best RMSE and  R2 with scores of 126.0058 
ton/day and 0.9761 respectively, hence giving it the highest RM of 1.67. SVR3 obtained the best MAE with a 
score of 53.7383 ton/day. The best SVR model was SVR3 (RM = 2.33), while the best LSTM model was LSTM4 
(RM = 9.00). The models’ performance scores and actual vs predicted SSL of best models from each algorithm 
for the Sungai Kelantan test set is shown in Table 12 and Fig. 19 respectively.

Table 10.  Models’ performance scores based on Sungai Johor test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 47.1793 118.7276 0.8568 10 8 8 8.67

SVR2 41.6048 111.2320 0.8743 7 6 6 6.33

SVR3 24.9926 122.3341 0.8479 3 9 9 7.00

SVR4 29.1360 142.1895 0.7945 4 10 10 8.00

ANN1 39.7224 113.2527 0.8697 6 7 7 6.67

ANN2 29.7550 80.2473 0.9346 5 3 3 3.67

ANN3 13.7489 28.4590 0.9918 1 1 1 1.00

ANN4 20.6536 37.1175 0.9860 2 2 2 2.00

LSTM1 59.2260 166.5459 0.7190 11 11 11 11.00

LSTM2 60.1567 169.0806 0.7104 12 12 12 12.00

LSTM3 42.6391 90.5516 0.9169 8 5 5 6.00

LSTM4 43.5163 88.5755 0.9205 9 4 4 5.67

Figure 17.  Actual vs predicted SSL of best models based on each algorithm for Sungai Johor test set.
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Performance of models based on the Sungai Melaka, Melaka data set. Model SVR3, based on 
the SVR algorithm and input parameter scenario 3, produced the best overall performance in predicting the SSL 
for the Sungai Melaka, Melaka data set. SVR3 achieved the best MAE, RMSE, and  R2 with scores of 62.3282 ton/
day, 149.6537 ton/day, and 0.7787 respectively, hence giving it the highest RM of 1.00. The best ANN model was 
ANN4 (RM = 3.00), while the best LSTM model was LSTM3 (RM = 9.00). The models’ performance scores and 

Table 11.  Models’ performance scores based on Sungai Muda test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 97.2995 173.7792 0.7669 12 8 8 9.33

SVR2 95.5567 166.7496 0.7854 11 7 7 8.33

SVR3 47.7671 83.1980 0.9466 5 2 2 3.00

SVR4 40.2587 92.3426 0.9342 3 4 4 3.67

ANN1 50.9026 161.8786 0.7977 6 6 6 6.00

ANN2 47.5865 153.4338 0.8183 4 5 5 4.67

ANN3 28.3826 76.4909 0.9548 1 1 1 1.00

ANN4 33.0079 87.8177 0.9405 2 3 3 2.67

LSTM1 82.8842 245.7265 0.5351 10 11 11 10.67

LSTM2 75.4008 245.9534 0.5342 7 12 12 10.33

LSTM3 81.0806 182.1500 0.7445 8 9 9 8.67

LSTM4 81.7226 183.3309 0.7412 9 10 10 9.67

Figure 18.  Actual vs predicted SSL of best models based on each algorithm for Sungai Muda test set.

Table 12.  Models’ performance scores based on Sungai Kelantan test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 151.4002 340.0729 0.8259 7 8 8 7.67

SVR2 147.4009 337.1593 0.8289 6 7 7 6.67

SVR3 53.7383 169.0265 0.9570 1 3 3 2.33

SVR4 85.6392 272.5014 0.8882 4 4 4 4.00

ANN1 153.4962 334.9441 0.8312 8 6 6 6.67

ANN2 143.7879 317.0991 0.8487 5 5 5 5.00

ANN3 81.9359 126.0058 0.9761 3 1 1 1.67

ANN4 68.8114 144.2213 0.9687 2 2 2 2.00

LSTM1 244.7703 504.4452 0.6182 12 11 11 11.33

LSTM2 235.3755 508.0856 0.6127 10 12 12 11.33

LSTM3 238.9999 438.4423 0.7116 11 10 10 10.33

LSTM4 214.0424 424.9830 0.7290 9 9 9 9.00
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actual vs predicted SSL of best models from each algorithm for Sungai Melaka test set is shown in Table 13 and 
Fig. 20 respectively.

Performance of models based on the Sungai Kepis, Negeri Sembilan data set. Model ANN3, 
based on the ANN algorithm and input parameter scenario 3, produced the best overall performance in predict-
ing the SSL for the Sungai Kepis, Negeri Sembilan data set. ANN3 achieved the best RMSE and  R2 with scores 
of 170.9490 ton/day and 0.1340 respectively, hence giving it the highest RM of 2.67. LSTM1 obtained the best 
MAE with a score of 7.0221 ton/day. The best SVR model was SVR4 (RM = 3.67), while the best LSTM model 
was LSTM1 (RM = 5.00). The models’ performance scores and actual vs predicted SSL of best models from each 
algorithm for the Sungai Kepis test set is shown in Table 14 and Fig. 21 respectively.

Performance of models based on the Sungai Pahang, Pahang data set. Model ANN2, based on 
the ANN algorithm and input parameter scenario 2, produced the best overall performance in predicting the 
SSL for Sungai Pahang, Pahang data set. ANN2 achieved the best MAE, RMSE, and  R2 with scores of 2.6228 ton/
day, 7.6295 ton/day, and 0.9795 respectively, hence giving it the highest RM of 1.00. The best SVR model was 
SVR1 (RM = 8.33), while the best LSTM model was LSTM2 (RM = 3.33). The models’ performance scores and 
actual vs predicted SSL of best models from each algorithm for Sungai Pahang test set is shown in Table 15 and 
Fig. 22 respectively.

Performance of models based on the Sungai Perak, Perak data set. Model SVR3, based on the 
SVR algorithm and input parameter scenario 3, produced the best overall performance in predicting the SSL 
for the Sungai Perak, Perak data set. SVR3 achieved the best MAE, RMSE, and  R2 with scores of 38.0924 ton/
day, 82.0057 ton/day, and 0.9817 respectively, hence giving it the highest RM of 1.00. The best ANN model was 

Figure 19.  Actual vs predicted SSL of best models based on each algorithm for Sungai Kelantan test set.

Table 13.  Models’ performance scores based on Sungai Melaka test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 90.0460 231.2991 0.4714 6 6 6 6.00

SVR2 88.6399 229.7522 0.4785 5 5 5 5.00

SVR3 62.3282 149.6537 0.7787 1 1 1 1.00

SVR4 66.5554 159.9368 0.7473 2 2 2 2.00

ANN1 130.3886 235.9549 0.4500 8 8 8 8.00

ANN2 129.5363 234.3656 0.4573 7 7 7 7.00

ANN3 86.6945 187.6765 0.6520 4 4 4 4.00

ANN4 82.3402 181.5299 0.6744 3 3 3 3.00

LSTM1 215.4332 302.4288 0.0996 12 12 12 12.00

LSTM2 197.4509 299.9267 0.1144 11 11 11 11.00

LSTM3 165.1691 296.4999 0.1346 10 10 10 10.00

LSTM4 141.9856 262.8415 0.3199 9 9 9 9.00
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Figure 20.  Actual vs predicted SSL of best models based on each algorithm for Sungai Melaka test set.

Table 14.  Models’ performance scores based on Sungai Kepis test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 8.5567 183.7401 − 0.0004 5 6 6 5.67

SVR2 8.5120 183.7365 − 0.0004 4 5 5 4.67

SVR3 8.7057 182.4586 0.0135 7 3 3 4.33

SVR4 7.8675 183.1118 0.0064 3 4 4 3.67

ANN1 9.0731 198.4062 − 0.1665 8 11 11 10.00

ANN2 10.5838 208.6346 − 0.2899 12 12 12 12.00

ANN3 8.5684 170.9490 0.1340 6 1 1 2.67

ANN4 10.1998 177.9901 0.0612 11 2 2 5.00

LSTM1 7.0221 184.4076 − 0.0017 1 7 7 5.00

LSTM2 7.2435 184.6410 − 0.0042 2 8 8 6.00

LSTM3 9.1092 184.7992 − 0.0059 9 9 9 9.00

LSTM4 9.5115 184.8202 − 0.0061 10 10 10 10.00

Figure 21.  Actual vs predicted SSL of best models based on each algorithm for Sungai Kepis test set.
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ANN3 (RM = 3.00), while the best LSTM model was LSTM4 (RM = 7.67). The models’ performance scores and 
actual vs predicted SSL of best models from each algorithm for the Sungai Perak test set is shown in Table 16 
and Fig. 23 respectively.

Performance of models based on the Sungai Arau, Perlis data set. Model ANN3, based on the 
ANN algorithm and input parameter scenario 3, produced the best overall performance in predicting the SSL 
for the Sungai Arau, Perlis data set. ANN3 achieved the best MAE, RMSE, and  R2 with scores of 2.2241 ton/day, 
5.3676 ton/day, and 0.9502 respectively, hence giving it the highest RM of 1.00. The best SVR model was SVR3 
(RM = 5.67), while the best LSTM model was LSTM4 (RM = 5.00). The models’ performance scores and actual vs 
predicted SSL of best models from each algorithm for the Sungai Arau test set is shown in Table 17 and Fig. 24 
respectively.

Performance of models based on the Sungai Selangor, Selangor data set. Model ANN4, based 
on the ANN algorithm and input parameter scenario 4, produced the best overall performance in predicting 
the SSL for Sungai Selangor data set. ANN4 achieved the best MAE, RMSE, and  R2 with scores of 81.7882 ton/
day, 209.1255 ton/day, and 0.9425 respectively, hence giving it the highest RM of 1.00. The best SVR model was 
SVR3 (RM = 3.00), while the best LSTM model was LSTM4 (RM = 9.00). The models’ performance scores and 
actual vs predicted SSL of best models from each algorithm for Sungai Selangor test set is shown in Table 18 and 
Fig. 25 respectively.

Performance of models based on the Sungai Dungun, Terengganu data set. Model ANN4, 
based on the ANN algorithm and input parameter scenario 4, produced the best overall performance in predict-

Table 15.  Models’ performance scores based on Sungai Pahang test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 8.6849 50.6481 0.0974 7 9 9 8.33

SVR2 8.5916 50.8337 0.0907 6 12 12 10.00

SVR3 9.0650 50.6613 0.0969 10 10 10 10.00

SVR4 9.0993 50.7911 0.0923 11 11 11 11.00

ANN1 3.7568 12.9546 0.9409 2 2 2 2.00

ANN2 2.6228 7.6295 0.9795 1 1 1 1.00

ANN3 10.7227 44.5757 0.3008 12 7 7 8.67

ANN4 7.5714 33.1561 0.6132 5 5 5 5.00

LSTM1 6.9055 29.2162 0.7008 3 4 4 3.67

LSTM2 6.9775 28.2581 0.7201 4 3 3 3.33

LSTM3 9.0082 43.6166 0.3332 9 6 6 7.00

LSTM4 8.7162 44.8583 0.2947 8 8 8 8.00

Figure 22.  Actual vs predicted SSL of best models based on each algorithm for Sungai Pahang test set.
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Table 16.  Models’ performance scores based on Sungai Perak test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 172.2583 263.6394 0.8109 6 6 6 6.00

SVR2 171.0943 262.1442 0.8130 5 5 5 5.00

SVR3 38.0924 82.0057 0.9817 1 1 1 1.00

SVR4 44.7664 103.9075 0.9706 2 2 2 2.00

ANN1 179.9728 268.0674 0.8045 7 8 8 7.67

ANN2 185.1508 275.2471 0.7939 8 10 10 9.33

ANN3 79.1228 126.6130 0.9564 3 3 3 3.00

ANN4 122.5226 177.1150 0.9147 4 4 4 4.00

LSTM1 269.7520 362.6726 0.6433 12 12 12 12.00

LSTM2 260.4905 356.5332 0.6553 11 11 11 11.00

LSTM3 193.1258 269.9014 0.8024 10 9 9 9.33

LSTM4 189.1196 265.6541 0.8086 9 7 7 7.67

Figure 23.  Actual vs predicted SSL of best models based on each algorithm for Sungai Perak test set.

Table 17.  Models’ performance scores based on Sungai Arau test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 5.6436 16.2006 0.5461 9 8 8 8.33

SVR2 5.8481 18.4148 0.4136 10 12 12 11.33

SVR3 3.4843 14.6974 0.6264 3 7 7 5.67

SVR4 4.2233 17.5056 0.4700 5 9 9 7.67

ANN1 4.8854 12.5868 0.7260 6 6 6 6.00

ANN2 4.2200 11.6421 0.7656 4 3 3 3.33

ANN3 2.2241 5.3676 0.9502 1 1 1 1.00

ANN4 3.2161 11.1742 0.7841 2 2 2 2.00

LSTM1 7.4557 17.7458 0.4600 12 11 11 11.33

LSTM2 7.1530 17.6884 0.4635 11 10 10 10.33

LSTM3 5.5737 12.5244 0.7310 8 5 5 6.00

LSTM4 5.3228 11.9949 0.7533 7 4 4 5.00
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ing the SSL for the Sungai Dungun, Terengganu data set. ANN4 achieved the best RMSE and  R2 with scores 
of 287.5243 ton/day and 0.8674 respectively, hence giving it the highest RM of 1.33. ANN3 obtained the best 
MAE with a score of 68.8483 ton/day. The best SVR model was SVR4 (RM = 3.67), while the best LSTM model 
was LSTM4 (RM = 8.00). The models’ performance scores and actual vs predicted SSL of best models from each 
algorithm for the Sungai Dungun test set is shown in Table 19 and Fig. 26 respectively.

Performance of models based on the Sungai Klang, Kuala Lumpur data set. Model SVR3, based 
on the ANN algorithm and input parameter scenario 3, produced the best overall performance in predicting 
the SSL for Sungai Klang data set. SVR3 achieved the best MAE, RMSE, and  R2 with scores 33.8257 ton/day, 
65.4953 ton/day, and 0.9721 respectively, hence giving it the highest RM of 1.00. The best ANN model was 
ANN3 (RM = 2.33), while the best LSTM model was LSTM4 (RM = 7.67). The models’ performance scores and 
actual vs predicted SSL of best models from each algorithm for Sungai Klang test set is shown in Table 20 and 
Fig. 27 respectively.

Overall comparison and analysis of model performances. The models’ performances are compared 
and analysed based on two evaluations, which are the number of times a model produced the best predictive per-
formance for a data set, and the reliability of each model in producing relatively high-accuracy predictions for 
different data sets. With regards to the number of times a model produced the best predictive performance for a 
data set, it is found that ANN3 performed the best in 5 out of the 11 tested data sets, which are the Sungai Johor, 
Sungai Muda, Sungai Kelantan, Sungai Kepis, and Sungai Arau data sets. SVR3 outperformed the other models 
in 3 of the tested data sets, namely the Sungai Melaka, Sungai Perak, and Sungai Klang data sets. ANN4 produced 
the best predictive performance in 2 of the tested data sets which are Sungai Selangor and Sungai Dungun, while 

Figure 24.  Actual vs predicted SSL of best models based on each algorithm for Sungai Arau test set.

Table 18.  Models’ performance scores based on Sungai Selangor test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 163.5482 340.4909 0.8476 6 5 5 5.33

SVR2 163.8862 343.5930 0.8448 7 7 7 7.00

SVR3 105.2593 229.1295 0.9310 3 3 3 3.00

SVR4 110.7676 244.8410 0.9212 4 4 4 4.00

ANN1 178.1824 342.0826 0.8461 8 6 6 6.67

ANN2 158.7238 345.9227 0.8427 5 8 8 7.00

ANN3 100.8560 221.7469 0.9353 2 2 2 2.00

ANN4 81.7882 209.1255 0.9425 1 1 1 1.00

LSTM1 281.1844 477.9614 0.6915 12 11 11 11.33

LSTM2 280.3071 478.6574 0.6906 11 12 12 11.67

LSTM3 225.7434 416.8863 0.7653 10 10 10 10.00

LSTM4 215.8317 416.2441 0.7660 9 9 9 9.00
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Figure 25.  Actual vs predicted SSL of best models based on each algorithm for Sungai Selangor test set.

Table 19.  Models’ performance scores based on Sungai Dungun test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 124.0464 357.9365 0.7945 8 8 7 7.67

SVR2 119.8292 382.4797 0.7654 7 9 9 8.33

SVR3 111.6157 313.5950 0.8423 6 3 3 4.00

SVR4 79.1380 326.7331 0.8288 3 4 4 3.67

ANN1 101.8140 350.3639 0.8031 4 6 6 5.33

ANN2 107.7054 349.1494 0.8045 5 5 5 5.00

ANN3 68.8483 290.1393 0.8650 1 2 2 1.67

ANN4 75.0303 287.5243 0.8674 2 1 1 1.33

LSTM1 204.0777 455.1370 0.6509 12 12 12 12.00

LSTM2 195.3278 452.3804 0.6551 11 11 11 11.00

LSTM3 186.9991 409.1535 0.7179 10 10 10 10.00

LSTM4 147.6853 356.0388 0.7864 9 7 8 8.00

Figure 26.  Actual vs predicted SSL of best models based on each algorithm for Sungai Dungun test set.
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ANN2 was the best predictive model for 1 data set which is the Sungai Pahang data set. Therefore, ANN3 was 
the most accurate SSL predictive model for more data sets compared to the other tested models. It is found that 
the algorithm and the input scenario that produced the best predictive performance for the most data sets are 
the ANN and input scenario 3 respectively, as both have the best SSL prediction performance for 8 out of 11 data 
sets. A matrix of most accurate algorithm and input scenario for each data set and the parameters with highest 
number of best prediction results can be observed in Tables 21 and 22.

Next, the models’ performances are evaluated based on their reliability in producing relatively high-accuracy 
predictions for different data sets. This evaluation is important to determine the models that are most adapt-
able and robust to different data sets, which may vary in SSL magnitude and temporal behaviour. It also helps 
to understand each models’ overall performance on all 11 tested data sets. To quantify the models’ reliability in 
producing relatively high-accuracy predictions for different data sets, the average of the RM scores obtained by 
each model for all 11 tested data sets are calculated and compared, as shown in Table 23 and Fig. 28. It is found 

Table 20.  Models’ performance scores based on Sungai Klang test set.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank  (R2) RM

SVR1 234.9908 408.5534 − 0.0845 6 6 6 6.00

SVR2 233.1373 404.5411 − 0.0633 5 5 5 5.00

SVR3 33.8257 65.4953 0.9721 1 1 1 1.00

SVR4 66.6663 116.0418 0.9125 2 3 3 2.67

ANN1 321.1464 467.1223 − 0.4177 7 8 9 8.00

ANN2 354.7978 482.6928 − 0.5138 8 10 11 9.67

ANN3 85.0203 94.9095 0.9415 3 2 2 2.33

ANN4 109.7693 166.4777 0.8199 4 4 4 4.00

LSTM1 469.6151 520.4282 − 0.6467 12 12 12 12.00

LSTM2 431.0026 487.5906 − 0.4454 11 11 10 10.67

LSTM3 422.4213 480.2891 − 0.4025 10 9 8 9.00

LSTM4 356.9486 436.4166 − 0.1580 9 7 7 7.67

Figure 27.  Actual vs predicted SSL of best models based on each algorithm for Sungai Klang test set.

Table 21.  Matrix of most accurate algorithm and input scenario for each data set.

Algorithm Input scenario 1 Input scenario 2 Input scenario 3 Input scenario 4

SVR Sungai Melaka, Sungai Perak, Sungai Klang

ANN Sungai Pahang Sungai Johor, Sungai Muda, Sungai Kelantan, 
Sungai Kepis, Sungai Arau Sungai Selangor, Sungai Dungun

LSTM
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that ANN3 has the highest average RM with a score of 2.64, hence making it the most reliable model in predict-
ing SSL with relatively high accuracy for different data sets. ANN4 is a close competitor (average RM = 2.91), 
followed by SVR3 (average RM = 3.85).

Based on these comparisons and analyses, it can be deduced that the best model for SSL prediction in the 
present case study of Peninsular Malaysia is the ANN3 model as it produced the best SSL predictions for more 
data sets compared to the other models, and it is the most reliable model given that it is robust and adaptable 
enough to predict SSL with a relatively high accuracy for different data sets compared to the other models, as 
suggested by its lowest average RM score of 2.64.

As highlighted by Table 21 and Fig. 28, it can be understood that ANN is the most successful algorithm in 
the present study, followed by SVR. LSTM represents the poorest performing algorithm as it was not able to 
produce the best predictive performance for any of the tested data sets. The LSTM models also have the lowest 

Table 22.  Parameters with highest number of best prediction results.

Parameter Description

Algorithm ANN (produced best prediction results in 8/11 data sets)

Input scenario Input scenario 3 (produced best prediction results in 8/11 data sets)

Model ANN3 (produced best prediction results in 5/11 data sets)

Table 23.  Average RM of each model based on all data sets.

Data set

RM

SVR1 SVR2 SVR3 SVR4 ANN1 ANN2 ANN3 ANN4 LSTM1 LSTM2 LSTM3 LSTM4

Sungai Johor 8.67 6.33 7.00 8.00 6.67 3.67 1.00 2.00 11.00 12.00 6.00 5.67

Sungai Muda 9.33 8.33 3.00 3.67 6.00 4.67 1.00 2.67 10.67 10.33 8.67 9.67

Sungai Kelantan 7.67 6.67 2.33 4.00 6.67 5.00 1.67 2.00 11.33 11.33 10.33 9.00

Sungai Melaka 6.00 5.00 1.00 2.00 8.00 7.00 4.00 3.00 12.00 11.00 10.00 9.00

Sungai Kepis 5.67 4.67 4.33 3.67 10.00 12.00 2.67 5.00 5.00 6.00 9.00 10.00

Sungai Pahang 8.33 10.00 10.00 11.00 2.00 1.00 8.67 5.00 3.67 3.33 7.00 8.00

Sungai Perak 6.00 5.00 1.00 2.00 7.67 9.33 3.00 4.00 12.00 11.00 9.33 7.67

Sungai Arau 8.33 11.33 5.67 7.67 6.00 3.33 1.00 2.00 11.33 10.33 6.00 5.00

Sungai Selangor 5.33 7.00 3.00 4.00 6.67 7.00 2.00 1.00 11.33 11.67 10.00 9.00

Sungai Dungun 7.67 8.33 4.00 3.67 5.33 5.00 1.67 1.33 12.00 11.00 10.00 8.00

Sungai Klang, 6.00 5.00 1.00 2.67 8.00 9.67 2.33 4.00 12.00 10.67 9.00 7.67

Average RM 7.18 7.06 3.85 4.76 6.64 6.15 2.64 2.91 10.21 9.88 8.67 8.06

Figure 28.  Bar chart of average RM for each model based on all data sets.
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average RMs compared to the other models. Generally, LSTMs are effective in predicting based on data sets that 
have a clear time pattern. As the SSL data in the present study is volatile as it is often going up and down without 
a clear time pattern, it is probable that LSTM’s effectiveness may have been reduced. Meanwhile, SVR and ANN 
produced better SSL predictions because they are regression-based methods.

Conclusion
Time series data sets on daily SF and SSL were obtained for 11 different rivers throughout Peninsular Malaysia 
and used to develop ML models for SSL prediction using three ML algorithms, namely SVM, ANN, and LSTM. 
Based on quantitative analyses, the ANN3 model, which utilises the ANN algorithm and input scenario 3 (inputs 
consisting of current day SF, previous day SF, and previous day SSL) is the best performing SSL-predicting model. 
ANN3 was able to produce the best predictive performance for the most data sets that were tested in the present 
study, which is 5 out of 11 data sets; and emerged as the most reliable model in predicting SSL with relatively 
high accuracy for different data sets. Analysis has also shown that the ANN algorithm and input scenario 3 were 
most successful as they were each able to produce the best predictions for 8 out of 11 data sets.

To conclude, the present study has contributed towards the testing and development of SSL predicting models 
for multiple rivers within Peninsular Malaysia, given that the development and proposal of predictive models 
based on multiple river data sets within a single study are scarce. This research gap has been addressed, and the 
main purpose of the present study which is the proposal of a single model that is capable of producing accurate 
SSL predictions for rivers within Peninsular Malaysia is achieved. Based on the findings, the present study pro-
poses the ANN3 model as the model that has the best capability of producing accurate SSL predictions for rivers 
within Peninsular Malaysia. The present study is hoped to contribute towards the respective body of knowledge 
and help hydrological-related organisations in employing suitable and accurate models for SSL prediction. Future 
studies may focus on further improving the ANN3 model for SSL prediction in Peninsular Malaysia by hybrid-
izing the model or incorporating more advanced techniques. Additionally, future studies may further study 
and test the ANN3 model on in other regions around the globe, to determine the effectiveness and accuracy of 
the ANN3 model on a larger scale. The method of selecting the best SSL predictive ML model in the present 
study, which involves using performance evaluation measures to determine the model that produces the best 
SSL predictions for the most rivers and obtains the best average RM, may also be further studied and tested on 
case studies within other regions.

Data availability
The data that support the findings of this study are available at the Malaysian Department of Irrigation and 
Drainage.
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