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An assessment of irrigated rice 
cultivation with different crop 
establishment practices in Vietnam
Van‑Hung Nguyen 1*, Alexander M. Stuart1, Thi‑My‑Phung Nguyen1, 
Thi‑Minh‑Hieu Pham2, Ngoc‑Phuong‑Thanh Nguyen3, Anny Ruth P. Pame1, 
Bjoern Ole Sander1, Martin Gummert1 & Grant Robert Singleton1,4

Overuse of seed and chemical inputs is a major constraint for sustainable rice production in Vietnam. 
In this study, two seasons of field trials were conducted to compare different crop establishment 
practices for rice production in the Mekong River Delta using environmental and economic 
sustainability performance indicators. The indicators including energy efficiency, agronomic use 
efficiency, net income, and greenhouse gas emissions (GHGEs) were quantified based on four 
treatments including manual broadcast‑seeding, blower seeding, drum seeding, and mechanized 
transplanting. Across the four treatments, yields ranged from 7.3–7.5 Mg  ha−1 and 6.2–6.8 Mg  ha−1 in 
the Winter‑Spring (WS) and Summer‑Autumn (SA) seasons, respectively. In comparison with direct 
seeding methods, mechanized transplanting decreased the seed rate by 40%. It also led to a 30–40% 
reduction in pesticide use during the main crop season (WS). Mechanized transplanting required 
higher inputs, including machine depreciation and fuel consumption, but its net energy balance, net 
income and GHGE were at a similar level as the other non‑mechanized planting practices. Mechanized 
transplanting is a technology package that should be promoted to improve the economic and 
environmental sustainability of lowland rice cultivation in the Mekong River Delta of Vietnam.
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MecT  Mechanized transplanting
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MRD  Mekong River Delta of Vietnam
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NUE  Nitrogen-use efficiency (grain kg nitrogen  kg-1)
P2O5  Phosphorus pentoxide
PUE  Phosphorus-use efficiency (grain kg phosphorus  kg-1)
SA  Summer-Autumn
SFLF  Small Farmers, Large Field model
SRP  Sustainable Rice Platform
WS  Winter-Spring

Rice is the main crop and major staple food of many Asian countries with global production at about 505 million 
tons  annually1. Demand for rice is estimated to double when the global population reaches 9 billion by  20502. 
However, rice production currently faces many serious challenges, such as climate change, labor shortage, water 
shortages and loss of crop lands because of increased urbanization and  industrialization3,4. Flooded rice produc-
tion has a substantial environmental footprint, such as contributing 1.5% to global  GHGEs5. These challenges 
and problems of rice production are applicable in Vietnam, which is one of the top rice-exporting countries. 
Vietnam produces 6% of the global rice  supply1. In addition, there are concerns about the effects of intensifica-
tion of cereal cropping on  biodiversity6. The current overuse of chemical inputs in rice production in Vietnam, 
such as fertilizers and pesticides, has adverse effects on biodiversity, the environment and human  health7–9.

In Southeast Asian countries, most rice fields are fragmented with small plot sizes of about 0.1–2 ha, causing 
low energy efficiency and  productivity10,11. In response to these challenges and problems, sustainable practices 
and programs are being promoted, such as Global G.A.P, VietGAP and the Sustainable Rice Platform (SRP) 
 standards12,13. In the Mekong River Delta (MRD) of Vietnam, rice farmers have been adopting a set of best 
management practices named “1 Must Do, 5 Reductions (1M5R)”, which promotes six core principles: 1 Must 
Do = Use certified seed; 5 Reductions = Reduce seed rate, fertilizer use, pesticide use, water use and postharvest 
losses. In addition, a model, “Small Farmers, Large Field,” has been introduced to improve land use efficiency and 
productivity of rice production in the MRD and elsewhere in  Asia14–16. The 1M5R approach applied in Vietnam 
increases nitrogen, water and pesticide use efficiency without compromising productivity and  profitability7,8. 
A water-saving technology called “Alternate Wetting and Drying” has been also applied on a large scale in the 
 MRD4,17,18. Such intermittent irrigation can reduce GHGEs by 40–50% compared to a continuously flooded rice 
production  system19–21.

Crop establishment, which often receives insufficient attention, is one of the major rice production operations 
that should be considered when promoting sustainable rice production practices. Direct seeding (DSR) (e.g., 
broadcasting, drum-seeding, blower seeding), manual transplanting and mechanized transplanting are currently 
the common practices used in irrigated rice  production7,22–24. DSR integrated with water-saving management 
has been reported as an advanced practice in terms of productivity, labor saving and water-use  efficiency25–28. 
Mechanized transplanting has demonstrated advantages for irrigated lowland rice with yields reported to be 7% 
higher compared to manual transplanting, as well as having lower production  costs29,30. Mechanized transplanting 
is currently at an early stage of adoption in the  MRD31. There are available options for crop establishment, but a 
major research gap is quantitative data on the best approach in terms of sustainability. This study compared four 
crop establishment options: manual broadcasting (BroadC), blower seeding (BlowS), drum seeding (DrumS), 
and mechanized transplanting (MecT). The performance of these options was quantified for irrigated rice based 
on performance indicators for sustainable production. These indicators include grain yield, energy efficiency, 
GHG emissions, labor input, and net profit. BroadC is currently the common practice in the Mekong  delta8. We 
hypothesize that MecT, although requiring a high upfront cost, will perform as well or better than BroadC and 
the other practices when assessed against performance indicators for sustainable rice production.

Materials and methods
All methods included in the research, such as the experimental design, measurement of planting uniformity, 
yield, and sustainable performance indicators, are under the guidelines of the International Rice Research Insti-
tute (IRRI) or global standards, which are indicated in the specific sections and parameters below. The manuscript 
was internally reviewed and approved by IRRI.

Site and crop descriptions, experimental design and water management. The experiment was 
conducted in Trung-Thanh Village, Co Do District, Can Tho, Vietnam (10.178103°N latitude; 105.524434°E 
longitude), across two consecutive rice-cropping seasons. These were the Winter-Spring season (WS), or dry 
season, from 8 November 2018 (sowing) to 14 February 2019 (harvest); and the Summer-Autumn season (SA), 
or early wet season, from 1 March 2019 (sowing) to 28 May 2019 (harvest). Rice varieties used were Dai-Thom-8 
and OM5451 for the WS and SA seasons, respectively. The use of these plants complies with the national guide-
lines of  Vietnam32. At the start of the WS season, fields were drained of floodwater, whereas, at the start of the 
SA season, irrigation water was required during land preparation before the onset of the monsoon rains. The 
mean farm size in the study area was 2.1 ± 0.1 ha, with an acid sulphate clay soil  type8. The predominant crop 
establishment method was wet direct-seeding with broadcast pregerminated seed and the majority of farmers 
used four-wheel tractors for land preparation and combine harvesters for  harvesting8.
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The four crop establishment methods were considered as separate treatments and implemented in a rand-
omized complete block design (Table 1). The four treatments were: (1) BroadC (Fig. 1a), (2) BlowS using the 
Kasei 3WF-3A-26L machine (Fig. 1b), (3) DrumS using the Hoang-Thang drum seeder (Fig. 1c), and (4) MecT 
using the Yanmar VP7D25 transplanter (Fig. 1d). The four different farmers’ fields were considered as blocks 
or replicates and the four crop establishment methods were applied in each field (block). The field area of each 
treatment ranged from 3,000 to 4,000  m2. Different fields were used each season. Irrigation and drainage were 
applied similarly across the four treatments, but were different for the WS and SA seasons depending on the 
weather and flood conditions at the research site (Fig. 2). Growing time of the rice was 90 and 83 days for DSR 
and MecT, respectively. However, MecT required the seedlings to be prepared 12 days prior to crop establishment.

Land preparation, fertilizer and pesticide application, and harvesting operations, were the same for all treat-
ments. Land preparation included plowing using locally fabricated rotavators and puddling with wet leveling. 
Fertilizer and pesticides were applied using Knapsack-blowers and -sprayers, respectively, combined in the Kasei 
3WF-3A-26L machine. Harvesting in all treatment plots was done using combine harvesters (Kubota DC-70). 
Straw after harvest was generally incorporated at about 25–30 days before land preparation for the WS, while 
it is burned at about 12–15 days before land preparation for the SA. We applied 1M5R based on the criteria 

Table 1.  Distribution of the treatments and replications in the experiment plots. BroadC = manual 
broadcasting, BlowS = blower-seeding, DrumS = drum-seeding, MecT = mechanized transplanting; the 
numbers associated with the treatments in the Table (i.e. 1, 2, 3, and 4) represent for the blocks or farmers, 
correspondingly.

Farmer 1 Farmer 2 Farmer 3 Farmer 4

BroadC-1 BlowS-2 BlowS-3 MecT-4

BlowS-1 MecT-2 MecT-3 DrumS-4

DrumS-1 BroadC-2 DrumS-3 BroadC-4

MecT-1 DrumS-2 BroadC-3 BlowS-4

Figure 1.  Four crop establishment practices showing (a) manual broadcasting (BroadC), (b) blower seeding 
(BlowS), (c) drum seeding (DrumS) and (d) mechanical transplanting (MecT). The people with their images 
included in Fig. 1 have consented to publish the paper as online open-access material.
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described in Table 2. We were not prescriptive for herbicide application. For all treatments, farmers applied 
herbicide based on their experience. Sofit-300EC (480 ml  ha-1) and Cantamil-550EC (500 ml  ha-1) were the two 
common herbicides used.

Measuring planting uniformity. To measure the planting uniformity, five 40- × 50-cm quadrants (ran-
domly placed in a cross diagonal transect) were sampled in each treatment plot 7 days after sowing or transplant-
ing. Seedling density was assessed by counting the number of seedlings in each quadrant divided by the quadrant 
area. The standard deviation (SD) was then used to compare the variation in seedling density from the mean 
across all replicate plots.

Quantification of grain yield. Grain yield was determined by the crop-cut method from each experi-
mental plot. In the WS season, the samples for the crop cut were taken from two 5-m2 (2.5 × 2.0 m) quadrants, 
which were located 5 m from the center of each plot along a cross diagonal transect. In the SA season, the same 
sampling procedure was applied with one more sampling at the center of each plot (total of three samples for 
each plot). The threshed paddy grains were cleaned (unfilled spikelets removed), weighed and recorded as fresh 
weight. The moisture content (MC) of the grain samples was determined using a grinding-type moisture meter 
(Kett®, product code: F511), which was precalibrated using the oven  method33. The grain yield was calculated at 
14% MC.

Analysis of energy efficiency and indirect GHGEs. Energy efficency (GJ  ha-1) was analyzed based on 
the net differences between the outputs and inputs of rice production—Eq. 1 (Eq. 1):

where NEV is the net energy value for energy efficiency;  Eout is the output energy value only accounting for the 
harvested grains but not including rice straw because this residue was incorporated before WS and burned before 
SA in this research;  Ein is the input energy value accounting for mechanized operations including machine pro-
duction and fuel consumption, labor and agronomic inputs such as seeds, fertilizer and pesticide. The conversion 
factors reported in Ecoinvent (2019)34 were used to estimate the energy of the related materials and processes 
(Table 3). In addition, the energy conversion factor for machine production was calculated through fuel con-
sumption at 15 MJ  L-1 (35,36). Fertilizer inputs, such as nitrogen (N), phosphorus  (P2O5) and potassium  (K2O) 
were calculated based on the chemical content of N,  P2O5 and  K2O, such as urea (46–0-0) and DAP (18–46-0). 
Pesticide and herbicide inputs were converted based on the content of active ingredients and the conversion 
weight of the applied pesticides. Manpower was calculated based on the metabolic equivalent of task (MET), 
which is the ratio of human metabolic rate when performing an activity to the metabolic rate at rest, and on a 
labor energy conversion  factor37, with the assumption that the mean weight of a Vietnamese is 55 kg.

GHGE (kg  CO2-eq  ha-1) is calculated based on Eq. (2), that accounts for the production of agronomic inputs 
including seeds, fertilizer and pesticide  (GHGagro-input); mechanized operations  (GHGoperation), soil emissions 
 (GHGsoil) and rice straw management  (GHGricestraw).

The GHG conversion factors for agronomic inputs and mechanized operation are shown in Table 3.  GHGsoil 
is calculated based on Eq. (3)38, accounting for  CH4 and  N2O emissions. The  CH4 emission is affected by water 
management, pre-season soil management and rice straw incorporation; while the  N2O emission is affected by 
N use for rice  cultivation38.

where  Timegrow is the rice-growing period; 28 and 265 are the Global Warming Potentials of  CH4 and N2O, 
respectively, for conversion to  CO2-eq38;  EFdefault,  SFwater and  SFpre, are the  CH4 emission and scaling factors 

(1)NEV = Eout− Ein
(

GJ ha−1
)

(2)GHGE = GHGagro−inputs+ GHGoperation+ GHGsoil+ GHGricestraw(kgCO2−eqha−1season−1)

(3)
GHGsoil = Timegrow∗28∗EFdefault∗ SFwater∗ SFpre∗SFricestraw+ 265∗EF1FR∗Ffertilizer(kgCO2−eq ha−1season−1)

Table 2.  Specifications of best practices for irrigated rice production (1 Must (certified seed) and 5 Reductions 
(reduced rates of seed, fertilizer, pesticides and water; reduced post-harvest losses) applied in the field trial at 
Trung-Thanh Village, Co Do District, Can Tho, for both seasons. (Max. = maximum). *Postharvest processes 
were excluded for analyses of the findings in this study.

Criteria* Requirements

Seed rate  ≤ 120 kg  ha-1 Certified seed

Nitrogen  ≤ 100 kg  ha-1 Applied with at least three splits

Insecticides Max. 1 product application No application within 40 days after sowing

Fungicides Max. 2 product applications No application after the flowering crop stage

Water management Dry fields during the cultivation following AWD technique

Harvesting Combine harvester Harvest when 80–85% of the grains per panicle are straw 
or yellow-colored
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of water management and pre-season soil management, respectively; and  SFricestraw is the scale factor for rice 
straw management.  EF1FR is the  N2O emission factor in flooded rice systems and fertilizer amount of applied 
N, calculated based on Eq. (4)38. Water management was considered as single- and multiple-drainage scenarios 
during the WS and SA, respectively (Fig. 2). Total growing time of the direct-seeded rice was 90 days while that 
of transplanted rice in the field was 83 days. The seedling preparation time of 12 days was accounted for in the 
transplanted rice scenario. However, the land area used for seedling is only 1:100 for growing compared with 
the common practice in Vietnam, which was observed to be the case in this study. The emission and scaling 
factors are shown in Table 3.

where  Rstraw is the incorporation rate of rice straw (dry matter, t  ha-1) and  CFstraw is the conversion factor of rice 
straw depending on time of incorporation before the crop establishment. Yield of straw only accounted for top 
parts of rice plant harvested is 50% of rice  yield39. This factor is only applied for the straw incorporation scenario 
of WS but not for the burning scenario of SA. On the other hand, GHG emission from straw burning is taken 
into account through the last component  (GHGricestraw) in Eq. (2) which is reported in Romasanta (2017)40.

Computation of sustainability performance indicators. The Sustainable Rice Platform (SRP) has 
developed 12 sustainability performance indicators for rice production (SRP, 2019). We computed the seven 
agronomic indicators: productivity (grain yield), nitrogen-use efficiency (NUE), phosphorous-use efficiency 
(PUE), biodiversity (pesticide use), labor productivity, profitability (net profit) and GHGE as defined by SRP 
version  213. In addition, we included potassium-use efficiency (KUE) due to its importance in rice productivity. 
Farmers were asked to record input and economic data in diaries, which were checked and collected by project 
staff every 3–4 weeks. To compute phosphorus (P) and potassium (K) application rates, the amounts of  P2O5 and 
 K2O for each fertilizer application were determined and multiplied by a factor of 0.4364 and 0.8302, respectively, 
to convert them into the elemental  form13. To compute for NUE, PUE and KUE, the total grain yield harvested 
was divided by the elemental N, P or K rate applied and was expressed in terms of kg grain  kg-1 elemental N, P 
or K. To compare pesticide practices among treatments, we reported the total frequency of application of for-
mulated pesticide products. To compute for labor productivity, both hired and owned (family) male and female 
laborers were considered and the number of labor days per season (for all activities from land preparation until 
harvest, including regular field visits by farmers) were estimated by dividing the total labor cost per season by the 
average daily wage rate (VND 200,000  day-1, collected during this research) at the time taken across all activities. 
The result was then divided by the grain yield as determined from crop cuts.

(4)SFricestraw = (1+ Rstraw ∗ CFstraw)
0.59

Table 3.  Energy and GHGE conversion factors used for calculating the relative energy efficiency of the four 
crop establishment methods from crop establishment to harvest.

Parameters

Energy GHGE

Unit Value Sources Unit Value Sources

Land use MJ  ha-1 0.0024 34,41 See details under “Soil emissions”

Seeds MJ  kg-1 30.1 34,41 kg  CO2-eq  kg-1 1.12 34,41,46

Grain MJ  kg-1 15.2 34,42

Diesel consumption MJ  L-1 44.8 34,35,41 kg  CO2-eq  MJ-1 0.08 34,41,46

Gasoline consumption MJ  L-1 39.1 34,35,41 kg  CO2-eq  MJ-1 0.08 34,41,46

Electric power MJ  kWh-1 3.6 34,35,41 kg  CO2-eq  kWh-1 0.564 34,41

Machine production MJ  L-1 15.6 35,36

N MJ  kg-1 58.7 34,41,43 kg  CO2-eq  kg-1 5.68 34,41,46

P2O5 MJ  kg-1 17.1 34,41,43 kg  CO2-eq  kg-1 1.09 34,41,46

K2O MJ  kg-1 8.83 34,41,43 kg  CO2-eq  kg-1 0.52 34,41,46

Herbicide MJ  kg-1 354 34,41,44 kg  CO2-eq  kg-1 23.3 34,41,46

Pesticide MJ  kg-1 182 34,41,43 kgCO2-eq  kg-1 10.4 34,41,46

Driving 4WT and combine harvesters MJ  h-1 0.44 37,45

Manual labor MJ  h-1 0.89 37,45

Soil emission:

EFdefault of  CH4 in WS kg  ha-1  day-1 1.7 47

EFdefault of  CH4 in SA kg  ha-1  day-1 2.8 47

SFpre for pre-season soil management 1 13

SFwater for single drainage 0.71 38

SFwater for multiple drainage 0.55 38

SFN for Nitrogen use % N applied 0–1 38

CFincorporation 1 13

CH4 from burning straw kg  Mg-1 4.51 40

N2O from burning straw kg  Mg-1 0.069 40
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Net income was calculated by deducting the total production cost from the gross income obtained from grain 
yield. Production cost consisted of: (1) land use; (2) service costs of mechanized operations such as land prepa-
ration, mechanical transplanting, fertilizer and pesticide applications and combine harvesting; (3) agronomic 
inputs including seeds, fertilizer and pesticide; and, (4) labor. Gross income consisted of the income from the 
total fresh harvested grain sold at the field. Costs of inputs and price of paddy are shown in Table 4.

Statistical analysis and software. SPSS software and Analysis of Variance (ANOVA) were used to evalu-
ate the effects of the contrasting crop establishment-based scenarios on the measured production and environ-
mental parameters using a Least Significant Difference (LSD) at α = 0.05 to compare the mean values. Seed-
ling density was analyzed using log transformation due to non-normally distributed residuals. Energy balance 
analysis was based on the Cumulative Energy Demand 1.09 method by SIMAPRO (2019)41 and  CO2-equivalent 
analysis was based on the GWP-100a of IPCC (2013)46.

Results
Planting uniformity. During the WS and SA seasons, there was a significant difference in the seedling den-
sity among treatments (F3,73 = 39.050, P < 0.001; F3,73 = 4.984, P = 0.003, respectively). During the WS season, the 
seedling density for MecT was significantly lower than those of the other crop establishment methods (P < 0.05; 
Fig. 3). In addition, the variation in seedling density (or planting uniformity) for MecT was substantially lower 
(SD = 54.1) than BlowS (SD = 130.0), BroadC (SD = 137.8) and DrumS (SD = 104.9). During the SA season, there 
was no significant difference in the seedling density between Drum S and MecT. However, the seedling density 
for BlowS was significantly higher than DrumS and MecT. During this season, BlowS also had the largest vari-
ation in seedling density (SD = 146.9), and therefore had the lowest planting uniformity, compared to BroadC 
(SD = 70.6), DrumS (SD = 75.2) and Mec T (SD = 79.2). The average seedling density of MecT in the WS was 
lower than in the SA; while that of other treatments in the WS was lower than in the SA. The differences were 
mainly caused by the different operational performances during crop establishment.

Energy input, GHGE, and production cost. Figure 4 shows the energy input, GHGEs and production 
costs for rice production among the different crop establishment options applied with 1M5R. The MecT had 
additional fuel consumption and machine production energy use than other direct seeding treatments but had 
lower agronomic inputs, particularly the seed rate, which was 50–60 kg  ha-1, as compared with 100–120 kg  ha-1 
for the other DSR treatments. MecT also had lower in-field growing time than direct seeding by about 10%. 
These together led to lower total energy input and GHGEs of MecT than for direct seeding. Total energy input 
was 12.5–15.3 GJ  ha-1 and 12.6–13.5 GJ  ha-1, during the WS and SA seasons, respectively, consisting of 65–73% 
from agronomic inputs and the rest from operations. GHGEs during WS were 7.31–8.03 Mg  CO2-eq  ha-1, higher 
by 40% than that during SA; mainly caused by the difference of rice straw management (incorporation before 
the WS and burning before the SA) and water management (one drainageof rice fields during the WS and two 
drainages during the SA). Of the total GHGEs during the WS and SA, respectively, 86 and 70% were from soil 

Table 4.  Cost of inputs and price of paddy.

Inputs Unit Value

Land use $US  ha-1  year-1 2000

Water pumping for WS $US  ha-1season-1 23

Water pumping for SA $US  ha-1season-1 34

Seed $US  kg-1 5.2

Urea 46-0-0 $US  kg-1 58.7

TSP 18-46-0 $US  kg-1 0.6

MOP 0-0-60 $US  kg-1 0.4

NPK 16-16-16 $US  kg-1 0.6

NPK 16–16-8 $US  kg-1 0.5

Herbicide $US  L-1 4.8

Molluscicide $US  L-1 6.1

Fungicide/Insecticide $US  kg-1 12.3

Fungicide/Insecticide $US  L-1 11.0

Land preparation $US  ha-1 94.1

Manual broadcast-seeding $US  ha-1 26.0

Blower seeding $US  ha-1 26.0

Drum seeding $US  ha-1 26.0

Mechanized transplanting $US  ha-1 220.0

Crop care $US  ha-1 56.5

Harvesting $US  ha-1 90.3
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emissions; 10 and 14% were from agronomic inputs; 4 and 8% were from mechanized operations and 8% was 
from straw burning (for SA).

Sustainability performance indicators. Table 5 shows the sustainability performance indicators of crop 
production across the four field trial treatments in the WS and SA seasons. There was no significant difference in 
N-P-K use efficiency (n = 4, P > 0.05). However, the farmers used less fertilizer for the MecT in the WS because 
of better rice plant growth and leaf color. As a consequence, MecT also had better mean energy efficiency. MecT 
had significantly lower pesticide use in the WS season. There was a significant difference in the number of 
pesticide applications between treatments (F9,3 = 5.121, P = 0.024), with the lowest number applied in the MecT 
treatment (P < 0.005). MecT required less pesticides because of increased rice plant vigor and lower plant density 
(Fig. 5). During the SA season, farmers applied less fertilizer and pesticide than in the WS season, with no sig-
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Figure 3.  Seedling density (no. of seedlings  m-2) 7 days after sowing/transplanting of the four different crop 
establishment treatments in Can Tho, Vietnam, during the Winter-Spring (A) and Summer-Autumn (B) 
seasons. Box plots with the same letters are not significantly different at the 0.05 level of significance following 
pairwise comparisons.

Figure 4.  Energy input, GHGEs and production costs for rice production applied with 1M5R under different 
crop establishment options in Can Tho, Vietnam.
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Table 5.  Sustainability performance indicators (mean values followed by standard error in parentheses) of 
crop production across the four field trial treatments in the WS and SA seasons in Can Tho, Vietnam. Within a 
particular row, numbers followed by different letters are significantly different by least significant difference at 
α = 0.05.

Manual 
broadcasting Blower seeding Drum seeding

Mechanical 
transplanting

(n = 4) (n = 4) (n = 4) (n = 4)

Winter-Spring

Nitrogen-use efficiency (grain kg N  kg-1) 80.5 (14.56) 78.9 (14.55) 78.5 (11.80) 101.8 (17.34)

Phosphorus-use efficiency (grain kg P  kg-1) 322.4 (55.59) 312.8 (46.65) 315.2 (41.77) 358.6 (16.81)

Potassium-use efficiency (grain kg K  kg-1) 185.3 (24.43) 180.3 (19.92) 181.0 (14.46) 248.8 (30.00)

No. of pesticide applications 9.8 (1.44)a 9.8 (1.44)a 9.8 (1.44)a 6.5 (0.87)b

Labor productivity (kg  days-1) – based on total labor cost 264.3 (22.29) 262.4 (26.80) 269.4 (21.98) 254.9 (22.88)

Grain yield (t  ha-1) 7.5 (0.44) 7.4 (0.48) 7.4 (0.27) 7.5 (0.23)

Energy efficiency (GJ  ha-1) 98.61 – 96.74 – 97.54 – 101.64

GHGEs (kg  CO2-eq  ha-1) 8,025 – 7,988- – 7,976 – 7307

Net income (USD  ha-1) 1,014 (96) 999 (101) 1,017 (56) 1069.8 (60)

Summer-Autumn

Nitrogen-use efficiency (grain kg N  kg-1) 83.9 (6.28) 83.2 (5.64) 77.6 (6.46) 83.2 (7.76)

Phosphorus-use efficiency (grain kg P  kg-1) 336.4 (29.27) 333.4 (27.15) 310.2 (25.42) 341.3 (39.73)

Potassium-use efficiency (grain kg K  kg-1) 174.9 (7.49) 173.7 (7.66) 161.9 (9.16) 177.1 (14.09)

No. of pesticide applications 3.5 (0.29) 3.5 (0.29) 4.0 (0.71) 3.5 (0.65)

Labor productivity (kg  days-1)—based on total labor cost 255.7 (8.86)a 241.9 (17.29)a 228.4 (17.99)a 136.9 (8.09) b

Grain yield (t  ha-1) 6.7 (0.10) 6.6 (0.21) 6.2 (0.36) 6.8 (0.27)

Energy efficiency (GJ  ha-1) 87.86 – 87.04 – 80.45 – 90.60

GHGEs (kg  CO2-eq  ha-1) 4,984 – 4,991 – 4995 – 4,679

Net income (USD  ha-1) 769 (25) 749 (54) 663 (663) 678 (92)

At seeding At transplanting

33 days after seeding 26 days after transplanting

At harvest
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Figure 5.  Comparisons in experimental fields of rice sown using a blower seeder (broadcast seeding, on left) or 
mechanized transplanting (on the right).
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nificant differences across treatments. However, there was a significant difference in labor productivity among 
treatments (F9,3 = 5.498, P < 0.001). Labor productivity was significantly lower in the MecT plots compared to the 
other treatments (P < 0.05).

Discussion
The use of 1M5R practices following mechanized crop establishment produced similar yields to the other three 
crop establishment methods. More importantly, MecT provided significant economic and environmental benefits 
to smallholder farmers in the MRD because of reduced input use. The findings support what we hypothesized. 
Although this study was conducted under the conditions of irrigated rice for a specific site in Can Tho, we sug-
gest that the findings are representative of most of the lowland rice production in the MRD with alluvial soil.

Rice production in the MRD has high yield (about 6–7 Mg  ha-1) compared with most other countries in 
Southeast  Asia1, but the net income of farmers is low mainly due to overuse of seed, fertilizer and  pesticides7,8. 
In contrast, we demonstrate in this study that the application of 1M5R and mechanized transplanting, using 
lower agronomic inputs without reducing yield, generated a net profit of 600–1,000 $US  ha-1  season-1 or about 
1,800–3,000 $US  ha-1 for three crops per year. This equals 0.2–0.3 $US  kg-1 paddy, which was 7–20% higher 
than FP and 20–40% higher than that reported for conventional farmers in Devkota et al. (2019)7 in the same 
region of the MRD.

Our findings do not clearly demonstrate the influence of the crop establishment method on energy efficiency 
and GHGEs, but revealed that mechanized transplanting did not increase energy input and GHGEs (based on 
life-cycle assessment)48. A number of studies highlight the advantages of direct seeding practices under wet-tillage 
condition in terms on yield, water use effciency and  labor27,28. However, in the previous studies, the comparisons 
were compared to manual transplanting and not to mechanized transplanting, a technology that has been sig-
nificantly improved recently. The current study illustrates that mechanized transplanting reduced seed rate by 
40% compared to three other direct seeding options. Moreover, the reduction of sowing density, as well as the 
planting of 12-day old seedlings, led to reduced fertilizer and pesticide use. The latter suggests that mechanical 
transplanting reduces weeds, pest and disease pressure in comparison with wet direct-seeding. This is likely to 
be due to a number of factors, such as reduced exposure of seeds and young seedlings in fields to birds, snails 
and rats; a competitive advantage of rice seedlings over weeds after transplanting, and lower plant densities that 
lead to more ventilation and lower humidity.

Herbicide application was based on conventional farmer practice and was the same for all treatments. We 
contend that mechanized transplanting would reduce or avoid herbicide application through enabling better vigor 
of rice seedlings after the field had been mechanically cultivated to manage weeds. The benefits of manual trans-
planting over wet direct seeding in relation to weeds, pests and diseases are well  documented49–51. We argue that 
our results highlight similar benefits for MecT. The density of seed-trays and age of seedlings when transplanting 
also are critically important factors to consider when transplanting in snail-infested  regions49. Through reduced 
seed rates, mechanized transplanting also reduced the risk of the lodging of rice  plants50. Reduced lodging was 
observed in the current study and thus reduced postharvest losses due to unfavorable operating conditions of 
combine harvesters when the crop is lodged. The grain quality of lodged rice also is significantly reduced because 
of increased moisture content of the grain and mud contaminating the grain.

Energy efficiency, GHGEs and net profit are commonly used as environmental and economic indicators of 
crop  production13,48. Energy efficiency, which is the net energy difference between outputs and inputs of rice 
production, could vary depending on many factors including site-specific management of water, nutrients, pests 
and crop residues. Previous studies report a wide range for the estimate of net energy value for irrigated rice: 
13.7 MJ  kg-1 rice produced in Ecoinvent (2019)34; 11.3–12.3 MJ  kg−1 for rice in the Philippines in Quilty et al. 
(2014)45; and 10–28 MJ  kg−1 for production in the Philippines with different rice straw management  practices36. 
The estimates of total input energy of rice production in the current study are similar to those reported for irri-
gated rice production in Southeast  Asian36,45,52. The energy efficiency value in the current study (11–14 MJ  kg-1) 
was similar with that reported in Ecoinvent (2019)34 and was higher by 10% than that reported in Quilty et al. 
(2014)45, which is likely because of higher grain yield in the MRD compared to that produced in the Philippines.

In this study, soil emission levels were calculated based on the conversion factors reported in IPCC (2019)38 
using research scenarios with similar specific water and rice straw management and fertilizer application. Total 
GHGEs of the research scenarios were 1.05 and 0.65 kg  CO2-eq  kg-1 paddy during WS and SA, respectively. 
GHGEs during WS was higher by 40% that of SA and that reported in Vo et al. (2017)53 because of the additional 
emissions from rice straw incorporation.

Conclusions
The research provided field-trial evidence from studies within smallholder farmers’ fields of the benefits of 
mechanized transplanted rice compared to direct seeded rice in the MRD. Across the four treatments, the rice 
yield ranged from 7.3 to 7.5 Mg  ha−1 and 6.2 to 6.8 Mg  ha−1 in the WS and SA seasons, respectively. In comparison 
with direct seeding methods, the mechanized transplanting practice decreased the seed rate by 40% and reduced 
pesticide applications by 30–40% in the main crop season (WS) of Vietnam. Despite mechanized transplanting 
required higher inputs for machine production (depreciation) and fuel consumption, its net energy balance, 
net income and GHGEs were at a similar level as the other non-mechanized planting practices. Thus, MecT in 
combination with 1M5R is a technology package that should be promoted to improve the economic and envi-
ronmental sustainability of rice cultivation in the MRD.
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